pathogens Review The Destructive Fungal Pathogen Botrytis cinerea—Insights from Genes Studied with Mutant Analysis 1, 1,2, 1,2 1,2, Nicholas Cheung y , Lei Tian y, Xueru Liu and Xin Li * 1 Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
[email protected] (N.C.);
[email protected] (L.T.);
[email protected] (X.L.) 2 Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada * Correspondence:
[email protected] These authors contributed equally to the review. y Received: 8 October 2020; Accepted: 4 November 2020; Published: 7 November 2020 Abstract: Botrytis cinerea is one of the most destructive fungal pathogens affecting numerous plant hosts, including many important crop species. As a molecularly under-studied organism, its genome was only sequenced at the beginning of this century and it was recently updated with improved gene annotation and completeness. In this review, we summarize key molecular studies on B. cinerea developmental and pathogenesis processes, specifically on genes studied comprehensively with mutant analysis. Analyses of these studies have unveiled key genes in the biological processes of this pathogen, including hyphal growth, sclerotial formation, conidiation, pathogenicity and melanization. In addition, our synthesis has uncovered gaps in the present knowledge regarding development and virulence mechanisms. We hope this review will serve to enhance the knowledge of the biological mechanisms behind this notorious fungal pathogen. Keywords: airborne fungal pathogen; Botrytis cinerea; fungal pathogenesis; sclerotial development; fungal growth; conidiation; melanization 1. Introduction Ascomycete Botrytis cinerea is a fungal pathogen responsible for gray (or grey) mold diseases.