Volume 1, Chapter 7-5: Water Relations: Physiological Adaptations

Total Page:16

File Type:pdf, Size:1020Kb

Volume 1, Chapter 7-5: Water Relations: Physiological Adaptations Glime, J. M. 2017. Water Relations: Physiological Adaptations. Chapt. 7-5. In: Glime, J. M. Bryophyte Ecology. Volume 1. 7-5-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 17 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 7-5 WATER RELATIONS: PHYSIOLOGICAL ADAPTATIONS TABLE OF CONTENTS Water Relations on Land ..................................................................................................................................... 7-5-2 Drought Tolerance vs Avoidance ........................................................................................................................ 7-5-3 Desiccation Tolerance .................................................................................................................................. 7-5-4 Desiccation Avoidance ................................................................................................................................ 7-5-9 Life Cycle and Life Strategy Adaptations ........................................................................................................... 7-5-9 Seasonal Changes .............................................................................................................................................. 7-5-11 Physiological Adaptations ................................................................................................................................. 7-5-14 Mode of Conduction .................................................................................................................................. 7-5-16 Osmotic Potential and Turgor .................................................................................................................... 7-5-21 Water Content ..................................................................................................................................... 7-5-24 Water-logging ..................................................................................................................................... 7-5-26 Inducible vs Constitutive Desiccation Tolerance ....................................................................................... 7-5-26 Hardening ........................................................................................................................................... 7-5-28 Desiccation-induced Changes .................................................................................................................... 7-5-28 Cell Contents....................................................................................................................................... 7-5-30 Chloroplast Responses ........................................................................................................................ 7-5-31 Photosynthesis .................................................................................................................................... 7-5-31 Mitochondria ....................................................................................................................................... 7-5-32 Nuclei .................................................................................................................................................. 7-5-32 Vacuoles and Vesicles ........................................................................................................................ 7-5-32 Membranes ......................................................................................................................................... 7-5-32 Plasmolysis ......................................................................................................................................... 7-5-33 Liverworts ........................................................................................................................................... 7-5-33 Summary ........................................................................................................................................................... 7-5-34 Acknowledgments ............................................................................................................................................. 7-5-34 Literature Cited ................................................................................................................................................. 7-5-34 7-5-2 Chapter 7-5: Water Relations: Physiological Adaptations CHAPTER 7-5 WATER RELATIONS: PHYSIOLOGICAL ADAPTATIONS Figure 1. Riccia cavernosa, a thallose liverwort that dries out during drought and recovers in the fall when rain returns. Photo by Jan-Peter Frahm, with permission. Water Relations on Land Proctor (2014) points out that one of the basic needs of relative ease with which genes can be moved into them or bryophytes is that of coping with the intermittent knocked out of them and their expressions be observed. availability of water. To this end, poikilohydry is efficient And both bryophyte and fern gametophytes exhibit at the small scale of a bryophyte, whereas endohydry is desiccation tolerance, whereas this ability is rare among more beneficial for the large tracheophytes. sporophytic seed plants (Watkins et al. 2007). Long live Physiological adaptations relate on one end to the the gametophytes! Even the lichens seem to have less morphology and on the other to the biochemistry. desiccation tolerance than the bryophytes (Green et al. Although we have recognized morphological characters for 2011). a very long time, few have actually been tested Oliver et al. (2000) hypothesized that for experimentally on a large scale for their adaptive value in photosynthetic plants to move onto land, desiccation altering physiology. The biochemical adaptations, on the tolerance was crucial. Using species of "resurrection other hand, constitute a new and emerging field of plants" from both bryophytes and tracheophytes, Fisher bryology, one that coincides closely with physiology of (2008) concluded that desiccation tolerance arose among tracheophytes. By using the more easily studied propagules as a means of survival. In bryophytes, nearly bryophytes, we have gained the possibility of better every part is a potential propagule in most species. For understanding of the physiology of tracheophytes. This example, Maheu (1902) found that the moss Tortula unusual interest in bryophytes is largely because of the muralis (Figure 2) would regenerate protonemata after Chapter 7-5: Water Relations: Physiological Adaptations 7-5-3 being stored dry for 14 years. Physiological adaptations water-stressed and the plant itself has become dry; it suffers may permit the bryophyte to retain water or to recover from dehydration of all its metabolic systems. Such vegetative loss of water, and to change its strategies with the seasons desiccation tolerance is rare among tracheophytes, with few or the climate. species withstanding vegetative desiccation: 60-70 species of fern and fern allies and 60 species of angiosperms (Oliver et al. 2000). Instead, most tracheophytes survive through reproductive structures. Bryophytes (and lichens), on the other hand, exhibit vegetative desiccation tolerance as well as through reproductive structures (Kappen & Valladares 1999; Proctor et al. 2007). Figure 2. Tortula muralis, a moss species that can survive drought as protonemata. Photo by Christophe Quintin, through Figure 3. Grimmia pulvinata, a drought tolerator growing Creative Commons. on concrete. Photo with permission from Botany Department Alpert (2000) presented two main puzzles from the website, University of British Columbia, Canada, with observed habitat patterns of desiccation-tolerant plants. permission. "What are the mechanisms by which plants tolerate For sake of clarity, let us consider drought to be a desiccation?" and "Why are desiccation-tolerant plants not condition of the environment and desiccation to be a more ecologically widespread?" There appear to be condition of the plant, in this case the bryophyte. For multiple mechanisms of tolerance, including protection tracheophytes, drought in the environment nearly always from oxidants and loss of normal configuration of causes desiccation in the plant, but for bryophytes, this may macromolecules during dehydration. Alpert suggests that not so often be the case. their inability to occupy a wide ecological range is due to Using that terminology, drought tolerance can be their inability to maintain a cumulative positive carbon accomplished in two ways: desiccation tolerance and balance during their repeated wet/dry cycles and the desiccation avoidance. Desiccation avoidance is the tradeoffs between desiccation tolerance and growth rate. ability to prevent desiccation from occurring within the plant or the ability to go into a dormant stage during Drought Tolerance vs Avoidance periods of low water availability; it is often characterized As clear as the two words tolerance and avoidance by plants that die and leave stress-tolerant diaspores (any may seem, they can lead to confusion because of structures that become detached from parent plant and differences in perspective. During (1979) tells us that gives rise to new individuals) that will grow the next drought tolerance is the ability to survive and maintain season. Note the use of the word stage here, not state. For activity despite a lack of water in the environment. Proctor bryophytes, spores and gemmae provide
Recommended publications
  • Revised Glossary for AQA GCSE Biology Student Book
    Biology Glossary amino acids small molecules from which proteins are A built abiotic factor physical or non-living conditions amylase a digestive enzyme (carbohydrase) that that affect the distribution of a population in an breaks down starch ecosystem, such as light, temperature, soil pH anaerobic respiration respiration without using absorption the process by which soluble products oxygen of digestion move into the blood from the small intestine antibacterial chemicals chemicals produced by plants as a defence mechanism; the amount abstinence method of contraception whereby the produced will increase if the plant is under attack couple refrains from intercourse, particularly when an egg might be in the oviduct antibiotic e.g. penicillin; medicines that work inside the body to kill bacterial pathogens accommodation ability of the eyes to change focus antibody protein normally present in the body acid rain rain water which is made more acidic by or produced in response to an antigen, which it pollutant gases neutralises, thus producing an immune response active site the place on an enzyme where the antimicrobial resistance (AMR) an increasing substrate molecule binds problem in the twenty-first century whereby active transport in active transport, cells use energy bacteria have evolved to develop resistance against to transport substances through cell membranes antibiotics due to their overuse against a concentration gradient antiretroviral drugs drugs used to treat HIV adaptation features that organisms have to help infections; they
    [Show full text]
  • Penetration of Hard Substrates by a Fungus Employing Enormous Turgor Pressures (Appressorium/Biodeterioration/Magnaporthe Gnsea/Plant Pathogen/Rice Blast) RICHARD J
    Proc. Natd. Acad. Sci. USA Vol. 88, pp. 11281-11284, December 1991 Microbiology Penetration of hard substrates by a fungus employing enormous turgor pressures (appressorium/biodeterioration/Magnaporthe gnsea/plant pathogen/rice blast) RICHARD J. HOWARD*t, MARGARET A. FERRARI*, DAVID H. ROACHt, AND NICHOLAS P. MONEY§ *Central Research and Development, and tFibers, The DuPont Company, Wilmington, DE 19880-0402; and §Department of Biochemistry, Colorado State University, Fort Collins, CO 80523 Communicated by Arthur Kelman, September 20, 1991 (receivedfor review June 27, 1991) ABSTRACT Many fungal pathogens penetrate plant MATERIALS AND METHODS an The rice leaves from a specialized cell called appressorium. Organism and Growth Conditions. These studies were blast pathogen Magnaporthegnsea can also penetrate synthetic conducted with strain 042 (see ref. 8) of M. grisea (Hebert) surfaces such as poly(vinyl chloride). Previous experiments time requires an elevated appres- Barr, telomorph of Pyricularia grisea Sacc. (10). The have suggested that penetration course of infection-structure development in vitro has been sorial turgor pressure. In the present report we have used well documented and closely resembles development on the nonbiodegradable Mylar membranes, exhibiting a range of in that penetration is host (11, 12). When harvested and placed on a surface surface hardness, to test the proposition distilled water, conidia germinate in 1-3 hr to form germ driven by turgor. Reducing appressorial turgor by osmotic to form and are firmly stress inhibited penetration ofthese membranes. The size ofthe tubes. By 4 hr appressoria begin was a function of attached to the substratum. By 6-8 hr their structure appears turgor deficit required to inhibit penetration complete.
    [Show full text]
  • Liverworts, Mosses and Hornworts of Afghanistan - Our Present Knowledge
    ISSN 2336-3193 Acta Mus. Siles. Sci. Natur., 68: 11-24, 2019 DOI: 10.2478/cszma-2019-0002 Published: online 1 July 2019, print July 2019 Liverworts, mosses and hornworts of Afghanistan - our present knowledge Harald Kürschner & Wolfgang Frey Liverworts, mosses and hornworts of Afghanistan ‒ our present knowledge. – Acta Mus. Siles. Sci. Natur., 68: 11-24, 2019. Abstract: A new bryophyte checklist for Afghanistan is presented, including all published records since the beginning of collection activities in 1839 ‒1840 by W. Griffith till present. Considering several unidentified collections in various herbaria, 23 new records for Afghanistan together with the collection data can be added to the flora. Beside a new genus, Asterella , the new records include Amblystegium serpens var. serpens, Brachythecium erythrorrhizon, Bryum dichotomum, B. elwendicum, B. pallens, B. weigelii, Dichodontium palustre, Didymodon luridus, D. tectorum, Distichium inclinatum, Entosthodon muhlenbergii, Hygroamblystegium fluviatile subsp. fluviatile, Oncophorus virens, Orthotrichum rupestre var. sturmii, Pogonatum urnigerum, Pseudocrossidium revolutum, Pterygoneurum ovatum, Schistidium rivulare, Syntrichia handelii, Tortella inflexa, T. tortuosa, and Tortula muralis subsp. obtusifolia . Therewith the number of species increase to 24 liverworts, 246 mosses and one hornwort. In addition, a historical overview of the country's exploration and a full biogeography of Afghan bryophytes is given. Key words: Bryophytes, checklist, flora, phytodiversity. Introduction Recording, documentation, identification and classification of organisms is a primary tool and essential step in plant sciences and ecology to obtain detailed knowledge on the flora of a country. In many countries, such as Afghanistan, however, our knowledge on plant diversity, function, interactions of species and number of species in ecosystems is very limited and far from being complete.
    [Show full text]
  • Alkaline Wing-Nerved Moss (Pterygoneurum Kozlovii)
    COSEWIC Assessment and Status Report on the Alkaline Wing-nerved Moss Pterygoneurum kozlovii in Canada THREATENED 2004 COSEWIC COSEPAC COMMITTEE ON THE STATUS OF COMITÉ SUR LA SITUATION ENDANGERED WILDLIFE DES ESPÈCES EN PÉRIL IN CANADA AU CANADA COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC 2004. COSEWIC assessment and status report on the alkaline wing-nerved moss Pterygoneurum kozlovii in Canada. Committee on the Status of Endangered Wildlife in Canada Ottawa. vi + 20 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Production note: COSEWIC would like to acknowledge Terry T. McIntosh for writing the status report on the alkaline wing-nerved moss Pterygoneurum kozlovii prepared under contract with Environment Canada, overseen and edited by Réne Belland, the COSEWIC Plants and Lichens (Mosses and Lichens) Species Specialist Subcommittee Co-chair. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: (819) 997-4991 / (819) 953-3215 Fax: (819) 994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Ếgalement disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur la situation du Ptérygoneure de koslov (Pterygoneurum kozlovii) au Canada. Cover illustration: Alkaline Wing-nerved Moss — Mature plants and maturing capsules of Pterygoneurum kozlovii; mostly on left side of photograph. Photo supplied by Terry T. McIntosh. Her Majesty the Queen in Right of Canada 2004 Catalogue No. CW69-14/399-2005F-PDF ISBN 0-662-79481-8 HTML: CW69-14/399-2005F-HTML 0-662-79483-4 Recycled paper COSEWIC Assessment Summary Assessment Summary – November 2004 Common name Alkaline Wing-nerved Moss Scientific name Pterygoneurum kozlovii Status Threatened Reason for designation This species, restricted in North America to western Canada, is globally imperilled or rare.
    [Show full text]
  • Dispersal Ecology of Desert Mosses Along Gradients of Elevation, Wildfire Disturbance and Local Niche
    UNLV Theses, Dissertations, Professional Papers, and Capstones 5-1-2013 Dispersal Ecology of Desert Mosses Along Gradients of Elevation, Wildfire Disturbance and Local Niche Robert Joseph Smith University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Biology Commons, Desert Ecology Commons, Environmental Sciences Commons, and the Terrestrial and Aquatic Ecology Commons Repository Citation Smith, Robert Joseph, "Dispersal Ecology of Desert Mosses Along Gradients of Elevation, Wildfire Disturbance and Local Niche" (2013). UNLV Theses, Dissertations, Professional Papers, and Capstones. 1890. http://dx.doi.org/10.34917/4478309 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. DISPERSAL ECOLOGY OF DESERT MOSSES ALONG GRADIENTS OF ELEVATION, WILDFIRE DISTURBANCE AND LOCAL NICHE by Robert Joseph Smith Bachelor
    [Show full text]
  • What Is Elodea? Elodea Cell Elodea Cell Parts
    What is Elodea? • The Elodea plant has Plasmolysis the parts that would typically be and found in a plant cell. Cytolysis In this exercise we will identify those parts and see what happens when you subject this plant to plasmolysis. Elodea Cell Elodea Cell Parts It is not possible to see the cell membrane because it is pushed up against the cell wall. Also, the central vacuole • Name three structures that are cannot be clearly distinguished from the cell cytoplasm. shown in this plant cell that In a living elodea cell you can “roughly” tell where the you would not expect to find in vacuole is by where the moving chloroplasts are not able an animal cell? to go. 1 What is plasmolysis? Elodea Plasmolysis • If you were to surround this group of plant cells with salt water then the water inside the plant would move from where there is • This is a view of a cell more water (less salt) through the cell wall and membrane to the that has undergone outside where there is less water (more salt). This process of water movement from a high concentration of water to a lesser plasmolysis. It is now concentration of water is called osmosis. When the water possible to see the movement is out from a cell this form of osmosis is specifically called plasmolysis. cytoplasm which has contracted around the chloroplasts and the other cellular structures. Most of the water that has left the cell has been from the vacuole. Onion Skin Plasmolysis Types of Solutions Hypertonic solutions contain higher concentrations of solutes than those in surrounding cells resulting in the cell shrinking in size.
    [Show full text]
  • An Analysis of the Water Potential Isotherm in Plant Tissue
    AN ANALYSIS OF THE WATER POTENTIAL ISOTHERM IN PLANT TISSUE 11.* COMPARATIVE STUDIES ON LEAVES OF DIFFERENT TYPES By 1. Noy-MEIRH and B. Z. GINZBURGt [Manu8cript received January 26, 1968] Summary The water potential isotherms of leaves of carob (a sclerophyllic xerophyte), plane tree (a mesophyte), and saltbush (a semisucculent xero-halophyte) were measured by vapour equilibration with filter paper. The isotherm of the living tissue was partitioned into components by measuring the isotherms of killed tissue and of isolated matrix fractions. Empirical functions were fitted by regression to each of the components. The isotherm of the matrix fractions fitted best to a function of the form 'P = -a/w2 +b/w and the isotherms of killed tissue, whether before or after subtraction of the matrix, to a function of the form 'P = -a/w2 -b/w. The first term indicates non-ideality of the tissue solution. The water potential difference between living and killed tissue, which is an approximation of the hydro­ static potential, was far from linear with water content; either a quadratic function or two discontinuous linear ones could be fitted to it. Negative hydrostatic poten­ tials were measured, the highest values (20 atm) being attained in carob. A hyster­ etic component was measured both in the entire tissue and in the matrix fractions. The parameters of the isotherm (the coefficients of the functions) for the leaves of the three species were compared and related to their "drought tolerance" and their ecological preferences. The leaves of the two xerophytes, carob and salt­ bush, can both tolerate lower water potentials than those of plane, but have very different isotherms.
    [Show full text]
  • Cell Membrane & Tonicity Worksheet
    NAME__________ ANSWER KEY ___________________ DATE_________________ PERIOD_________ Cell Membrane & Tonicity Worksheet Composition of the Cell Membrane & Functions The cell membrane is also called the PLASMA membrane and is made of a phospholipid SKETCH AND LABEL a phospholipid coloring BI-LAYER. The phospholipids have a hydrophilic (water attracting) HEADS and two the heads red and the hydrophobic (water repelling) TAILS. The head of a phospholipid is made of an alcohol and tails blue. GLYCEROL group, while the tails are chains of FATTY ACIDS. Phospholipids can move SIDEWAYS and allow water and other NON-POLAR molecules to pass through into or out of the cell. This is known as simple PASSIVE TRANSPORT because it does not require ENERGY and the water or molecules are moving WITH the concentration gradient. Another type of lipid in the cell membrane is CHOLESTEROL that makes the membrane more fluid. Embedded in the phospholipid bilayer are PROTEINS that also aid in diffusion and in cell recognition. Proteins called INTEGRAL proteins go all the way through the bilayer, while PERIPHERAL proteins are only on one side. Large molecules like PROTEINS or carbohydrates use proteins to help move across cell membranes. Some of the membrane proteins have carbohydrate PARTS attached to help cells in recognize each other and certain molecules. List 4 functions of the cell or plasma membrane: a. CELL SIGNALING b. SELECTIVE TRANSPORT c. EXCRETION OF WASTES d. STRUCTURAL SUPPORT Correctly color code and identify the name for each part of the cell membrane. Letter Name/Color Letter Name/Color __ A ___ Phospholipid bilayer (no color) __ H ___ Peripheral protein (red) __ B ___ Integral protein (pink) __ I ____ Cholesterol (blue) __ F ___ Fatty acid tails (orange) __ C___ Glycoprotein (green) __ G ___ Phosphate heads (yellow) __ E ___ Glycolipids (purple) Match the cell membrane structure or its function with the correct letter from the cell membrane diagram.
    [Show full text]
  • Hornwort Stomata Do Not Respond Actively to Exogenous and Environmental Cues
    Annals of Botany 122: 45–57, 2018 doi: 10.1093/aob/mcy045, available online at www.academic.oup.com/aob Hornwort stomata do not respond actively to exogenous and environmental cues Silvia Pressel1,*, Karen S. Renzaglia2, Richard S. (Dicky) Clymo3 and Jeffrey G. Duckett1 1Life Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK, 2Plant Biology Department, Southern Illinois University, Carbondale, IL 62901, USA and 3School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK *For correspondence. E-mail [email protected] Downloaded from https://academic.oup.com/aob/article-abstract/122/1/45/4979633 by guest on 11 March 2019 Received: 25 October 2017 Returned for revision: 13 November 2017 Editorial decision: 16 February 2018 Accepted: 14 March 2018 Published electronically 20 April 2018 • Backgrounds and Aims Because stomata in bryophytes occur on sporangia, they are subject to different developmental and evolutionary constraints from those on leaves of tracheophytes. No conclusive experimental evidence exists on the responses of hornwort stomata to exogenous stimulation. • Methods Responses of hornwort stomata to abscisic acid (ABA), desiccation, darkness and plasmolysis were compared with those in tracheophyte leaves. Potassium ion concentrations in the guard cells and adjacent cells were analysed by X-ray microanalysis, and the ontogeny of the sporophytic intercellular spaces was compared with those of tracheophytes by cryo-scanning electron microscopy. • Key Results The apertures in hornwort stomata open early in development and thereafter remain open. In hornworts, the experimental treatments, based on measurements of >9000 stomata, produced only a slight reduction in aperture dimensions after desiccation and plasmolysis, and no changes following ABA treatments and darkness.
    [Show full text]
  • A Bryophyte Species List for Denali National Park and Preserve, Alaska, with Comments on Several New and Noteworthy Records Author(S): Sarah E
    A Bryophyte Species List for Denali National Park and Preserve, Alaska, with Comments on Several New and Noteworthy Records Author(s): Sarah E. Stehn , James K. Walton , Carl A. Roland Source: Evansia, 30(1):31-45. 2013. Published By: The American Bryological and Lichenological Society, Inc. DOI: http://dx.doi.org/10.1639/079.030.0105 URL: http://www.bioone.org/doi/full/10.1639/079.030.0105 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Evansia 30(1) 31 A bryophyte species list for Denali National Park and Preserve, Alaska, with comments on several new and noteworthy records Sarah E. Stehn Denali National Park and Preserve and Central Alaska Network National Park Service, P.O. Box 9, Denali Park, AK 99755 E-mail: [email protected] James K. Walton Southwest Alaska Network National Park Service, 240 West 5th Avenue, Anchorage, AK 99501 E-mail: [email protected] Carl A.
    [Show full text]
  • Glossary.Pdf
    Glossary Pronunciation Key accessory fruit A fruit, or assemblage of fruits, adaptation Inherited characteristic of an organ- Pronounce in which the fleshy parts are derived largely or ism that enhances its survival and reproduc- a- as in ace entirely from tissues other than the ovary. tion in a specific environment. – Glossary Ј Ј a/ah ash acclimatization (uh-klı¯ -muh-tı¯-za -shun) adaptive immunity A vertebrate-specific Physiological adjustment to a change in an defense that is mediated by B lymphocytes ch chose environmental factor. (B cells) and T lymphocytes (T cells). It e¯ meet acetyl CoA Acetyl coenzyme A; the entry com- exhibits specificity, memory, and self-nonself e/eh bet pound for the citric acid cycle in cellular respi- recognition. Also called acquired immunity. g game ration, formed from a fragment of pyruvate adaptive radiation Period of evolutionary change ı¯ ice attached to a coenzyme. in which groups of organisms form many new i hit acetylcholine (asЈ-uh-til-ko–Ј-le¯n) One of the species whose adaptations allow them to fill dif- ks box most common neurotransmitters; functions by ferent ecological roles in their communities. kw quick binding to receptors and altering the perme- addition rule A rule of probability stating that ng song ability of the postsynaptic membrane to specific the probability of any one of two or more mu- o- robe ions, either depolarizing or hyperpolarizing the tually exclusive events occurring can be deter- membrane. mined by adding their individual probabilities. o ox acid A substance that increases the hydrogen ion adenosine triphosphate See ATP (adenosine oy boy concentration of a solution.
    [Show full text]
  • Regulation of Microbial Growth by Turgor Pressure
    Available online at www.sciencedirect.com ScienceDirect Regulation of microbial growth by turgor pressure 1,2 1,3 Enrique R Rojas and Kerwyn Casey Huang Rapid changes in environmental osmolarity are a natural ultimate process that determines the rate of cell growth. aspect of microbial lifestyles. The change in turgor pressure The envelope is inflated by turgor pressure, the intracel- resulting from an osmotic shock alters the mechanical forces lular hydrostatic pressure that results from the osmotic within the cell envelope, and can impact cell growth across potential (concentration differential) across the mem- a range of timescales, through a variety of mechanical brane, which is balanced by mechanical stress in the cell mechanisms. Here, we first summarize measurements of turgor envelope (Figure 1a). Since water is the primary cytosolic pressure in various organisms. We then review how the component, and bacterial cells do not have active water combination of microfluidic flow cells and quantitative image transporters, cells rely on osmosis for water import during analysis has driven discovery of the diverse ways in which cell growth. Indeed, the idea that swelling due to osmosis turgor pressure mechanically regulates bacterial growth, is fundamental to cell growth is centuries old [2]. How- independent of the effect of cytoplasmic crowding. In Gram- ever, recent progress has aimed to understand deeper positive, rod-shaped bacteria, reductions in turgor pressure functional relationships between water activity and cell cause decreased growth rate. Moreover, a hypoosmotic shock, growth. These studies demonstrated that, in many cases, which increases turgor pressure and membrane tension, leads osmotic potential is not simply required for water influx, to transient inhibition of cell-wall growth via electrical but is required to generate turgor pressure that is used as a depolarization.
    [Show full text]