A Global Scavenging and Circulation Ocean Model of Thorium-230 and Protactinium-231 with Improved Particle Dynamics (NEMO–Prothorp 0.1)

Total Page:16

File Type:pdf, Size:1020Kb

A Global Scavenging and Circulation Ocean Model of Thorium-230 and Protactinium-231 with Improved Particle Dynamics (NEMO–Prothorp 0.1) Geosci. Model Dev., 11, 3537–3556, 2018 https://doi.org/10.5194/gmd-11-3537-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. A global scavenging and circulation ocean model of thorium-230 and protactinium-231 with improved particle dynamics (NEMO–ProThorP 0.1) Marco van Hulten1,2, Jean-Claude Dutay1, and Matthieu Roy-Barman1 1Laboratoire des Sciences du Climat et de l’Environnement, IPSL, CEA–Orme des Merisiers, 91191 Gif-sur-Yvette, France 2Geophysical Institute, University of Bergen, Bergen, Norway Correspondence: Marco van Hulten ([email protected]) Received: 1 November 2017 – Discussion started: 8 December 2017 Revised: 16 August 2018 – Accepted: 20 August 2018 – Published: 31 August 2018 Abstract. In this paper we set forth a 3-D ocean model of the can be done based on our model as its source code is readily radioactive trace isotopes 230Th and 231Pa. The interest arises available. from the fact that these isotopes are extensively used for in- vestigating particle transport in the ocean and reconstructing past ocean circulation. The tracers are reversibly scavenged 1 Introduction by biogenic and lithogenic particles. Our simulations of 230Th and 231Pa are based on the Oceanic circulation and the carbon cycle play a major role NEMO–PISCES ocean biogeochemistry general circulation in the regulation of the past and present climate. Heat and model, which includes biogenic particles, namely small and carbon dioxide in the atmosphere tend to equilibrate with the big particulate organic carbon, calcium carbonate and bio- ocean surface and are transported down into the deep ocean genic silica. Small and big lithogenic particles from dust de- through the Meridional Overturning Circulation (MOC). position are included in our model as well. Their distributions Biogeochemical cycling also generates organic carbon that generally compare well with the small and big lithogenic par- transfers into the deep ocean through particle sinking. Be- ticle concentrations from recent observations from the GEO- cause of this, the strength of the MOC and particle removal TRACES programme, except for boundary nepheloid layers participate actively in the regulation of the climate on the for which, as of today, there are no non-trivial prognostic Earth. models available on a global scale. Our simulations repro- Trace elements are also affected by these mechanisms duce 230Th and 231Pa dissolved concentrations: they compare and represent useful tools to provide constraints on these well with recent GEOTRACES observations in many parts of processes. The GEOTRACES programme has generated a the ocean. Particulate 230Th and 231Pa concentrations are sig- large unique dataset that can now be used to better under- nificantly improved compared to previous studies, but they stand biogeochemical oceanic processes. Modelling quan- are still too low because of missing particles from nepheloid tifies and provides more information on the processes that layers. Our simulation reproduces the main characteristics of control the oceanic distribution of these new observations. the 231Pa=230Th ratio observed in the sediments and supports In present day climate, it is difficult to measure the MOC a moderate affinity of 231Pa to biogenic silica as suggested by strength, and for past climate there are no measurements recent observations relative to 230Th. available at all. Isotopes and trace elements from sedi- Future model development may further improve under- ment cores are used as proxies to infer past ocean circu- standing, especially when this will include a more com- lation. Several examples include carbon isotopes (Broecker plete representation of all particles, including different size et al., 1988), the cadmium=calcium ratio (Rosenthal et al., classes, manganese hydroxides and nepheloid layers. This 1997), the ratio between protactinium-231 and thorium-230 (231Pa=230Th) (Böhm et al., 2015), and the neodymium iso- Published by Copernicus Publications on behalf of the European Geosciences Union. 3538 M. van Hulten et al.: Global ocean model of 230Th and 231Pa tope ratio 143Nd=144Nd (Piotrowski et al., 2005). These prox- tion models have also been used to simulate these tracers, ies are affected by dynamical and biogeochemical processes. namely by Dutay et al.(2009) (NEMO–PISCES), Siddall Including these proxies in a climate model is a way to better et al.(2007), Rempfer et al.(2017) (Bern3D), and Gu and Liu understand the climatic signal they register. (2017) (CESM). Dutay et al.(2009) demonstrated that the We will focus on 230Th and 231Pa because these isotopes particle concentration simulated by the PISCES model in the are well documented by the international GEOTRACES pro- deep ocean was too low by a factor of 2 in the mesopelagic gramme, and they are particularly suitable to study the trans- zone to 50 in the deepest ocean. This led to overestimated fer of particulate matter since the isotopes’ source in the radionuclide concentrations in the deep ocean. Therefore, it ocean is perfectly known: radioactive decay of uranium iso- is crucial to improve the representation of the particles (Du- topes. Others have modelled 143Nd and 144Nd (Arsouze tay et al., 2009). Rempfer et al.(2017) showed that taking et al., 2008, 2009; Ayache et al., 2016), 13C(Tagliabue et al., into account additional sinks at the sea floor and at the ocean 2009), and 14C(Mouchet, 2013). The ratio between 230Th margins yields an improved agreement with observations, es- and 231Pa is used as a proxy for past ocean conditions, but pecially for the dissolved phases of 230Th and 231Pa. Partic- this signal is potentially affected by both circulation and bio- ulate ratios improved to a lesser extent; the authors have not geochemical changes. Therefore, a correct understanding of presented an evaluation of their simulated particulate concen- the scavenging and underlying particle dynamics is essential trations. Gu and Liu(2017) had similar goals as this study. in order to better simulate these tracers (Dutay et al., 2015). In this study, we try to improve on previous studies that Protactinium-231 and thorium-230 are produced in the simulate the distribution of 230Th and 231Pa. Our approach ocean by the α decay of uranium-235 and uranium-234, re- is to improve the mechanistic description of the particle and spectively. Because the activity of uranium is approximately radionuclide cycling, as well as on the side of system de- uniform in the ocean, 231Pa and 230Th are produced at a rel- sign and reusability of the model. We evaluate how well the −3 −3 −1 atively constant rate (βPa D 2:33 × 10 dpmm yr and model fits with observations, but tuning is not one of our −2 −3 −1 βTh D 2:52 × 10 dpmm yr ; dpm: disintegrations per main goals. Just like Dutay et al.(2009), we use the NEMO– minute) (Henderson and Anderson, 2003). They are both OPA (Nucleus for European Modelling of the Ocean – Océan scavenged rapidly by the many particles that reside in the PAralelisé) ocean general circulation model (Madec and the ocean and settle towards the sea floor. 231Pa is less sensitive NEMO team, 2016) and the PISCES biogeochemical model to particle scavenging than 230Th, which is reflected in the (Aumont et al., 2015). Aumont et al.(2017) showed that dis- longer residence time of 231Pa (80–200 yr) compared to that solution rates of particulate organic carbon (POC) in PISCES of 230Th (20–40 yr) (Yu et al., 1996). 231Pa and 230Th are were overestimated, and they improved on this by introduc- radioactive, decaying to radium isotopes and having a half- ing a spectrum of different labilities. This improved the simu- life of 32.76 and 75.40 kyr, respectively. Each combination lation of both small and big POC significantly, so we use this of particle–radionuclide adsorption has a different reactiv- same model for our simulations. There are several improve- ity. Other factors may affect the adsorption of radionuclides ments since Dutay et al.(2009); namely, the new model onto particles. For example, smaller particles have larger sur- face area to volume ratios, which results in an increase in – includes lithogenic particles from dust deposition; the number of these radionuclides adsorbed per particle. Ad- ditionally, while the adsorption rate is expected to increase – has improved the biogeochemistry, affecting the bio- with particle concentration, the adsorption rate may be partly genic particle distributions (Aumont et al., 2015; Au- limited by the coagulation of non-filtered particles (or col- mont et al., 2017); loids) to filtered particles (Honeyman et al., 1988; Honeyman – includes three different phases per nuclide (dissolved, and Santschi, 1988). The vertical distributions of natural ra- and adsorbed onto big (and small) particles), whereas dionuclides, such as 230Th and 231Pa, are hence sensitive to Dutay et al.(2009) include only a single compart- the distribution and mixture of particles. As a consequence ment (total concentration) for each nuclide from which of the different particle reactivities of 230Th and 231Pa, the they calculated the respective phases based on chemical dissolved concentration ratio 231Pa=230Th deviates from the equilibrium; production activity ratio of 0.093 (Anderson et al., 1983; An- derson, 2003; Rutgers van der Loeff et al., 2016). – is more precise and explicit on the mathematical formal- As both particle dynamics and circulation of the ocean ism; affect 230Th and 231Pa, numerical biogeochemical general circulation models are used to study the relative contribu- – is written in Fortran 95 instead of Fortran 77, making tion of these mechanisms. The isotopes have been simulated the extension of its use to other modern Fortran models in models of intermediate complexity, for instance by Hen- easier; and derson et al.(1999) (LSG-OGCM), Marchal et al.(2000) (EMIC 2.5D), Heinze et al.(2006, 2018) (HAMOCC) and – is part of a modern model framework, NEMO–TOP, fa- Luo et al.(2010).
Recommended publications
  • Table 2.Iii.1. Fissionable Isotopes1
    FISSIONABLE ISOTOPES Charles P. Blair Last revised: 2012 “While several isotopes are theoretically fissionable, RANNSAD defines fissionable isotopes as either uranium-233 or 235; plutonium 238, 239, 240, 241, or 242, or Americium-241. See, Ackerman, Asal, Bale, Blair and Rethemeyer, Anatomizing Radiological and Nuclear Non-State Adversaries: Identifying the Adversary, p. 99-101, footnote #10, TABLE 2.III.1. FISSIONABLE ISOTOPES1 Isotope Availability Possible Fission Bare Critical Weapon-types mass2 Uranium-233 MEDIUM: DOE reportedly stores Gun-type or implosion-type 15 kg more than one metric ton of U- 233.3 Uranium-235 HIGH: As of 2007, 1700 metric Gun-type or implosion-type 50 kg tons of HEU existed globally, in both civilian and military stocks.4 Plutonium- HIGH: A separated global stock of Implosion 10 kg 238 plutonium, both civilian and military, of over 500 tons.5 Implosion 10 kg Plutonium- Produced in military and civilian 239 reactor fuels. Typically, reactor Plutonium- grade plutonium (RGP) consists Implosion 40 kg 240 of roughly 60 percent plutonium- Plutonium- 239, 25 percent plutonium-240, Implosion 10-13 kg nine percent plutonium-241, five 241 percent plutonium-242 and one Plutonium- percent plutonium-2386 (these Implosion 89 -100 kg 242 percentages are influenced by how long the fuel is irradiated in the reactor).7 1 This table is drawn, in part, from Charles P. Blair, “Jihadists and Nuclear Weapons,” in Gary A. Ackerman and Jeremy Tamsett, ed., Jihadists and Weapons of Mass Destruction: A Growing Threat (New York: Taylor and Francis, 2009), pp. 196-197. See also, David Albright N 2 “Bare critical mass” refers to the absence of an initiator or a reflector.
    [Show full text]
  • The Development of the Periodic Table and Its Consequences Citation: J
    Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1.
    [Show full text]
  • Measurements of Fission Cross Sections for the Isotopes Relevant to the Thorium Fuel Cycle
    EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN/INTC 2001-025 INTC/P-145 08 Aug 2001 Measurements of Fission Cross Sections for the Isotopes relevant to the Thorium Fuel Cycle The n_TOF Collaboration ABBONDANNO U.20, ANDRIAMONJE S.10, ANDRZEJEWSKI J.24, ANGELOPOULOS A.12, ASSIMAKOPOULOS P.15, BACRI C-O.8, BADUREK G.1, BAUMANN P.9, BEER H.11, BENLLIURE J.32, BERTHIER B.8, BONDARENKO I.26, BOS A.J.J.36, BUSTREO N.19, CALVINO F.33, CANO-OTT D.28, CAPOTE R.31, CARLSON P.34, CHARPAK G.5, CHAUVIN N.8, CENNINI P.5, CHEPEL V.25, COLONNA N.20, CORTES G.33, CORTINA D.32, CORVI F.23, DAMIANOGLOU D.16, DAVID S.8, DIMOVASILI E.12, DOMINGO C.29, DOROSHENKO A.27, DURAN ESCRIBANO I.32, ELEFTHERIADIS C.16, EMBID M.28, FERRANT L.8, FERRARI A.5, FERREIRA–MARQUES R.25, FRAIS–KOELBL H.3, FURMAN W.26, FURSOV B.27, GARZON J.A.32, GIOMATARIS I.10, GLEDENOV Y.26, GONZALEZ–ROMERO E.28, GOVERDOVSKI A.27, GRAMEGNA F.19, GRIESMAYER E.3, GUNSING F.10, HAIGHT R.37, HEIL M.11, HOLLANDER P.36, IOANNIDES K.G.15, IOANNOU P.12, ISAEV S.27, JERICHA E.1, KADI Y.5, KAEPPELER F.11, KARADIMOS D.17, KARAMANIS D.15, KAYUKOV A.26, KAZAKOV L.27, KELIC A.9, KETLEROV V.27, KITIS G.16, KOEHLER P.E.38., KOPACH Y.26, KOSSIONIDES E.14, KROSHKINA I.27, LACOSTE V.5, LAMBOUDIS C.16, LEEB H.1, LEPRETRE A.10, LOPES M.25, LOZANO M.31, MARRONE S.20, MARTINEZ-VAL J.
    [Show full text]
  • THE NATURAL RADIOACTIVITY of the BIOSPHERE (Prirodnaya Radioaktivnost' Iosfery)
    XA04N2887 INIS-XA-N--259 L.A. Pertsov TRANSLATED FROM RUSSIAN Published for the U.S. Atomic Energy Commission and the National Science Foundation, Washington, D.C. by the Israel Program for Scientific Translations L. A. PERTSOV THE NATURAL RADIOACTIVITY OF THE BIOSPHERE (Prirodnaya Radioaktivnost' iosfery) Atomizdat NMoskva 1964 Translated from Russian Israel Program for Scientific Translations Jerusalem 1967 18 02 AEC-tr- 6714 Published Pursuant to an Agreement with THE U. S. ATOMIC ENERGY COMMISSION and THE NATIONAL SCIENCE FOUNDATION, WASHINGTON, D. C. Copyright (D 1967 Israel Program for scientific Translations Ltd. IPST Cat. No. 1802 Translated and Edited by IPST Staff Printed in Jerusalem by S. Monison Available from the U.S. DEPARTMENT OF COMMERCE Clearinghouse for Federal Scientific and Technical Information Springfield, Va. 22151 VI/ Table of Contents Introduction .1..................... Bibliography ...................................... 5 Chapter 1. GENESIS OF THE NATURAL RADIOACTIVITY OF THE BIOSPHERE ......................... 6 § Some historical problems...................... 6 § 2. Formation of natural radioactive isotopes of the earth ..... 7 §3. Radioactive isotope creation by cosmic radiation. ....... 11 §4. Distribution of radioactive isotopes in the earth ........ 12 § 5. The spread of radioactive isotopes over the earth's surface. ................................. 16 § 6. The cycle of natural radioactive isotopes in the biosphere. ................................ 18 Bibliography ................ .................. 22 Chapter 2. PHYSICAL AND BIOCHEMICAL PROPERTIES OF NATURAL RADIOACTIVE ISOTOPES. ........... 24 § 1. The contribution of individual radioactive isotopes to the total radioactivity of the biosphere. ............... 24 § 2. Properties of radioactive isotopes not belonging to radio- active families . ............ I............ 27 § 3. Properties of radioactive isotopes of the radioactive families. ................................ 38 § 4. Properties of radioactive isotopes of rare-earth elements .
    [Show full text]
  • A Note on Radioactive Materials and Their Measurements Elements Are
    A NOTE ON RADIOACTIVE MATERIALS AND THEIR MEASUREMENTS Elements are placed in the periodic table of elements according to atomic number or proton number often referred to as Z. Their atomic weights are also usually indicated and can be fractional if the element in nature contains more than one isotope. Isotopes of an element all have the same atomic number, Z, but have different numbers of neu- trons. Some of these isotopes, even in naturally occurring elements, may be radioactive, and are usually given the atomic weight of the longest known isotope. Radioactive decay occurs when an unstable atom loses energy by emitting particles and gamma radiation or by spontaneously fission- ing. (Spontaneous fission is one of the natural modes of radioactive decay in which fission occurs without the addition of external energy or particles.) The activity of a radioactive sample is simply the rate of radioactive decay, expressed as the number of decays per unit time. Traditionally, the curie (Ci) was used to quantify the decay rate and was defined as the radioactivity measured for one gram of pure radium, or ~3.7 × 1010 decays per second (d/s), but the value changed as measurement techniques improved. To avoid this problem of a “chang- ing” constant, the Curie is now defined as exactly 3.7 × 1010 d/s. The becquerel (Bq), equal to one d/s, is the official SI unit (International System of Units). The roentgen R( ) is commonly used as a unit of radiation exposure to X-ray or gamma radiation, and can be roughly defined as “that quan- tity of X-ray or gamma radiation needed to produce one electrostatic unit of ionic charge in one cm3 of air under standard temperature and pressure (STP) “normal conditions”.
    [Show full text]
  • 12 Natural Isotopes of Elements Other Than H, C, O
    12 NATURAL ISOTOPES OF ELEMENTS OTHER THAN H, C, O In this chapter we are dealing with the less common applications of natural isotopes. Our discussions will be restricted to their origin and isotopic abundances and the main characteristics. Only brief indications are given about possible applications. More details are presented in the other volumes of this series. A few isotopes are mentioned only briefly, as they are of little relevance to water studies. Based on their half-life, the isotopes concerned can be subdivided: 1) stable isotopes of some elements (He, Li, B, N, S, Cl), of which the abundance variations point to certain geochemical and hydrogeological processes, and which can be applied as tracers in the hydrological systems, 2) radioactive isotopes with half-lives exceeding the age of the universe (232Th, 235U, 238U), 3) radioactive isotopes with shorter half-lives, mainly daughter nuclides of the previous catagory of isotopes, 4) radioactive isotopes with shorter half-lives that are of cosmogenic origin, i.e. that are being produced in the atmosphere by interactions of cosmic radiation particles with atmospheric molecules (7Be, 10Be, 26Al, 32Si, 36Cl, 36Ar, 39Ar, 81Kr, 85Kr, 129I) (Lal and Peters, 1967). The isotopes can also be distinguished by their chemical characteristics: 1) the isotopes of noble gases (He, Ar, Kr) play an important role, because of their solubility in water and because of their chemically inert and thus conservative character. Table 12.1 gives the solubility values in water (data from Benson and Krause, 1976); the table also contains the atmospheric concentrations (Andrews, 1992: error in his Eq.4, where Ti/(T1) should read (Ti/T)1); 2) another category consists of the isotopes of elements that are only slightly soluble and have very low concentrations in water under moderate conditions (Be, Al).
    [Show full text]
  • Rapid Separations of Protactinium and Uranium Radioisotopes From
    754 LETTERS TO THE EDITOR may be as small as one micron in diameter. Such particles are solutions with ether were required to further eliminate non­ products of breakdown or are introduced mto the enclosed system volatile foreign material which would extract into the ether. at the time of assembly. If special precautions were not taken to Ignition of the ether sample gave a weightless plate of the uranium eliminate stray particles, the subnormal breakdown strengths isotopes. obtained would lay within ±1O percent of a mean value which Approximate times required for the steps were: solution, for a given method of electrode polishing would be repeatable. extraction, and separation 10-20 seconds; washing 10-15 seconds; These mean values, reported earlier,! are in agreement with the and making of sample plate ("-'1 cc ether) ",15 seconds. results published by other workers. In nuclear chemical work where the main interest is in charac­ Experiments are continuing to determine whether the maximum terizing particular isotopes, emphasis is on radiochemical purity values reported here are indeed the intrinsic electric strengths of of the isotope rather than on chemical yield. The above procedures the liquids concerned. give only a 10-20 percent chemical yield-fa of which can be The author is indebted to the National Research Council of rapidly placed on a plate for counting, These yields are quite Canada for the award of a Fellowship which enabled him to carry satisfactory for the purpose, however, since contaminating isotopes out this work. have been reduced by a factor of 104 to lOS. Experimental results have shown that about 1 part in 104 of actinium, 1 part in lOS of 1 W.
    [Show full text]
  • Periodic Table 1 Periodic Table
    Periodic table 1 Periodic table This article is about the table used in chemistry. For other uses, see Periodic table (disambiguation). The periodic table is a tabular arrangement of the chemical elements, organized on the basis of their atomic numbers (numbers of protons in the nucleus), electron configurations , and recurring chemical properties. Elements are presented in order of increasing atomic number, which is typically listed with the chemical symbol in each box. The standard form of the table consists of a grid of elements laid out in 18 columns and 7 Standard 18-column form of the periodic table. For the color legend, see section Layout, rows, with a double row of elements under the larger table. below that. The table can also be deconstructed into four rectangular blocks: the s-block to the left, the p-block to the right, the d-block in the middle, and the f-block below that. The rows of the table are called periods; the columns are called groups, with some of these having names such as halogens or noble gases. Since, by definition, a periodic table incorporates recurring trends, any such table can be used to derive relationships between the properties of the elements and predict the properties of new, yet to be discovered or synthesized, elements. As a result, a periodic table—whether in the standard form or some other variant—provides a useful framework for analyzing chemical behavior, and such tables are widely used in chemistry and other sciences. Although precursors exist, Dmitri Mendeleev is generally credited with the publication, in 1869, of the first widely recognized periodic table.
    [Show full text]
  • Protactinium
    Human Health Fact Sheet ANL, November 2001 Protactinium What Is It? Protactinium is a malleable, shiny, silver-gray radioactive metal that Symbol: Pa does not tarnish rapidly in air. It has a density greater than that of lead and occurs in nature in very low concentrations as a decay product of uranium. There are three Atomic Number: 91 naturally occurring isotopes, with protactinium-231 being the most abundant. (protons in nucleus) (Isotopes are different forms of an element that have the same number of protons in Atomic Weight: 231 the nucleus but a different number of neutrons.) The other two naturally occurring (naturally occurring) isotopes are protactinium-234 and protactinium-234m (the “m” meaning metastable), both of which have very short half-lives (6.7 hours and 1.2 minutes, respectively) and occur in extremely low concentrations. Protactinium was first identified in 1913 by Kasimir Fajans and O.H. Gohring (as the isotope protactinium-234m), and protactinium-231 was identified in 1917. The name comes from the Greek work protos (meaning first) and the element actinium, because protactinium is the precursor of actinium. Of the 20 known isotopes of protactinium, only protactinium-231 has a half-life greater than one year and is a concern for Department of Energy (DOE) environmental management sites. The half-lives of all other protactinium isotopes Radioactive Properties of the Key Protactinium Isotope are less than a month. Protactinium-231 is a and Associated Radionuclides Natural decay product of Specific Radiation Energy (MeV) Abun- Decay uranium-235 and is Isotope Half-Life Activity dance Mode Alpha Beta Gamma present at sites that (Ci/g) (%) (α) (β) (γ) processed uranium α ores and associated Pa231 33,000 yr >99 .048 5.0 0.065 0.048 wastes.
    [Show full text]
  • Upper Limit of the Periodic Table and the Future Superheavy Elements
    CLASSROOM Rajarshi Ghosh Upper Limit of the Periodic Table and the Future Department of Chemistry The University of Burdwan ∗ Superheavy Elements Burdwan 713 104, India. Email: [email protected] Controversy surrounds the isolation and stability of the fu- ture transactinoid elements (after oganesson) in the periodic table. A single conclusion has not yet been drawn for the highest possible atomic number, though there are several the- oretical as well as experimental results regarding this. In this article, the scientific backgrounds of those upcoming super- heavy elements (SHE) and their proposed electronic charac- ters are briefly described. Introduction Totally 118 elements, starting from hydrogen (atomic number 1) to oganesson (atomic number 118) are accommodated in the mod- ern form of the periodic table comprising seven periods and eigh- teen groups. Total 92 natural elements (if technetium is consid- ered as natural) are there in the periodic table (up to uranium hav- ing atomic number 92). In the actinoid series, only four elements— Keywords actinium, thorium, protactinium and uranium—are natural. The Superheavy elements, actinoid rest of the eleven elements—from neptunium (atomic number 93) series, transactinoid elements, periodic table. to lawrencium (atomic number 103)—are synthetic. Elements after actinoids (i.e., from rutherfordium) are called transactinoid elements. These are also called superheavy elements (SHE) as they have very high atomic numbers. Prof. G T Seaborg had Elements after actinoids a very distinct contribution in the field of transuranium element (i.e., from synthesis. For this, Prof. Seaborg was awarded the Nobel Prize in rutherfordium) are called transactinoid elements. 1951.
    [Show full text]
  • The Elements.Pdf
    A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements A Resource for Elementary, Middle School, and High School Students Click an element for more information: Group** Period 1 18 IA VIIIA 1A 8A 1 2 13 14 15 16 17 2 1 H IIA IIIA IVA VA VIAVIIA He 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 Na Mg IIIB IVB VB VIB VIIB ------- VIII IB IIB Al Si P S Cl Ar 22.99 24.31 3B 4B 5B 6B 7B ------- 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 ------- 8 ------- 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.47 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr NbMo Tc Ru Rh PdAgCd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La* Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 87 88 89 104 105 106 107 108 109 110 111 112 114 116 118 7 Fr Ra Ac~RfDb Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () http://pearl1.lanl.gov/periodic/ (1 of 3) [5/17/2001 4:06:20 PM] A Periodic Table of the Elements at Los Alamos National Laboratory 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanide Series* Ce Pr NdPmSm Eu Gd TbDyHo Er TmYbLu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide Series~ Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions.
    [Show full text]
  • Periodic Table of Elements
    The origin of the elements – Dr. Ille C. Gebeshuber, www.ille.com – Vienna, March 2007 The origin of the elements Univ.-Ass. Dipl.-Ing. Dr. techn. Ille C. Gebeshuber Institut für Allgemeine Physik Technische Universität Wien Wiedner Hauptstrasse 8-10/134 1040 Wien Tel. +43 1 58801 13436 FAX: +43 1 58801 13499 Internet: http://www.ille.com/ © 2007 © Photographs of the elements: Mag. Jürgen Bauer, http://www.smart-elements.com 1 The origin of the elements – Dr. Ille C. Gebeshuber, www.ille.com – Vienna, March 2007 I. The Periodic table............................................................................................................... 5 Arrangement........................................................................................................................... 5 Periodicity of chemical properties.......................................................................................... 6 Groups and periods............................................................................................................. 6 Periodic trends of groups.................................................................................................... 6 Periodic trends of periods................................................................................................... 7 Examples ................................................................................................................................ 7 Noble gases .......................................................................................................................
    [Show full text]