Rocks Rocks Continuously Change As They Are Subjected to the Processes of the Rock Cycle
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geochemical Cycle
Geochemical cycle In Earth science, a geochemical cycle is the pathway that chemical elements take in the surface and crust of the Earth.[1] The term "geochemical" tells us that geological and chemical factors are all included. The migration of heated and compressed chemical elements and compounds such as silicon, aluminium, and general alkali metals through the means of subduction and volcanism is known in the geological world as geochemical cycles. The geochemical cycle encompasses the natural separation and concentration of elements and heat-assisted recombination processes. Changes may not be apparent over a short term, such as with biogeochemical cycles, but over a long term changes of great magnitude occur, including the evolution of continents and oceans.[1] Contents Differentiating biogeochemical cycles Earth system Pathways Important cycles See also References Differentiating biogeochemical cycles Some may use the terms biogeochemical cycle and geochemical cycle interchangeably because both cycles deal with Earth's reservoirs. However, a biogeochemical cycle refers to the chemical interactions in surface reservoirs such as the atmosphere, hydrosphere, lithosphere, and biosphere whereas a geochemical cycle refers to the chemical interactions that exist in crustal and sub crustal reservoirs such as the deep earth and lithosphere. Earth system The Earth, as a system, is open to radiation from the sun and space, but is practically closed with regard to matter.[2] As all closed systems, it follows the law of conservation of mass which -
Earth Systems and Interactions
The Earth System Earth Systems and Interactions Key Concepts • How do Earth systems What do you think? Read the three statements below and decide interact in the carbon whether you agree or disagree with them. Place an A in the Before column cycle? if you agree with the statement or a D if you disagree. After you’ve read • How do Earth systems this lesson, reread the statements to see if you have changed your mind. interact in the phosphorus Before Statement After cycle? 1. The amount of water on Earth remains constant over time. 2. Hydrogen makes up the hydrosphere. 3. Most carbon on Earth is in the atmosphere. 3TUDY#OACH Earth Systems Make a Table Contrast the carbon cycle and the Your body contains many systems. These systems work phosphorus cycle in a two- together and make one big system—your body. Earth is a column table. Label one system, too. Like you, Earth has smaller systems that work column Carbon Cycle and together, or interact, and make the larger Earth system. Four the other column Phosphorus of these smaller systems are the atmosphere, the Cycle. Complete the table hydrosphere, the geosphere, and the biosphere. as you read this lesson. The Atmosphere Reading Check The outermost Earth system is a mixture of gases and 1. Identify What systems particles of matter called the atmosphere. It forms a layer make up the larger Earth around the other Earth systems. The atmosphere is mainly system? nitrogen and oxygen. Gases in the atmosphere move freely, helping transport matter and energy among Earth systems. -
Mineral Mania
The Rock Factory A Pre-Visit Information Guide for Teachers Meets Next Generation Science Standards: 5-PS1-3; MS LS4-1,2; MS ESS1-4; MS-ESS2-1 How does our Earth create so many different types of rocks? Learn about the different processes that form and reform rocks as you identify many types of rocks, minerals and fossils. Students will learn to think like geologists as they move through interactive investigation stations packed with specimens from the Museum’s collections. OBJECTIVES The Rock Cycle: Students will examine the three types of rocks - igneous, metamorphic and sedimentary – and discover the processes that create them. Tracing the connections between shale and slate, limestone and marble, students will discover how the rock cycle changes the very ground beneath our feet! Characteristics of Rocks Students will learn how to observe and identify rocks through their unique characteristics, looking for telling clues such as layering, crystal size, fossils, magnetism, and more. Students will practice their observational skills as they describe the Museum’s unique rock and mineral specimens. Investigation Stations: Students will explore Museum geology specimens up close at investigation stations to answer such questions as: “Why do fossils form only in certain rocks?” “How do rocks form from volcanic eruptions?” “How can I recognize different types of rocks?”. ACTIVITIES Teachers are encouraged to conduct pre-visit and post-visit classroom discussions and activities with their classes to make the most of their experience. Encourage your students to start a classroom rock collection, and create an exhibit with the rocks organized by type – igneous, sedimentary and metamorphic. -
Geologic Boulder Map of Campus Has Been Created As an Educational Educational an As Created Been Has Campus of Map Boulder Geologic The
Adam Larsen, Kevin Ansdell and Tim Prokopiuk Tim and Ansdell Kevin Larsen, Adam What is Geology? Igneous Geo-walk ing of marine creatures when the limestone was deposited. It also contains by edited and Written Geology is the study of the Earth, from the highest mountains to the core of The root of “igneous” is from the Latin word ignis meaning fire. Outlined in red, numerous fossils including gastropods, brachiopods, receptaculita and rugose the planet, and has traditionally been divided into physical geology and his- this path takes you across campus looking at these ancient “fire” rocks, some coral. The best example of these are in the Geology Building where the stone torical geology. Physical geology concentrates on the materials that compose of which may have been formed at great depths in the Earth’s crust. Created was hand-picked for its fossil display. Campus of the Earth and the natural processes that take place within the earth to shape by the cooling of magma or lava, they can widely vary in both grain size and Granite is another common building stone used on campus. When compa- its surface. Historical geology focuses on Earth history from its fiery begin- mineral composition. This walk stops at examples showing this variety to help nies sell granite, they do not use the same classification system as geologists. nings to the present. Geology also explores the interactions between the you understand what the change in circumstances will do to the appearance Granite is sold in many different colours and mineral compositions that a Map Boulder Geologic lithosphere (the solid Earth), the atmosphere, the biosphere (plants, animals of the rock. -
Chapter 1 – Introduction – Review of Rocks and Plate Tectonics Practice Exam and Study Guide
Chapter 1 – Introduction – Review of Rocks and Plate Tectonics Practice Exam and Study Guide To be able to understand the material covered during this course you need to have a basic background in the kinds of rocks making up our planet. This section of the study guide is aimed at helping you gain that background. 1. What are the three major groups of rocks found on planet Earth? Igneous Rocks 2. Which of the following processes is associated with igneous rocks? a. Solid‐state recrystallization b. Weathering and erosion c. Transportation and deposition d. Cooling a silicate liquid to a solid rock e. The accumulation of granitic debris in a moraine 3. If a silicate liquid flows out along the Earth’s surface or seabed, then it is called _______________. 4. If a silicate liquid exists beneath the Earth’s surface or seabed, then it is called _______________. 5. Which of the following terms refer to a body of magma or its solidified equivalent? a. Basalt b. Sandstone c. Gneiss d. Pluton e. Schist 6. If you can see the crystals making up an igneous rock with the naked eye, then the texture is described as a. Pyroclastic b. Phaneritic c. Aphanitic d. Porphyritic e. Aphyric from Perilous Earth: Understanding Processes Behind Natural Disasters, ver. 1.0, June, 2009 by G.H. Girty, Department of Geological Sciences, San Diego State University Page 1 7. In an aphanitic igneous rock can you make out the outlines of individual crystals with the naked eye? Yes or No 8. What type of igneous rock is the most volumetrically important on our planet? Intrusive Igneous Rocks 9. -
Eg, Change Or Extinction of Particular Living Organisms; Field Evidence Or
6.4. Construct explanations from geologic evidence (e.g., change or extinction of particular living organisms; field evidence or representations, including models of geologic cross-sections; sedimentary layering) to identify patterns of Earth’s major historical events (e.g., formation of mountain chains and ocean basins, significant volcanic eruptions, fossilization, folding, faulting, igneous intrusion, erosion). Use the diagram of a geologic cross section below to answer questions #1-2 1. Which rock layer most likely contains the most recently evolved organisms? a. 1 c. 3 b. 2 d. 4 2. Which rock layer represents the oldest rock? a. 1 c. 3 b. 2 d. 4 3. Use the diagram below to answer the question. The diagram shows the fossils in two different sections of rock found on opposite sides of a canyon. Which layer in rock section one is approximately the same age as layer X in rock section 2? a. Layer 1 b. Layer 2 c. Layer 3 d. Layer 4 4. Which statement is true about undisturbed layers of rocks on the side of a mountain? a. The rock layers closest to the ground level have more fossils in them. b. The layers of rock closest to the ground level are older than the layers on top. c. The layers of rocks that are the darkest in color are older than those that are lighter. d. The layers of rocks that are lighter in color are older than those that are darker. 5. The diagram below shows four different rock layers in a hillside. What is the best evidence that one of those rock layers was formed under an ocean. -
Igneous Rocks and Their Origin
IIggnneeoouuss RRocockkss aanndd ThTheeiirr OOrigrigiinn Chapter 5 Three Types of Rocks • Igneous rocks - Formed from volcanic eruptions - either external or internal • Sedimentary rocks - Formed from erosional processes • Metamorphic rocks - Deforming of rocks above from exposure to high pressure and temperature The Rock Cycle • A rock is composed of grains of one or more minerals • The rock cycle shows how one type of rocky material is transformed into ano ther Igneous Rocks Extrusive igneous rocks form when lava erupts at the surface. Igneous extrusion (lava) The resulting rock is fine-grained or has a glassy texture. Basalt Igneous Rocks Igneous intrusion Intrusive igneous rocks form when magma intrudes into unmelted rock masses. Granite The slow cooling process produces coarsely grained rocks. How do we Know Igneous Rocks Formed at Depth? Torres del Paine, Chile • Mineralogy / Chemistry ? • Grain size (coarse vs fine grained) • Lab expmts require high P & T to form large grains • Outcrops: See intrusions into country rock -Contact/chill zones, baked and metamorphosed • Xenoliths of country rock found in igneous intrusions Igneous Rock Identification • Igneous rock names are based on texture (grain size) and composition • Textural classification – Coarse-grained: Plutonic rocks (gabbro-diorite-granite) cooled slowly at depth – Fine-Grained: Volcanic rocks (basalt-andesite-rhyolite) cooled rapidly at the Earth’s surface • Compositional classification – Mafic rocks (gabbro-basalt) contain dark-colored ferromagnesian minerals, iron rich -
Rock Cycle Roundabout
Rock Cycle Roundabout grade level 4th-8th; Standards for 4th and 7th subjects Earth & Space Science, Cause & Effect duration Prep Time: 20 min; Activity Time: 60 minutes, or two class periods setting Classroom Materials objectives - Rock Cycle Roundabout Board (1 per group) Students will be able to: - Rock Cycle Cards (1 set per 4 – 6 students) - small rocks, buttons, or other objects for game pieces 1. Differentiate among the three types of rock by (1 per student) referring to their methods of formation, providing - California Maps: Landforms, Waterways, and Faults real-world scenarios as examples. (1 per group, or projected for the class) 2. Recognize that some geologic processes are - Rock Types of California Map instantaneous, and others extremely gradual. (1 per group, or projected for the class) 3. Describe which processes might be affecting a - Student science notebooks or scratch paper given region, using evidence from natural features present on a map. scientific terms for students igneous rock: a type of rock that forms from the cooling and crust: the thin layer of solid rock that forms Earth’s outer hardening of magma or lava surface metamorphic rock: a type of rock that forms when a rock has mantle: the thick layer of hot, dense, rocky matter found below had its mineral composition and/or texture changed by heat the Earth’s crust and surrounding the Earth’s core and pressure magma: the molten material beneath or within the Earth’s sedimentary rock: a type of rock that forms when particles crust, from which igneous rock is formed from other rocks, or the remains of plants and animals, are lava: liquid magma that reaches the Earth’s surface pressed and cemented together weathering: the chemical and physical processes that break down rocks exposed to air, moisture, and organic matter at Background for Educators Earth’s surface The Earth, our rocky planet, is very active. -
Exploring Origins of Pitted/Vesicular Rocks in Perseverance Valley, Endeavour Crater
50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 2327.pdf EXPLORING ORIGINS OF PITTED/VESICULAR ROCKS IN PERSEVERANCE VALLEY, ENDEAVOUR CRATER. A. W. Tait1*, C. Schröder1, W. H Farrand2, J. W. Ashley3, B. A. Cohen4, R. Gellert5, J. Rice6, L. C. Crumpler7, B. Jolliff8, 1Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK ([email protected]), 2Space Science Institute, Boulder, CO, USA, 3Jet Propulsion Laboratory, California In- stitute of Technology, Pasadena, CA, USA, 4NASA Goddard Space Flight Centre, Greenbelt, MD, USA, 5Department of Physics, University of Guelph, Ontario, Canada, 6Planetary Science Institute, Tucson, AZ, USA, 7NM Museum of Natural History & Science, Albuquerque, NM, USA, 8Washington University in St. Louis, MO, USA. Introduction: Since sol 4780, the NASA Mars Ex- ploration Rover (MER) Opportunity has been traversing down Perseverance Valley (PV), a linear, negative-re- lief feature trending perpendicular to the western flank of Endeavour crater. The goal of the current investiga- tion is to understand PVs geomorphology and chemical composition to determine its mode of formation and ap- proximate age. Formation hypotheses include debris or fluid flow, and wind sculpting, all while intersecting possible Noachian lithologies [1]. Rover observations confirms orbital data that there exists a dextral off-set, indicating a structural origin to the valleys formation [2]. This faulting may have allowed for fluids to interact with the rocks [3]. On sol ~5000 Opportunity started to investigate a train of dark pitted/vesicular rocks with an unusual morphology, texture, and composition enriched in Al and Si. Here we describe the rock facies, and ex- plore preliminary formation/alteration hypotheses. -
Landslides and the Weathering of Granitic Rocks
Geological Society of America Reviews in Engineering Geology, Volume III © 1977 7 Landslides and the weathering of granitic rocks PHILIP B. DURGIN Pacific Southwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture, Berkeley, California 94701 (stationed at Arcata, California 95521) ABSTRACT decomposition, so they commonly occur as mountainous ero- sional remnants. Nevertheless, granitoids undergo progressive Granitic batholiths around the Pacific Ocean basin provide physical, chemical, and biological weathering that weakens examples of landslide types that characterize progressive stages the rock and prepares it for mass movement. Rainstorms and of weathering. The stages include (1) fresh rock, (2) core- earthquakes then trigger slides at susceptible sites. stones, (3) decomposed granitoid, and (4) saprolite. Fresh The minerals of granitic rock weather according to this granitoid is subject to rockfalls, rockslides, and block glides. sequence: plagioclase feldspar, biotite, potassium feldspar, They are all controlled by factors related to jointing. Smooth muscovite, and quartz. Biotite is a particularly active agent in surfaces of sheeted fresh granite encourage debris avalanches the weathering process of granite. It expands to form hydro- or debris slides in the overlying material. The corestone phase biotite that helps disintegrate the rock into grus (Wahrhaftig, is characterized by unweathered granitic blocks or boulders 1965; Isherwood and Street, 1976). The feldspars break down within decomposed rock. Hazards at this stage are rockfall by hyrolysis and hydration into clays and colloids, which may avalanches and rolling rocks. Decomposed granitoid is rock migrate from the rock. Muscovite and quartz grains weather that has undergone granular disintegration. Its characteristic slowly and usually form the skeleton of saprolite. -
Structure of the Earth
And the ROCK CYCLE Structure of the Earth Compositional (Chemical) Layers Crust: Low density High in silicon (Si) and oxygen (O) Moho: Density boundary between crust and mantle Mantle: Higher density High in Magnesium (Mg) and Iron (Fe) Core: High in Nickel (Ni) and Iron (Fe) Heat Flow in the Earth Heat sources: latent heat from the formation of the Earth Radioactive decay in the core and mantle Temperature in the core: 3000- 5000° C Cooling processes: Convection currents: in outer core and asthenosphere transport heat to the surface Plate tectonics releases heat through the crust (volcanoes) Convection cells in the mantle and core transport heat from the interior of earth to the surface and also return cooler material back into the earth. Mechanical (Physical) Layers of the Earth Lithosphere: Crust and upper, solid part of the mantle; “plates” in plate tectonics Asthenosphere: Partially molten part of mantle; location of convection current that drive plates Outer core: Liquid Inner core: Solid Greatest temperatures, solid due to intense pressure Comparing Compositional Layers to Mechanical Layers Moho What is a Rock? A group of minerals bound together Three major groups: 1) Igneous: Solidified Molten Magma 2) Sedimentary: formed by cementing of sediments. Sediments come from the erosion of other rocks. 3) Metamorphic: Heat and pressure change a rock into something new, without melting. Rock Types Igneous: Solidified molten magma 2 types of Igneous: 1) Extrusive (volcanic) = erupted lava Cools more quickly, so only small crystals form. 2) Intrusive (plutonic) = never erupted magma Cools more slowly within the earth, so larger crystals can form. -
Extrusive Igneous Rocks- a Rock Formed on the Earth’S Surface
Rocks What is a rock? • Rock- naturally formed, consolidated materials composed of one or more minerals. • There are 3 types of rocks: • Igneous • Sedimentary • Metamorphic Igneous Rocks What are Igneous Rocks? • Magma vs. Lava • Magma- molten rock below the Earth’s surface. • Lava- magma on the Earth’s surface. • Igneous Rock- rocks made from cooling magma or lava. • They can be intrusive or extrusive. Intrusive vs. Extrusive • Intrusive Igneous Rocks- a rock that forms below the Earth’s surface. • Normally made from magma • Extrusive Igneous Rocks- a rock formed on the Earth’s surface. • Normally made from lava. Extrusive rock The white rock is intrusive. Intrusive Igneous Rocks • We cannot see these rocks be formed. • They typically have large crystal minerals. • The rock itself can give you a lot of information about how it was formed. Extrusive Igneous Rocks • You can see them form: • Lava flow • Ash Flow • Lava that cools down very quickly so all you see is ask coming out • Pyroclastic Flow • Clouds flowing downhill like a huge avalanche. • Data from these rocks can be used to interpret ancient volcanic activity. Igneous Rock Textures • The crystal size of the rock is related to the speed of the rock cooling. • Fast gives you small crystals and slow cooling gives you large crystals. • Also the rocks can appear: • Glassy- look like a piece of glass. • From the magma/lava cooling too quickly. • Vesicular- has air bubbles in it. This is vesicular. • From air bubbles getting trapped in the magma/lava. • Fragmental- they look jagged and angular. This is glassy and fragmental.