How Do Space Missions Help Us Learn About the Solar System?

Total Page:16

File Type:pdf, Size:1020Kb

How Do Space Missions Help Us Learn About the Solar System? S ON CU O F How do space missions TEKS help us learn about the 11C solar system? You’re taking a trip to a faraway place . to Mars, which is 225 million Watch the Untamed Science video kilometers away. You won’t be able to to learn more about exploring space. call for roadside assistance if your all-terrain vehicle breaks down, because there is no cellphone service there. If you want to be sure your vehicle is up for the challenge, you better road-test it in Martian-like conditions first! How might models help designers who are building a rover? 410 Exploring Space CHAPTER Exploring Space 10 Texas Essential Knowledge and Skills TEKS: 2D Construct tables and graphs, using repeated trials and means, to organize data and identify patterns. 2E Analyze data to formulate reasonable explanations, communicate valid conclusions supported by the data, and predict trends. 11C Describe the history and future of space exploration, including the types of equipment and transportation needed for space travel. 411 CHAPTER 10 Getting Started Check Your Understanding 1. Background Read the paragraph below and then answer the question. A force is a push or pull. Bill wonders how a rocket gets off the ground. His sister Jan explains that the rocket’s engines create a lot of Speed is the distance an object moves per unit of force. The force causes the rocket to travel upward with time. great speed. The force helps the rocket push against Gravity is the force that pulls gravity and have enough speed to rise into space. objects toward each other. • What force is pulling down on the rocket as it pushes off the ground? Vocabulary Skill Identify Related Word Forms You can expand your vocabulary by learning the related forms of a word. If you know that the verb collect means “to gather together,” then you can figure out the meaning of the noun collection and the adjective collective. Verb Noun Adjective probe probe probing to examine something carefully an unmanned space vehicle serving to test or try vacuum vacuum vacuum to clean with a vacuum cleaner a place empty of all matter partially or completely empty of all matter 2. Quick Check Circle the sentence below that uses the noun form of the word probe. • The satellite probes Earth’s surface thoroughly. • The probes collected photographs and data for the scientists to analyze. 412 Exploring Space rocket Chapter Preview LESSON 1 • rocket • thrust • velocity • orbital velocity • escape velocity Relate Text and Visuals Interpret Data LESSON 2 satellite • satellite • space shuttle • space station • space probe • rover Ask Questions Make Models LESSON 3 • vacuum • microgravity Identify the Main Idea Draw Conclusions space probe microgravity 413 LESSON 1 The Science of Rockets How Were Rockets Developed? TEKS 11C How Does a Rocket Work? TEKS 11C What Is the Main Advantage of a Multistage Rocket? TEKS 11C FUN FACT Jet Packs Study the picture of the person using It’s been snowing all day and the roads a jet pack. Use your knowledge of haven’t been plowed yet. No problem. Just science to answer the question. strap on a jet pack and fly over the snow. What would be the advantages and Does this sound like something out disadvantages of using a jet pack for of a science fiction movie? Actually, transportation? manufacturers have already started making one-person jet packs. The jet packs are very expensive. They also use a lot of heavy fuel­—about 10 gallons of gasoline per hour. And jet packs can carry a person for only about 30 minutes before they have to be refueled. However, 30 minutes is long enough to get many people to work—if they can find a place to land and park the jet pack once they get there. Do the Inquiry Warm-Up Lab What Force Moves a Balloon? zone Find the lab online. TEKS 11C In this section, How Were Rockets Developed? you will learn about rockets, a form of transportation used You’ve probably seen rockets at fireworks displays. As the rockets in space travel. moved skyward, you may have noticed a fiery gas rushing out of the back. A rocket is a device that expels gas in one direction to ELPS 3.B.2 move the rocket in the opposite direction. Rocket technology With a partner, read and retell the originated in China hundreds of years ago and then gradually four paragraphs on page 415. Retell spread to other parts of the world. Rockets were developed for each paragraph as a simple story. military use as well as for fireworks. 414 Exploring Space Vocabulary Skills • rocket • thrust • velocity Reading: Relate Text and Visuals • orbital velocity • escape velocity Inquiry: Interpret Data Origins of Rockets The first rockets were made in China FIGURe 1 in the 1100s, as the timeline in Figure 1 shows. These early Rocket Timeline A legend claims the Chinese ‘‘rockets’’ weren’t rockets, but simply arrows coated with a official Wan-Hoo tried to fly to flammable powder that were lighted and shot with bows. By about the moon around the year 1500 1200, the Chinese were using gunpowder inside their rockets. by tying rockets to his chair. The British greatly improved rocketry in the early 1800s. ­British On the cards below, write a ships used rockets against American troops in the War of 1812. brief entry for the events that “The Star-Spangled Banner” contains the words “the rockets’ red took place in the development glare, the bombs bursting in air.” These words describe a British of rockets. rocket attack on Fort McHenry in Baltimore, Maryland. Development of Modern Rockets Modern rockets were first developed by scientists in the early 1900s. One such scientist was the Russian physicist Konstantin Tsiolkovsky. He described in scientific terms how rockets work and proposed designs for advanced rockets. The American physicist Robert Goddard also designed rockets. Beginning around 1915, he built rockets to test his designs. Scientists made major advances in rocket design during World War II. The Germans used a rocket called the V-2 to destroy both military and civilian targets. The V-2 was a large rocket that could travel about 300 kilometers. The designer of the V-2, Wernher von Braun, was brought to the United States after the war ended. Von Braun used his experience to direct the development of many rockets used in the U.S. program to send humans into space. Do the Quick Lab Lab History of Rockets. zone Find the lab online. Assess Your Understanding TEKS 11C got it? mgs11a02700 I get it! Now I know that the rocket technologySteve Rider that sends humans into space originated 01.30.09 and gradually spread to 02.05.09 I need extra help with 03.02.09 03.23.09 415 TEKS 11C In this section, you will explore the principles How Does a Rocket Work? that make space travel by A rocket can be as small as your finger or as large as a skyscraper. rocket possible. An essential feature of any rocket, though, is that it expels gas in one direction. A rocket moves forward when gases shooting out the back of the rocket push it in the opposite direction. A rocket works like a balloon that is propelled through the air by releasing gas. In most rockets, fuel is burned to make hot gas. The gas pushes in every direction, but it can leave the rocket only through openings at the back. This moves the rocket forward. Action and Reaction Forces A rocket demonstrates a basic law of physics: For every force, or action, there is an equal and opposite force, or reaction. Look at Figure 2. The force of the gas shooting out of the rocket is an action force. An equal force—the reaction force—pushes the rocket forward. The reaction force that propels a rocket forward is called thrust. The amount of thrust depends on the mass and speed of the gases propelled out of the rocket. The greater the thrust, the greater a rocket’s velocity. Velocity is speed in a given direction. FIGURe 2 Rocket Action and Reaction The force of gas propelled out of the back of a rocket produces an opposing force that propels the rocket forward. Rocket Fuels Label the action force and Three types of fuel are used to power modern rockets. the reaction force in the figure, Solid-fuel rocket: and explain how this causes the rocket to fly. • Oxygen is mixed with the fuel (a dry explosive chemical). • The rocket can be triggered from a distance by an igniter. • Once the fuel is ignited, it burns until all of it is gone. Liquid-fuel rocket: • Oxygen and the fuel are in liquid form, stored separately. • When the rocket fires, the fuel and oxygen are pumped into the same chamber and ignited. • The burning of fuel can be controlled. Ion rocket: • This type expels charged gas particles out of the engine. • Ion rockets are very fuel-efficient. 416 Exploring Space Orbital and Escape Velocity In order to lift off the ground, a rocket must have more upward thrust than the downward force of gravity. Once a rocket is off the ground, it must reach a certain velocity in order to go into orbit. Orbital velocity is the velocity a rocket must achieve to establish an orbit around Earth. If the rocket has an even greater velocity, it can fly off into space. Escape velocity is the velocity a rocket must reach to fly beyond a planet’s gravitational pull. The escape velocity a rocket needs to leave Earth is about 40,200 km per hour.
Recommended publications
  • + New Horizons
    Media Contacts NASA Headquarters Policy/Program Management Dwayne Brown New Horizons Nuclear Safety (202) 358-1726 [email protected] The Johns Hopkins University Mission Management Applied Physics Laboratory Spacecraft Operations Michael Buckley (240) 228-7536 or (443) 778-7536 [email protected] Southwest Research Institute Principal Investigator Institution Maria Martinez (210) 522-3305 [email protected] NASA Kennedy Space Center Launch Operations George Diller (321) 867-2468 [email protected] Lockheed Martin Space Systems Launch Vehicle Julie Andrews (321) 853-1567 [email protected] International Launch Services Launch Vehicle Fran Slimmer (571) 633-7462 [email protected] NEW HORIZONS Table of Contents Media Services Information ................................................................................................ 2 Quick Facts .............................................................................................................................. 3 Pluto at a Glance ...................................................................................................................... 5 Why Pluto and the Kuiper Belt? The Science of New Horizons ............................... 7 NASA’s New Frontiers Program ........................................................................................14 The Spacecraft ........................................................................................................................15 Science Payload ...............................................................................................................16
    [Show full text]
  • Mars Exploration - a Story Fifty Years Long Giuseppe Pezzella and Antonio Viviani
    Chapter Introductory Chapter: Mars Exploration - A Story Fifty Years Long Giuseppe Pezzella and Antonio Viviani 1. Introduction Mars has been a goal of exploration programs of the most important space agencies all over the world for decades. It is, in fact, the most investigated celestial body of the Solar System. Mars robotic exploration began in the 1960s of the twentieth century by means of several space probes sent by the United States (US) and the Soviet Union (USSR). In the recent past, also European, Japanese, and Indian spacecrafts reached Mars; while other countries, such as China and the United Arab Emirates, aim to send spacecraft toward the red planet in the next future. 1.1 Exploration aims The high number of mission explorations to Mars clearly points out the impor- tance of Mars within the Solar System. Thus, the question is: “Why this great interest in Mars exploration?” The interest in Mars is due to several practical, scientific, and strategic reasons. In the practical sense, Mars is the most accessible planet in the Solar System [1]. It is the second closest planet to Earth, besides Venus, averaging about 360 million kilometers apart between the furthest and closest points in its orbit. Earth and Mars feature great similarities. For instance, both planets rotate on an axis with quite the same rotation velocity and tilt angle. The length of a day on Earth is 24 h, while slightly longer on Mars at 24 h and 37 min. The tilt of Earth axis is 23.5 deg, and Mars tilts slightly more at 25.2 deg [2].
    [Show full text]
  • INTRODUCTION to SPACE EXPLORATION Creating a Time Capsule
    INTRODUCTION TO SPACE EXPLORATION Creating a Time Capsule Grade Level: 5 - 8 Suggested TEKS Language Arts - 5.15 6.15 7.15 8.15 Social Studies - 5.18 6.20 7.20 8.20 Time Required: 30 - 45 minutes Art - 5.2 6.2 7.2 8.2 Computer - 5.2 6.2 7.2 8.2 Suggested SCANS Countdown: Writing paper Interpersonal. Interprets and Communicates Information National Science and Math Standards Pencils Science as Inquiry, Physical Science, Earth & Space Science, Science & Technology, History & Nature of Science, Measurement, Observing, Communicating Ignition: For decades, space colonies have been the creation of science fiction writers. However, with world population growing at an alarming rate, the concept of a second home in space could very likely become a stark reality. Already, a number of visionary scientists have drawn up plans for off-earth habitats. Biosphere II near Tucson, Arizona is an example. Additionally, NASA has future plans for a mission to Mars in the next 20 years. It certainly appears that earth will not always be our home. With this in mind, ask the students to consider the scenario suggested next in "Liftoff." Liftoff: You will have the opportunity to bury a time capsule, a sealed and durable box, which will be opened after one hundred years. Future discoverers of the box will be able to guess from the contents what your life was like 100 years before their time. Below are six different categories. For each category, choose an object that would best represent it. Keep in mind that you may choose items like photographs, scrapbooks, films or videos, books, newspapers, miniature models, and other favorite mementos.
    [Show full text]
  • Space Tech Fun
    NASA Technology in Your World Through sustained investments in technology, NASA is making a difference in the world around us. NASA technology investments in space exploration, science, and aeronautics is making it possible for us to learn more about our planet and outer space. Many of these technologies can also be found improving your daily life. Next time you travel by car or plane or when you brush your teeth today or check the weather forecast, you're using a bit of NASA technology if you know it or not… Technology Drives Exploration 1 Computer Whiz Find and circle these shapes. 2 Out of Place Circle the robots that are different from the others. 3 Solar Electric Propulsion Color the worlds. Solar Electric Propulsion (SEP) is a project to create technology that can push spacecraft to far-off destinations. SEP would collect the Sun’s energy through solar panels so that less fuel is required for the spacecraft and it can reach much more distant worlds. 4 VEGGIES Astronauts on the International Space Station used a special Vegetable Production System (VEGGIE) to grow lettuce that they could eat. Draw your own garden of food for astronauts to harvest and eat. 5 Match the Satellites Draw a line from each satellite to its twin. 6 Lab Tech Can you name these common tools used by scientists and engineers? 7 Connect the Dots 20 19 21 18 22 17 23 16 24 33 34 25 32 15 31 26 28 27 30 14 29 1 2 13 12 3 11 10 4 9 5 8 7 6 The design of aircraft has changed a lot over the years.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • Design, Implementation, and Operation of a Small Satellite Mission to Explore the Space Weather Effects in LEO
    aerospace Article Design, Implementation, and Operation of a Small Satellite Mission to Explore the Space Weather Effects in LEO Isai Fajardo 1,*,† , Aleksander A. Lidtke 1,† , Sidi Ahmed Bendoukha 2, Jesus Gonzalez-Llorente 1 , Rafael Rodríguez 1 , Rigoberto Morales 1 , Dmytro Faizullin 1, Misuzu Matsuoka 1, Naoya Urakami 1, Ryo Kawauchi 1, Masayuki Miyazaki 1, Naofumi Yamagata 1, Ken Hatanaka 1, Farhan Abdullah 1, Juan J. Rojas 1, Mohamed Elhady Keshk 1 , Kiruki Cosmas 1, Tuguldur Ulambayar 1, Premkumar Saganti 3, Doug Holland 4, Tsvetan Dachev 5 , Sean Tuttle 6, Roger Dudziak 7 and Kei-ichi Okuyama 1 1 Department of Applied Science for Integrated Systems Engineering, Kyushu Institute of Technology, 1-1 Sensui, Tobata, Kitakyushu, Fukuoka 804-8550, Japan; [email protected] (A.A.L.); [email protected] (J.G.-L.); [email protected] (R.R.); [email protected] (R.M.); [email protected] (D.F.); [email protected] (M.M.); [email protected] (N.U.); [email protected] (R.K.); [email protected] (M.M.); [email protected] (N.Y.); [email protected] (K.H.); [email protected] (F.A.); [email protected] (J.J.R.); [email protected] (M.E.K.); [email protected] (K.C.); [email protected] (T.U.); [email protected] (K.-i.O.) 2 Satellite Development Center CDS, POS 50 ILOT T 12 BirEl Djir, Algerian Space Agency, Oran 31130, Algeria; [email protected]
    [Show full text]
  • Down to Earth Open
    Down to Earth Everyday Uses for European Space Technology BR-175 June 2001 Down to Earth Everyday Uses for European Space Technology P. Brisson & J. Rootes Foreword The concept of ‘spin-off’ from space has been around for several years now. But while many people will have heard of the origins of the ‘non-stick frying pan’, whose space connection is in fact disputed, few will be able to bring many other examples to mind. Also the idea of technology transfer on a significant scale has been one we have largely associated with NASA and the USA, and the spectacular successes of the Apollo and Shuttle programmes. It is particularly pleasing to me, therefore, that Europe, with its extensive programme of scientific Lord Sainsbury research, Earth observation and communications space missions has a proud Minister for Science and Technology record of producing its own beneficial spin-offs. European space industry in the UK Government has found many innovative ways to apply its technology and the European Space Agency (ESA) has been running a successful programme of technology transfer to industry for ten years now. 2 I find the most interesting aspect of the book is the way in which it demonstrates how often technology developed for one application can have a previously unforeseen but highly innovative use in another. The fact that the imaging systems that we design to probe the far reaches of the universe can also be used to help uncover the innermost secrets of the human cell is indicative of the breadth of applications that can be achieved.
    [Show full text]
  • United States Space Program Firsts
    KSC Historical Report 18 KHR-18 Rev. December 2003 UNITED STATES SPACE PROGRAM FIRSTS Robotic & Human Mission Firsts Kennedy Space Center Library Archives Kennedy Space Center, Florida Foreword This summary of the United States space program firsts was compiled from various reference publications available in the Kennedy Space Center Library Archives. The list is divided into four sections. Robotic mission firsts, Human mission firsts, Space Shuttle mission firsts and Space Station mission firsts. Researched and prepared by: Barbara E. Green Kennedy Space Center Library Archives Kennedy Space Center, Florida 32899 phone: [321] 867-2407 i Contents Robotic Mission Firsts ……………………..........................……………...........……………1-4 Satellites, missiles and rockets 1950 - 1986 Early Human Spaceflight Firsts …………………………............................……........…..……5-8 Projects Mercury, Gemini, Apollo, Skylab and Apollo Soyuz Test Project 1961 - 1975 Space Shuttle Firsts …………………………….........................…………........……………..9-12 Space Transportation System 1977 - 2003 Space Station Firsts …………………………….........................…………........………………..13 International Space Station 1998-2___ Bibliography …………………………………..............................…………........…………….....…14 ii KHR-18 Rev. December 2003 DATE ROBOTIC EVENTS MISSION 07/24/1950 First missile launched at Cape Canaveral. Bumper V-2 08/20/1953 First Redstone missile was fired. Redstone 1 12/17/1957 First long range weapon launched. Atlas ICBM 01/31/1958 First satellite launched by U.S. Explorer 1 10/11/1958 First observations of Earth’s and interplanetary magnetic field. Pioneer 1 12/13/1958 First capsule containing living cargo, squirrel monkey, Gordo. Although not Bioflight 1 a NASA mission, data was utilized in Project Mercury planning. 12/18/1958 First communications satellite placed in space. Once in place, Brigadier Project Score General Goodpaster passed a message to President Eisenhower 02/17/1959 First fully instrumented Vanguard payload.
    [Show full text]
  • Satellites and Commercial Applications of Space
    1978: Supported by 1985: With instruments 1990: The Hubble Space 1995: The Solar & Heliospheric 2000: The UK manages 3 of the 11 major investigations 2009: ESA launches Planck 2011: ESA approves 2013: The UK-supported Swarm 2013: The Mid Infrared Instrument (MIRI) is the UK, the European built in the UK, Giotto is Telescope is launched. Observatory (SOHO) is launched being carried out by the Cluster mission. This investigates to observe the artefacts Euclid, a mission mission is launched; a trio of successfully integrated into the James Webb Space Agency (ESA) the first European deep One of the most important and revolutionises our ability to solar wind, which can cause electrical storms - damaging from the Big Bang. This to study dark satellites designed to study aspects Telescope. MIRI is designed and built by a launches the world’s space mission. It sends astronomical projects of forecast space weather; playing a satellites or even causing power cuts on the ground. mission has a strong UK energy. The UK is of the Earth. In particular, it will consortium of ten EU countries, led by the first high orbit telescope back unprecedented all time, it changes our lead role in early warning systems. involvement. contributing to the study its protective magnetic field, UK in partnership with NASA. A number the International images; confirming understanding of space The UK plays a significant role and imaging instrument without which the atmosphere as we of UK institutions are involved, in particular Ultraviolet Explorer Halley’s comet is billions and leads to breakthroughs Astrium is the prime contractor.
    [Show full text]
  • 1964 Spaceport News Summary Final
    1964 Spaceport News Summary Followup From the Last Spaceport News Summary Of note, the 1963, 1964 and 1965 Spaceport News were issued weekly. Starting with July 1966, the Spaceport News went to an every two week format. The first issue of the Spaceport News was December 13, 1962. The two 1962 issues and the issues from 1996 forward are at this website. Spaceport Magazine superseded the Spaceport News in April 2014. Spaceport Magazine was a monthly issue, until the last and final issue, Jan./Feb. 2020. All links were working at the time I completed this Spaceport News Summary. Larry Clark sent a response from the 1963 Spaceport News Summary, regarding an artist’s concept of the Merritt Island Launch Area; reference page 34. I found an aerial from 1996, in an Historic American Engineering Record, of the south Industrial Area, or sometimes referred to as the HMF area, in the Shuttle day. Page 1 The following in quotes, is from Larry: “…At the very bottom of the HMF are two buildings I spent a tremendous amount of time in… … The red circle is building M7- 1412. It was originally built to test the Gemini Spacecraft RCS. In 1977 USBI converted it for use as our Aft Skirt Thrust Vector Control System Hot Fire Test Facility. The blue circle to the left of that is M7-1410 which we never did convert for testing but we used it to store and work on our GSE that we used for testing. The blue square below them both is where we had our test can control van.
    [Show full text]
  • Forces on a Space Probe Key Stage 4
    Forces on a Space Probe Key Stage 4 Topics covered: weight, air resistance, force, velocity, acceleration, balanced and unbalanced forces Watch the video “Newton’s Laws of Motion”, https://vimeo.com/159043081 After travelling 8 months through the Solar System to get to Mars, NASA’s Curiosity rover experienced changing forces as it descended through the Martian atmosphere to land on the surface in August 2012. Its descent consisted of a period of free fall followed by a parachuted descent and finally it used small thrusters to slow it down enough for it to land safely. 1. What two forces would be acting on a space probe as it descends down to Mars’ surface? 2. For each of the following diagrams on the next page: a) Label the forces b) Describe the forces (balanced or unbalanced) c) Describe the speed (speeding up, slowing down or at a constant speed) d) Describe the acceleration (accelerating, decelerating or no acceleration / deceleration) 3. Conclusions: a) Newton’s first law: If the ___________ are balanced, the object’s speed will ___________ and if the forces are unbalanced, the object’s speed will ___________ . b) Newton’s second law: An object will ____________ if the forces on it are ____________ . 4. Thinking about forces and Newton’s 3 laws, why was a parachute used to slow down the descent of the Curiosity rover as it fell to Mars? Watch this video ‘Curiosity’s Seven Minutes of Terror’ which shows the daring landing procedure of the probe onto the Martian surface. http://www.jpl.nasa.gov/video/details.php?id=1090 Description Pulled in by Mars’ gravity from space Description Falling through Mars’ atmosphere Description Continues falling through Mars’ Description atmosphere Parachute is deployed Description Continues falling to Mars’ surface Description Forces on a Space Probe: ANSWERS Key Stage 4 1.
    [Show full text]
  • Read the Spaceport News Print Edition (PDF)
    Oct. 1, 2008 Vol. 48, No. 20 NASA celebrates 50th Anniversary ct. 1 marks the 50th the STS-125 Hubble Space Anniversary of Director’s Note Telescope servicing mission. NASA as it was on Over Hubble’s 18 year O By Bill history, many extraordinary this date in 1958 that the Na- Parsons tional Aeronautics and Space discoveries have been Director, made by what this amazing Administration began opera- Kennedy tions. Over the past 50 years, Space instrument has captured. We the employees of America’s Center also are preparing for the space program have been at upcoming missions to the the forefront of many incred- I mention this historic date International Space Station ible accomplishments. because once again we are and preparing for launches Kennedy Space Center preparing to go back to the through the Launch Services has a rich history in the space moon. This time, we are Program. Our Constellation program having been named going to stay. We will have Program work is moving ahead, and we are preparing an independent NASA a sustained human presence. for the Ares I-X test fl ight installation in 1962. NASA is a forward-looking next year. From the historic launch agency, and this is our future. In the short history of pads here in Florida, we NASA’s 50th NASA, numerous benefi ts to have launched missions Anniversary is a historic society have come through of discovery. Next year, milestone that gives us an the work of America’s we will celebrate the 40th opportunity to refl ect on past space program.
    [Show full text]