Penetration of Hard Substrates by a Fungus Employing Enormous Turgor Pressures (Appressorium/Biodeterioration/Magnaporthe Gnsea/Plant Pathogen/Rice Blast) RICHARD J

Total Page:16

File Type:pdf, Size:1020Kb

Penetration of Hard Substrates by a Fungus Employing Enormous Turgor Pressures (Appressorium/Biodeterioration/Magnaporthe Gnsea/Plant Pathogen/Rice Blast) RICHARD J Proc. Natd. Acad. Sci. USA Vol. 88, pp. 11281-11284, December 1991 Microbiology Penetration of hard substrates by a fungus employing enormous turgor pressures (appressorium/biodeterioration/Magnaporthe gnsea/plant pathogen/rice blast) RICHARD J. HOWARD*t, MARGARET A. FERRARI*, DAVID H. ROACHt, AND NICHOLAS P. MONEY§ *Central Research and Development, and tFibers, The DuPont Company, Wilmington, DE 19880-0402; and §Department of Biochemistry, Colorado State University, Fort Collins, CO 80523 Communicated by Arthur Kelman, September 20, 1991 (receivedfor review June 27, 1991) ABSTRACT Many fungal pathogens penetrate plant MATERIALS AND METHODS an The rice leaves from a specialized cell called appressorium. Organism and Growth Conditions. These studies were blast pathogen Magnaporthegnsea can also penetrate synthetic conducted with strain 042 (see ref. 8) of M. grisea (Hebert) surfaces such as poly(vinyl chloride). Previous experiments time requires an elevated appres- Barr, telomorph of Pyricularia grisea Sacc. (10). The have suggested that penetration course of infection-structure development in vitro has been sorial turgor pressure. In the present report we have used well documented and closely resembles development on the nonbiodegradable Mylar membranes, exhibiting a range of in that penetration is host (11, 12). When harvested and placed on a surface surface hardness, to test the proposition distilled water, conidia germinate in 1-3 hr to form germ driven by turgor. Reducing appressorial turgor by osmotic to form and are firmly stress inhibited penetration ofthese membranes. The size ofthe tubes. By 4 hr appressoria begin was a function of attached to the substratum. By 6-8 hr their structure appears turgor deficit required to inhibit penetration complete. Much later, from 20 to 240 hr depending upon the the surface hardness. Penetration of the hardest membranes substrate, a penetration peg emerges from the appressorium was inhibited by small decreases in appressorial turgor, while and penetrates the underlying surface. penetration ofthe softer membranes was sensitive only to large Substrates. We attempted to grow M. grisea on a number decreases in turgor. Similarly, penetration of the host surface of surfaces of different composition by adding droplets of was inhibited in a manner comparable to penetration of the aqueous conidial suspensions, as described previously (8). hardest Mylar membranes. Indirect measurements of turgor, Based on an earlier report (1) two different gold substrates obtained through osmotically induced collapse of appressoria, were tested: 10-gm-thick gold foil (Engelhard Industries, indicated that the infection apparatus can generate turgor Carteret, NJ), and cellophane membrane (8) sputter-coated pressures in excess of 8.0 MPa (80 bars). We conclude that to 100 nm of gold. Films of the following materials were also penetration of synthetic membranes, and host epidermal cells, tested: poly(methyl methacrylate) (Lucite), poly(tetrafluoro- is accomplished by application of the physical force derived ethylene) (Teflon; see ref. 11), a neutralized copolymer of from appressorial turgor. poly(ethylenemethacrylic acid) (Surlyn), a proprietary film made from the Kevlar polymerp-phenyleneterephthalamide, The mechanism of host surface penetration by plant patho- glass, and polyethylene (cut from PolyGloves, VWR Scien- genic fungi has been debated for nearly a century (1-6). The tific). All but the latter two were obtained from Robert R. potential role of extracellular enzymes, to facilitate perfora- Matheson, DuPont Central Research and Development. tion of the host cuticle or cell wall during fungal invasion, is The following six different Mylar films composed of poly- poorly understood (with one exception) due to the complex (ethylene terephthalate) fiber were also tested (Table 1). and ill-defined chemical nature of plant surfaces (7). On the Amorphous, as-cast, unoriented Mylar (designated sample other hand, an essential role for mechanical force during host 1), obtained from John R. Barkley, DuPont Electronics surface penetration has been proposed for the rice blast Department, Circleville Research Laboratory, Circleville, fungus Magnaporthe grisea (Hebert) Barr (8). This pathogen OH, was thermally crystallized to generate samples desig- produces unicellular infection structures, called appressoria, nated 2, 3, 5, and 6. Crystallizations were achieved by which adhere tightly to the host surface and produce slender annealing at temperatures between the glass transition (67°C) infection pegs that pierce the underlying cell wall. The cell and melting (280°C) temperatures of the polymer. The degree walls of appressoria contain a dense layer of pentaketide- of crystallinity and the density were controlled by the an- derived melanin whose presence is correlated with a build-up nealing temperature and the duration of heating (13-15). of appressorial turgor pressure (8) and is essential for pene- These modified Mylar samples were generated by John C. tration (8, 9). In this study, we have inhibited penetration by Coburn, DuPont Electronics, Wilmington, DE. An additional exposing appressoria to solutions of high osmotic pressure. Mylar substrate, obtained from Robert R. Matheson and This approach was used to reduce the hydrostatic pressure designated sample 4, was not treated thermally. The densities (or turgor) within the infection apparatus and to estimate the of all six Mylar substrates were determined by the density- magnitude of the turgor involved in penetration. Our results gradient technique (16). Crystallinities were calculated by offer unequivocal evidence for an extraordinary mechanical assuming amorphous and crystalline densities of 1.335 and component of the mechanism by which appressoria pene- 1.495 g/cm3, respectively (17, 18). Surface hardness was trate hard surfaces, but do not exclude a role in host pene- determined by Vicker's indentation techniques (19) at loads tration for some other factor such as extracellular en- ranging from 2 to 20 g. The resulting impressions were imaged zymes. with differential interference-contrast optics and a low-light video camera and were measured from a video screen. Hardness, expressed in MPa, was calculated as H = P/2a2, The publication costs ofthis article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact. tTo whom reprint requests should be addressed. 11281 Downloaded by guest on September 30, 2021 11282 Microbiology: Howard et al. Proc. Natl. Acad. Sci. USA 88 (1991) Table 1. Mylar [poly(ethylene terephthalate)] films, numbered appressoria forming pegs during incubation was determined 1-6, used as substrates for appressorium formation either by examining intact appressoria by light microscopy or and penetration by sonicating the specimens for 5 min, sputter coating them Tmnew, tanneal Density, xtl, Hardness, with gold, and then examining the appressorial remnants with Sample 0C hr g/cm3 % MPa scanning EM (8). This experiment was repeated twice, with 4 samples of 100 appressoria counted by each technique for 1 1.345 6.1 140 each experiment (1600 appressoria total). No significant 2 90 50 1.374 24.1 173 difference was found between data obtained by the two 3 130 70 1.379 27.6 180 methods. 4 - ND ND 200 Inhibition of Penetration. Appressoria were allowed to 5 180 50 1.393 36.3 240 form in water droplets for 12-18 hr on the surface of Mylar 6 240 50 1.405 43.6 250 membranes or of detached newly expanded third foliar Sample 1 was heated at various temperatures (T0nw) and for leaves of rice cultivar M201. The water droplets were then various times Qna) to yield samples 2, 3, 5, and 6. Sample 4 was replaced with PEG solutions of varying osmotic pressure. obtained separately. Density, crystallinity (Xtl), and hardness were Penetration of the Mylars and rice leaves was assessed after determined as described in the text. ND, not determined. 13 days and 48 hr, respectively. Solutions of PEG-8000 (Sigma, lot 49F-0383) were pre- where P is the load and 2a is the hardness impression pared by dissolving 2.0-13.0 g in 10.0 ml ofdistilled deionized diagonal. water. An average molecular weight of 8410 was determined Ceil Wail Pore Measurement. Pore size of the appressorial in tetrahydrofuran at 350C by R. E. Davis (DuPont Polymer wall was estimated with a solute exclusion technique (20, 21). Products) and used to calculate molarity (M). The osmotic Briefly, appressoria were incubated for 15 min in concen- pressure H of each solution was calculated with the formula trated solutions of poly(ethylene glycols) (PEGs) of different H = a(M) + ,3(M2), where a and j3 were derived by average molecular weights and were screened for plasmolysis interpolation from the values given by Money (24). and cytorrhysis (collapse). Plasmolysis occurs only when the solute molecule can diffuse through the pores in the cell wall, RESULTS whereas cytorrhysis is evidence of exclusion. Therefore, the Selection ofSubstrates. M. grisea formed appressoria on all diameter of the pores in the wall is estimated by the size of surfaces tested except gold foil, gold-coated cellophane, and the smallest excluded molecules. These measurements were glass. Teflon was the only surface never penetrated. The conducted on melanized appressoria and on unmelanized Mylar films, however, offered a series of chemically homo- appressoria formed in the presence of tricyclazole (8). geneous surfaces
Recommended publications
  • Revised Glossary for AQA GCSE Biology Student Book
    Biology Glossary amino acids small molecules from which proteins are A built abiotic factor physical or non-living conditions amylase a digestive enzyme (carbohydrase) that that affect the distribution of a population in an breaks down starch ecosystem, such as light, temperature, soil pH anaerobic respiration respiration without using absorption the process by which soluble products oxygen of digestion move into the blood from the small intestine antibacterial chemicals chemicals produced by plants as a defence mechanism; the amount abstinence method of contraception whereby the produced will increase if the plant is under attack couple refrains from intercourse, particularly when an egg might be in the oviduct antibiotic e.g. penicillin; medicines that work inside the body to kill bacterial pathogens accommodation ability of the eyes to change focus antibody protein normally present in the body acid rain rain water which is made more acidic by or produced in response to an antigen, which it pollutant gases neutralises, thus producing an immune response active site the place on an enzyme where the antimicrobial resistance (AMR) an increasing substrate molecule binds problem in the twenty-first century whereby active transport in active transport, cells use energy bacteria have evolved to develop resistance against to transport substances through cell membranes antibiotics due to their overuse against a concentration gradient antiretroviral drugs drugs used to treat HIV adaptation features that organisms have to help infections; they
    [Show full text]
  • Investigating the Biology of Plant Infection by Magnaporthe Oryza
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Fungal Molecular Plant-Microbe Interactions Plant Pathology Department 2009 Under Pressure: Investigating the Biology of Plant Infection by Magnaporthe oryza Nicholas J. Talbot University of Exeter, [email protected] Richard A. Wilson University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/plantpathfungal Part of the Plant Pathology Commons Talbot, Nicholas J. and Wilson, Richard A., "Under Pressure: Investigating the Biology of Plant Infection by Magnaporthe oryza" (2009). Fungal Molecular Plant-Microbe Interactions. 7. https://digitalcommons.unl.edu/plantpathfungal/7 This Article is brought to you for free and open access by the Plant Pathology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Fungal Molecular Plant- Microbe Interactions by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Nature Reviews: Microbiology (March 2009) 7: 185-195. Copyright 2009, Macmillan. DOI: 10.1038/nrmicro2032. Used by permission. Reviews Under Pressure: Investigating the Biology of Plant Infection by Magnaporthe oryza Richard A. Wilson and Nicholas J. Talbot School of Biosciences, University of Exeter, Exeter, United Kingdom; correspondence to [email protected] Wilson, affiliation 2012: University of Nebraska-Lincoln, Lincoln, Nebraska, U.S.A.; [email protected] Abstract The filamentous fungus Magnaporthe oryzae causes rice blast, the most serious disease of cultivated rice. Cellular differentia- tion of M. oryzae forms an infection structure called the appressorium, which generates enormous cellular turgor that is suffi- cient to rupture the plant cuticle. Here, we show how functional genomics approaches are providing new insight into the ge- netic control of plant infection by M.
    [Show full text]
  • Appressorium: the Breakthrough in Dikarya
    Journal of Fungi Article Appressorium: The Breakthrough in Dikarya Alexander Demoor, Philippe Silar and Sylvain Brun * Laboratoire Interdisciplinaire des Energies de Demain, LIED-UMR 8236, Université de Paris, 5 rue Marie-Andree Lagroua, 75205 Paris, France * Correspondence: [email protected] Received: 28 May 2019; Accepted: 30 July 2019; Published: 3 August 2019 Abstract: Phytopathogenic and mycorrhizal fungi often penetrate living hosts by using appressoria and related structures. The differentiation of similar structures in saprotrophic fungi to penetrate dead plant biomass has seldom been investigated and has been reported only in the model fungus Podospora anserina. Here, we report on the ability of many saprotrophs from a large range of taxa to produce appressoria on cellophane. Most Ascomycota and Basidiomycota were able to form appressoria. In contrast, none of the three investigated Mucoromycotina was able to differentiate such structures. The ability of filamentous fungi to differentiate appressoria no longer belongs solely to pathogenic or mutualistic fungi, and this raises the question of the evolutionary origin of the appressorium in Eumycetes. Keywords: appressorium; infection cushion; penetration; biomass degradation; saprotrophic fungi; Eumycetes; cellophane 1. Introduction Accessing and degrading biomass are crucial processes for heterotrophic organisms such as fungi. Nowadays, fungi are famous biodegraders that are able to produce an exhaustive set of biomass- degrading enzymes, the Carbohydrate Active enzymes (CAZymes) allowing the potent degradation of complex sugars such as cellulose, hemicellulose, and the more recalcitrant lignin polymer [1]. Because of their importance for industry and biofuel production in particular, many scientific programs worldwide aim at mining this collection of enzymes in fungal genomes and at understanding fungal lignocellulosic plant biomass degradation.
    [Show full text]
  • What Is Elodea? Elodea Cell Elodea Cell Parts
    What is Elodea? • The Elodea plant has Plasmolysis the parts that would typically be and found in a plant cell. Cytolysis In this exercise we will identify those parts and see what happens when you subject this plant to plasmolysis. Elodea Cell Elodea Cell Parts It is not possible to see the cell membrane because it is pushed up against the cell wall. Also, the central vacuole • Name three structures that are cannot be clearly distinguished from the cell cytoplasm. shown in this plant cell that In a living elodea cell you can “roughly” tell where the you would not expect to find in vacuole is by where the moving chloroplasts are not able an animal cell? to go. 1 What is plasmolysis? Elodea Plasmolysis • If you were to surround this group of plant cells with salt water then the water inside the plant would move from where there is • This is a view of a cell more water (less salt) through the cell wall and membrane to the that has undergone outside where there is less water (more salt). This process of water movement from a high concentration of water to a lesser plasmolysis. It is now concentration of water is called osmosis. When the water possible to see the movement is out from a cell this form of osmosis is specifically called plasmolysis. cytoplasm which has contracted around the chloroplasts and the other cellular structures. Most of the water that has left the cell has been from the vacuole. Onion Skin Plasmolysis Types of Solutions Hypertonic solutions contain higher concentrations of solutes than those in surrounding cells resulting in the cell shrinking in size.
    [Show full text]
  • Two Independent S-Phase Checkpoints Regulate Appressorium-Mediated Plant Infection by the Rice Blast Fungus Magnaporthe Oryzae
    Two independent S-phase checkpoints regulate PNAS PLUS appressorium-mediated plant infection by the rice blast fungus Magnaporthe oryzae Míriam Osés-Ruiza, Wasin Sakulkooa, George R. Littlejohna, Magdalena Martin-Urdiroza, and Nicholas J. Talbota,1 aSchool of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom Edited by Joan Wennstrom Bennett, Rutgers University, New Brunswick, NJ, and approved November 30, 2016 (received for review July 11, 2016) To cause rice blast disease, the fungal pathogen Magnaporthe ory- oxidase complex, which regulates septin assembly and F-actin zae develops a specialized infection structure called an appressorium. remodeling to the point of plant infection (10). This dome-shaped, melanin-pigmented cell generates enormous tur- Previous work demonstrated that appressorium formation in gor and applies physical force to rupture the rice leaf cuticle using a M. oryzae is linked to a single round of mitosis that is always rigid penetration peg. Appressorium-mediated infection requires observed before cellular differentiation (11). Early appressorium septin-dependent reorientation of the F-actin cytoskeleton at the development requires the nucleus in the germinating conidial base of the infection cell, which organizes polarity determinants cell to undergo DNA replication. Exposure to a DNA replication necessary for plant cell invasion. Here, we show that plant infection inhibitor—hydroxyurea (HU), for example—or generation of a by M. oryzae requires two independent S-phase cell-cycle check- temperature-dependent mutant in the regulatory subunit of the points. Initial formation of appressoria on the rice leaf surface re- Dbf4–Cdc7 kinase complex, Δnim1ts, completely arrests devel- quires an S-phase checkpoint that acts through the DNA damage opment of an appressorium (11).
    [Show full text]
  • The Destructive Fungal Pathogen Botrytis Cinerea—Insights from Genes Studied with Mutant Analysis
    pathogens Review The Destructive Fungal Pathogen Botrytis cinerea—Insights from Genes Studied with Mutant Analysis 1, 1,2, 1,2 1,2, Nicholas Cheung y , Lei Tian y, Xueru Liu and Xin Li * 1 Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; [email protected] (N.C.); [email protected] (L.T.); [email protected] (X.L.) 2 Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada * Correspondence: [email protected] These authors contributed equally to the review. y Received: 8 October 2020; Accepted: 4 November 2020; Published: 7 November 2020 Abstract: Botrytis cinerea is one of the most destructive fungal pathogens affecting numerous plant hosts, including many important crop species. As a molecularly under-studied organism, its genome was only sequenced at the beginning of this century and it was recently updated with improved gene annotation and completeness. In this review, we summarize key molecular studies on B. cinerea developmental and pathogenesis processes, specifically on genes studied comprehensively with mutant analysis. Analyses of these studies have unveiled key genes in the biological processes of this pathogen, including hyphal growth, sclerotial formation, conidiation, pathogenicity and melanization. In addition, our synthesis has uncovered gaps in the present knowledge regarding development and virulence mechanisms. We hope this review will serve to enhance the knowledge of the biological mechanisms behind this notorious fungal pathogen. Keywords: airborne fungal pathogen; Botrytis cinerea; fungal pathogenesis; sclerotial development; fungal growth; conidiation; melanization 1. Introduction Ascomycete Botrytis cinerea is a fungal pathogen responsible for gray (or grey) mold diseases.
    [Show full text]
  • An Analysis of the Water Potential Isotherm in Plant Tissue
    AN ANALYSIS OF THE WATER POTENTIAL ISOTHERM IN PLANT TISSUE 11.* COMPARATIVE STUDIES ON LEAVES OF DIFFERENT TYPES By 1. Noy-MEIRH and B. Z. GINZBURGt [Manu8cript received January 26, 1968] Summary The water potential isotherms of leaves of carob (a sclerophyllic xerophyte), plane tree (a mesophyte), and saltbush (a semisucculent xero-halophyte) were measured by vapour equilibration with filter paper. The isotherm of the living tissue was partitioned into components by measuring the isotherms of killed tissue and of isolated matrix fractions. Empirical functions were fitted by regression to each of the components. The isotherm of the matrix fractions fitted best to a function of the form 'P = -a/w2 +b/w and the isotherms of killed tissue, whether before or after subtraction of the matrix, to a function of the form 'P = -a/w2 -b/w. The first term indicates non-ideality of the tissue solution. The water potential difference between living and killed tissue, which is an approximation of the hydro­ static potential, was far from linear with water content; either a quadratic function or two discontinuous linear ones could be fitted to it. Negative hydrostatic poten­ tials were measured, the highest values (20 atm) being attained in carob. A hyster­ etic component was measured both in the entire tissue and in the matrix fractions. The parameters of the isotherm (the coefficients of the functions) for the leaves of the three species were compared and related to their "drought tolerance" and their ecological preferences. The leaves of the two xerophytes, carob and salt­ bush, can both tolerate lower water potentials than those of plane, but have very different isotherms.
    [Show full text]
  • Redalyc.Oxidative Burst and the Activity of Defense-Related Enzymes
    Semina: Ciências Agrárias ISSN: 1676-546X [email protected] Universidade Estadual de Londrina Brasil Balbi-Peña, Maria Isabel; Freitas Schwan-Estrada, Kátia Regina; Stangarlin, José Renato Oxidative burst and the activity of defense-related enzymes in compatible and incompatible tomato-Alternaria solani interactions Semina: Ciências Agrárias, vol. 35, núm. 5, septiembre-octubre, 2014, pp. 2399-2414 Universidade Estadual de Londrina Londrina, Brasil Available in: http://www.redalyc.org/articulo.oa?id=445744144013 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative DOI: 10.5433/1679-0359.2014v35n5p2399 Oxidative burst and the activity of defense-related enzymes in compatible and incompatible tomato-Alternaria solani interactions Explosão oxidativa e atividade de enzimas relacionadas à defesa em interações compatíveis e incompatíveis de tomateiro-Alternaria solani Maria Isabel Balbi-Peña1*; Kátia Regina Freitas Schwan-Estrada2; José Renato Stangarlin3 Abstract The production of reactive oxygen species (ROS), hypersensitive response (HR), and the activity of the enzymes guaiacol peroxidase, catalase, polyphenol oxidase, β-1,3-glucanase and chitinase, were studied in leaves of resistant [CNPH 1287 (Solanum habrochaites syn. Lycopersicon hirsutum)] and susceptible [Santa Cruz Kada (S. lycopersicum syn. L. esculentum)] tomato genotypes inoculated with Alternaria solani. Leaves were collected at the time of inoculation and at 4, 8, 12, 24, 48, 72, 96 and 120 hours post inoculation. Conidia germination occurred equally onto the leaf surface in both genotypes and germination tubes grew without apparent orientation.
    [Show full text]
  • Characterization of Developmental Mutants of Phoma
    CHARACTERIZATION OF DEVELOPMENTAL MUTANTS OF PHOMA MEDICAGINIS By KIHYUCK CHOI Bachelor of Science in Applied Biology Dong-A University Busan, South Korea 2006 Master of Science in Agricultural Biology Dong-A University Busan, South Korea 2008 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY December, 2014 CHARACTERIZATION OF DEVELOPMENTAL MUTANTS OF PHOMA MEDICAGINIS Dissertation Approved: Dr. Stephen Marek Dissertation Adviser Dr. Carla Garzon Dr. Haobo Jiang Dr. Ramamurthy Mahalingam ii ACKNOWLEDGEMENTS I would first like to thank my advisors, Dr.’s Moon and Lee during undergraduate and master degree for introducing of Plant Pathology study. I would also like to extend the deepest appreciation to my advisor, Dr. Stephen Marek, for all his support, guidance, encouragement and patience through research and dissertation writing. I wish to express my appreciation to Dr. Garzon for her invaluable guidance and help for my family. I want to thank the committees, Dr. Haobo Jiang and Dr. Ramamurthy Mahalingam who offered their support and expertise. I also want to thank the previous and current students in the lab and Plant Pathology department including Ian Moncrief, Patricia Garrido, Francisco Flores, Andres Espíndola, Gabriela Orquera, Jessica Pavlu and Mary Gard. The most important people supported me behind the scenes. Thank you to my parents, Sunseop and Youngsuk, for always supporting, believing and praying me to keep studying my research. Lastly, I would like to thank my two pricesses, Taeyoun and Kaylee for their unconditional love and encouragement. Especially, Taeyoun has always deserved to get same Ph.D degree in terms of her support and sacrifice.
    [Show full text]
  • Cell Membrane & Tonicity Worksheet
    NAME__________ ANSWER KEY ___________________ DATE_________________ PERIOD_________ Cell Membrane & Tonicity Worksheet Composition of the Cell Membrane & Functions The cell membrane is also called the PLASMA membrane and is made of a phospholipid SKETCH AND LABEL a phospholipid coloring BI-LAYER. The phospholipids have a hydrophilic (water attracting) HEADS and two the heads red and the hydrophobic (water repelling) TAILS. The head of a phospholipid is made of an alcohol and tails blue. GLYCEROL group, while the tails are chains of FATTY ACIDS. Phospholipids can move SIDEWAYS and allow water and other NON-POLAR molecules to pass through into or out of the cell. This is known as simple PASSIVE TRANSPORT because it does not require ENERGY and the water or molecules are moving WITH the concentration gradient. Another type of lipid in the cell membrane is CHOLESTEROL that makes the membrane more fluid. Embedded in the phospholipid bilayer are PROTEINS that also aid in diffusion and in cell recognition. Proteins called INTEGRAL proteins go all the way through the bilayer, while PERIPHERAL proteins are only on one side. Large molecules like PROTEINS or carbohydrates use proteins to help move across cell membranes. Some of the membrane proteins have carbohydrate PARTS attached to help cells in recognize each other and certain molecules. List 4 functions of the cell or plasma membrane: a. CELL SIGNALING b. SELECTIVE TRANSPORT c. EXCRETION OF WASTES d. STRUCTURAL SUPPORT Correctly color code and identify the name for each part of the cell membrane. Letter Name/Color Letter Name/Color __ A ___ Phospholipid bilayer (no color) __ H ___ Peripheral protein (red) __ B ___ Integral protein (pink) __ I ____ Cholesterol (blue) __ F ___ Fatty acid tails (orange) __ C___ Glycoprotein (green) __ G ___ Phosphate heads (yellow) __ E ___ Glycolipids (purple) Match the cell membrane structure or its function with the correct letter from the cell membrane diagram.
    [Show full text]
  • Epidemiology of Citrus Black Spot Disease in South Africa and Its Impact on Phytosanitary Trade Restrictions
    Epidemiology of citrus black spot disease in South Africa and its impact on phytosanitary trade restrictions by Mariette Truter Submitted in partial fulfillment of the requirements for the degree of PhD (Plant Pathology) In the Faculty of Natural and Agricultural Sciences Department of Microbiology and Plant Pathology University of Pretoria August 2010 © University of Pretoria This thesis is dedicated to Drikus Truter Epidemiology of citrus black spot disease in South Africa and its impact on phytosanitary trade restrictions Student: Mariette Truter Supervisors: Professor L. Korsten and Doctor L. Meyer Department: Department of Microbiology and Plant Pathology, University of Pretoria Degree: Doctor of Philosophy (Plant Pathology) Abstract Citrus black spot (CBS), caused by Guignardia citricarpa Kiely, occurs in various citrus producing regions of the world. Due to the potential phytosanitary risk associated with the export of fruit from CBS positive production areas to CBS-free countries, restrictive trade barriers have been introduced. This study aimed to further elucidate some epidemiological aspects of CBS that can be used to address critical questions identified in the pest risk assessment submitted by South Africa to the World Trade Organisation to address phytosanitary trade restrictions. Results indicated that Eureka lemon leaf litter exposed to viable pycnidiospores under controlled conditions or in the field in different production regions of South Africa, were not infected and colonised by G. citricarpa. Symptomatic CBS fruit or peel lying on the ground underneath citrus trees therefore can not lead to infection and colonisation of freshly detached leaves or leaf litter, or represent a source of inoculum in citrus orchards. Symptomatic fruit therefore pose no danger for the establishment of the pathogen in CBS- free orchards and are not considered to be a pathway for the pathogen.
    [Show full text]
  • Volume 1, Chapter 7-5: Water Relations: Physiological Adaptations
    Glime, J. M. 2017. Water Relations: Physiological Adaptations. Chapt. 7-5. In: Glime, J. M. Bryophyte Ecology. Volume 1. 7-5-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 17 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 7-5 WATER RELATIONS: PHYSIOLOGICAL ADAPTATIONS TABLE OF CONTENTS Water Relations on Land ..................................................................................................................................... 7-5-2 Drought Tolerance vs Avoidance ........................................................................................................................ 7-5-3 Desiccation Tolerance .................................................................................................................................. 7-5-4 Desiccation Avoidance ................................................................................................................................ 7-5-9 Life Cycle and Life Strategy Adaptations ........................................................................................................... 7-5-9 Seasonal Changes .............................................................................................................................................. 7-5-11 Physiological Adaptations ................................................................................................................................. 7-5-14 Mode of Conduction
    [Show full text]