Chapter 1 – Introduction – Review of Rocks and Plate Tectonics Practice Exam and Study Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Petrographic Study of a Quartz Diorite Stock Near Superior, Pinal County, Arizona
Petrographic study of a quartz diorite stock near Superior, Pinal County, Arizona Item Type text; Thesis-Reproduction (electronic); maps Authors Puckett, James Carl, 1940- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 23/09/2021 23:40:37 Link to Item http://hdl.handle.net/10150/554062 PETROGRAPHIC STUDY OF A QUARTZ DIORITE STOCK NEAR SUPERIOR, PINAL COUNTY, ARIZONA by James Carl Puckett, Jr. A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 7 0 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of re quirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judg ment the proposed use of the material is in the interests of scholar ship. In all other instances, however, permission must be obtained from the author. -
Mineral Mania
The Rock Factory A Pre-Visit Information Guide for Teachers Meets Next Generation Science Standards: 5-PS1-3; MS LS4-1,2; MS ESS1-4; MS-ESS2-1 How does our Earth create so many different types of rocks? Learn about the different processes that form and reform rocks as you identify many types of rocks, minerals and fossils. Students will learn to think like geologists as they move through interactive investigation stations packed with specimens from the Museum’s collections. OBJECTIVES The Rock Cycle: Students will examine the three types of rocks - igneous, metamorphic and sedimentary – and discover the processes that create them. Tracing the connections between shale and slate, limestone and marble, students will discover how the rock cycle changes the very ground beneath our feet! Characteristics of Rocks Students will learn how to observe and identify rocks through their unique characteristics, looking for telling clues such as layering, crystal size, fossils, magnetism, and more. Students will practice their observational skills as they describe the Museum’s unique rock and mineral specimens. Investigation Stations: Students will explore Museum geology specimens up close at investigation stations to answer such questions as: “Why do fossils form only in certain rocks?” “How do rocks form from volcanic eruptions?” “How can I recognize different types of rocks?”. ACTIVITIES Teachers are encouraged to conduct pre-visit and post-visit classroom discussions and activities with their classes to make the most of their experience. Encourage your students to start a classroom rock collection, and create an exhibit with the rocks organized by type – igneous, sedimentary and metamorphic. -
Geologic Boulder Map of Campus Has Been Created As an Educational Educational an As Created Been Has Campus of Map Boulder Geologic The
Adam Larsen, Kevin Ansdell and Tim Prokopiuk Tim and Ansdell Kevin Larsen, Adam What is Geology? Igneous Geo-walk ing of marine creatures when the limestone was deposited. It also contains by edited and Written Geology is the study of the Earth, from the highest mountains to the core of The root of “igneous” is from the Latin word ignis meaning fire. Outlined in red, numerous fossils including gastropods, brachiopods, receptaculita and rugose the planet, and has traditionally been divided into physical geology and his- this path takes you across campus looking at these ancient “fire” rocks, some coral. The best example of these are in the Geology Building where the stone torical geology. Physical geology concentrates on the materials that compose of which may have been formed at great depths in the Earth’s crust. Created was hand-picked for its fossil display. Campus of the Earth and the natural processes that take place within the earth to shape by the cooling of magma or lava, they can widely vary in both grain size and Granite is another common building stone used on campus. When compa- its surface. Historical geology focuses on Earth history from its fiery begin- mineral composition. This walk stops at examples showing this variety to help nies sell granite, they do not use the same classification system as geologists. nings to the present. Geology also explores the interactions between the you understand what the change in circumstances will do to the appearance Granite is sold in many different colours and mineral compositions that a Map Boulder Geologic lithosphere (the solid Earth), the atmosphere, the biosphere (plants, animals of the rock. -
Eg, Change Or Extinction of Particular Living Organisms; Field Evidence Or
6.4. Construct explanations from geologic evidence (e.g., change or extinction of particular living organisms; field evidence or representations, including models of geologic cross-sections; sedimentary layering) to identify patterns of Earth’s major historical events (e.g., formation of mountain chains and ocean basins, significant volcanic eruptions, fossilization, folding, faulting, igneous intrusion, erosion). Use the diagram of a geologic cross section below to answer questions #1-2 1. Which rock layer most likely contains the most recently evolved organisms? a. 1 c. 3 b. 2 d. 4 2. Which rock layer represents the oldest rock? a. 1 c. 3 b. 2 d. 4 3. Use the diagram below to answer the question. The diagram shows the fossils in two different sections of rock found on opposite sides of a canyon. Which layer in rock section one is approximately the same age as layer X in rock section 2? a. Layer 1 b. Layer 2 c. Layer 3 d. Layer 4 4. Which statement is true about undisturbed layers of rocks on the side of a mountain? a. The rock layers closest to the ground level have more fossils in them. b. The layers of rock closest to the ground level are older than the layers on top. c. The layers of rocks that are the darkest in color are older than those that are lighter. d. The layers of rocks that are lighter in color are older than those that are darker. 5. The diagram below shows four different rock layers in a hillside. What is the best evidence that one of those rock layers was formed under an ocean. -
Petrology and Major Element Geochemistry of Albite Granite Near Sparta, Oregon Robert Brayton Almy III Western Washington University
Western Washington University Western CEDAR WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship Winter 1977 Petrology and Major Element Geochemistry of Albite Granite near Sparta, Oregon Robert Brayton Almy III Western Washington University Follow this and additional works at: https://cedar.wwu.edu/wwuet Part of the Geochemistry Commons, and the Geology Commons Recommended Citation Almy, Robert Brayton III, "Petrology and Major Element Geochemistry of Albite Granite near Sparta, Oregon" (1977). WWU Graduate School Collection. 792. https://cedar.wwu.edu/wwuet/792 This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. PETROLOGY AND MAJOR ELEMENT GEOCHEMISTRY OFJ\LBITE GRANITE NEAR SPARTA, OREGON A Thesis ' Presented to The Faculty of Western Washington State College In Partial Fulfillment Of the Requirements for the Degree Master of Science by Robert B. Almy III March, 1977 345c 112 MASTER'S THESIS In presenting this thesis in partial fulfillment of the requirements for a master's degree at Western Washington University, I grant to Western Washington University the non-exclusive royalty-free rightto archive, reproduce, distribute, and display the thesis in any and all forms, including electronic format, via any digital library mechanisms maintained by WWU. I represent and w/arrant this is rhy original work and does not infringe or violate any rights of others. I warrant that I have obtained written permissions from the owner of any third party copyrighted material included in these files. -
A More Informative Way to Name Plutonic Rocks— Comment by Frost Et Al
COMMENTS & REPLY A More Informative Way to Name Plutonic Rocks— Comment by Frost et al. B. Ronald Frost, Carol D. Frost, Dept. of Geology and Geophysics, University of Wyoming, Laramie, Wyoming 82071, USA; J. Lawford Anderson, Dept. of Earth and Environment, Boston University, Boston, Massachusetts 02215, USA; Calvin G. Barnes, Dept. of Geosciences, Texas Tech University, Lubbock, Texas 79409, USA; and Marjorie Wilson, School of Earth & Environment, Leeds University, Leeds LS2 9JT, UK In a recent paper, Glazner et al. (GSA ≥10% quartz (the most common group) a more precise description of the rock. This Today, Feb. 2019) proposed a major change are described by only 23 names, many of suggestion indicates a confusion of preci- in the terminology of plutonic rocks, which share the same root name. These sion and accuracy. Modes are difficult to whereby a simplified rock name is prefixed names need not be memorized because determine in the field where, as Glazner et with the mode. In this classification, a they are present in the various IUGS dia- al. (2019) observe, the distinction between granite might be named 20,20,50 granite. grams for rock names, a diagram that is alkali feldspar and plagioclase can be sub- Glazner et al. (2019) proposed this classifi- easily pasted into field notebooks. tle. Field estimation of modes is unlikely to cation system for three reasons. First, they The argument of Glazner et al. (2019) be better than ±10%. With this precision, a maintain that rock terminology is too com- that rock names are determined by rock classified as a 25,25,40 granite would plex; they note that at least 157 igneous rock “arbitrary” boundaries is not compelling. -
Igneous Rocks and Their Origin
IIggnneeoouuss RRocockkss aanndd ThTheeiirr OOrigrigiinn Chapter 5 Three Types of Rocks • Igneous rocks - Formed from volcanic eruptions - either external or internal • Sedimentary rocks - Formed from erosional processes • Metamorphic rocks - Deforming of rocks above from exposure to high pressure and temperature The Rock Cycle • A rock is composed of grains of one or more minerals • The rock cycle shows how one type of rocky material is transformed into ano ther Igneous Rocks Extrusive igneous rocks form when lava erupts at the surface. Igneous extrusion (lava) The resulting rock is fine-grained or has a glassy texture. Basalt Igneous Rocks Igneous intrusion Intrusive igneous rocks form when magma intrudes into unmelted rock masses. Granite The slow cooling process produces coarsely grained rocks. How do we Know Igneous Rocks Formed at Depth? Torres del Paine, Chile • Mineralogy / Chemistry ? • Grain size (coarse vs fine grained) • Lab expmts require high P & T to form large grains • Outcrops: See intrusions into country rock -Contact/chill zones, baked and metamorphosed • Xenoliths of country rock found in igneous intrusions Igneous Rock Identification • Igneous rock names are based on texture (grain size) and composition • Textural classification – Coarse-grained: Plutonic rocks (gabbro-diorite-granite) cooled slowly at depth – Fine-Grained: Volcanic rocks (basalt-andesite-rhyolite) cooled rapidly at the Earth’s surface • Compositional classification – Mafic rocks (gabbro-basalt) contain dark-colored ferromagnesian minerals, iron rich -
Oregon Geologic Digital Compilation Rules for Lithology Merge Information Entry
State of Oregon Department of Geology and Mineral Industries Vicki S. McConnell, State Geologist OREGON GEOLOGIC DIGITAL COMPILATION RULES FOR LITHOLOGY MERGE INFORMATION ENTRY G E O L O G Y F A N O D T N M I E N M E T R R A A L P I E N D D U N S O T G R E I R E S O 1937 2006 Revisions: Feburary 2, 2005 January 1, 2006 NOTICE The Oregon Department of Geology and Mineral Industries is publishing this paper because the infor- mation furthers the mission of the Department. To facilitate timely distribution of the information, this report is published as received from the authors and has not been edited to our usual standards. Oregon Department of Geology and Mineral Industries Oregon Geologic Digital Compilation Published in conformance with ORS 516.030 For copies of this publication or other information about Oregon’s geology and natural resources, contact: Nature of the Northwest Information Center 800 NE Oregon Street #5 Portland, Oregon 97232 (971) 673-1555 http://www.naturenw.org Oregon Department of Geology and Mineral Industries - Oregon Geologic Digital Compilation i RULES FOR LITHOLOGY MERGE INFORMATION ENTRY The lithology merge unit contains 5 parts, separated by periods: Major characteristic.Lithology.Layering.Crystals/Grains.Engineering Lithology Merge Unit label (Lith_Mrg_U field in GIS polygon file): major_characteristic.LITHOLOGY.Layering.Crystals/Grains.Engineering major characteristic - lower case, places the unit into a general category .LITHOLOGY - in upper case, generally the compositional/common chemical lithologic name(s) -
The Boulder Creek Batholith, Front Range, Colorado
I u The Boulder Creek Batholith, Front Range, Colorado By DOLORES J. GABLE GEOLOGICAL SURVEY PROFESSIONAL PAPER 1101 A study of differentiation, assimilation, and origin of a granodiorite batholith showing interrelated differences in chemistry and mineralogy in the batholith and cogenetic rock types UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1980 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. William Menard, Director Library of Congress Cataloging in Publication Data Gable, Dolores J. 1922- The Boulder Creek batholith, Front Range, Colorado (Geological Survey Professional Paper 1101) Bibliography: p. 85 Supt. of Docs. No.: I 19.16:1101 1. Batholiths Colorado Boulder region. I. Title. II. Series: United States Geological Survey Professional Paper 1101. QE611.5.U6G3 551.8; 8 78-24482 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Page Abstract................................................ 1 Origin of the Boulder Creek Granodiorite and the Twin Introduction ............................................ 1 Spruce Quartz Monzonite .......................... 62 Previous work........................................... 2 Mineralogy, petrology, and chemistry of minerals in the Techniques used in this study ............................ 2 batholith.......................................... 64 Geologic setting ......................................... 3 Biotite ...'........................................... 64 The batholith .......................................... -
Preliminary Geologic Map of the Mount Baker 30- by 60-Minute Quadrangle, Washington
U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Preliminary Geologic Map of the Mount Baker 30- by 60-Minute Quadrangle, Washington by R.W. Tabor1 , R.A. Haugerud2, D.B. Booth3, and E.H. Brown4 Prepared in cooperation with the Washington State Department of Natural Resources, Division of Geology and Earth Resources, Olympia, Washington, 98504 OPEN FILE REPORT 94-403 This report is preliminary and has not been reviewed for conformity with U.S.Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. iu.S.G.S., Menlo Park, California 94025 2U.S.G.S., University of Washington, AJ-20, Seattle, Washington 98195 3SWMD, King County Department of Public Works, Seattle, Washington, 98104 ^Department of Geology, Western Washington University, Bellingham, Washington 98225 INTRODUCTION The Mount Baker 30- by 60-minute quadrangle encompasses rocks and structures that represent the essence of North Cascade geology. The quadrangle is mostly rugged and remote and includes much of the North Cascade National Park and several dedicated Wilderness areas managed by the U.S. Forest Service. Geologic exploration has been slow and difficult. In 1858 George Gibbs (1874) ascended the Skagit River part way to begin the geographic and geologic exploration of the North Cascades. In 1901, Reginald Daly (1912) surveyed the 49th parallel along the Canadian side of the border, and George Smith and Frank Calkins (1904) surveyed the United States' side. Daly's exhaustive report was the first attempt to synthesize what has become an extremely complicated geologic story. -
Geologic Map of the North Cascade Range, Washington by Ralph A
Prepared in cooperation with Washington State Division of Geology and Earth Resources, U.S. National Park Service, and U.S. Forest Service Geologic Map of the North Cascade Range, Washington By Ralph A. Haugerud and Rowland W. Tabor Nontechnical pamphlet to accompany Scientific Investigations Map 2940 Looking south from the North Klawatti Glacier [Mbse]. In the right foreground, the glacier breaks into a heavily crevassed icefall where it descends steeply. Rock in the foreground knob is Eldorado Orthogneiss (unit TKgo), a 90 million-year-old stitching pluton, which here includes numerous dikes of light- colored pegmatite. Mount Buckner on the left skyline and Mount Forbidden hidden in clouds are also eroded from the Eldorado Orthogneiss (photographed in 1987). 2009 U.S. Department of the Interior U.S. Geological Survey CONTENTS Introduction.....................................................................................................................................................1 Using this report ....................................................................................................................................1 Map preparation ...................................................................................................................................1 Major sources of new data .................................................................................................................1 Acknowledgments ................................................................................................................................2 -
Landslides and the Weathering of Granitic Rocks
Geological Society of America Reviews in Engineering Geology, Volume III © 1977 7 Landslides and the weathering of granitic rocks PHILIP B. DURGIN Pacific Southwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture, Berkeley, California 94701 (stationed at Arcata, California 95521) ABSTRACT decomposition, so they commonly occur as mountainous ero- sional remnants. Nevertheless, granitoids undergo progressive Granitic batholiths around the Pacific Ocean basin provide physical, chemical, and biological weathering that weakens examples of landslide types that characterize progressive stages the rock and prepares it for mass movement. Rainstorms and of weathering. The stages include (1) fresh rock, (2) core- earthquakes then trigger slides at susceptible sites. stones, (3) decomposed granitoid, and (4) saprolite. Fresh The minerals of granitic rock weather according to this granitoid is subject to rockfalls, rockslides, and block glides. sequence: plagioclase feldspar, biotite, potassium feldspar, They are all controlled by factors related to jointing. Smooth muscovite, and quartz. Biotite is a particularly active agent in surfaces of sheeted fresh granite encourage debris avalanches the weathering process of granite. It expands to form hydro- or debris slides in the overlying material. The corestone phase biotite that helps disintegrate the rock into grus (Wahrhaftig, is characterized by unweathered granitic blocks or boulders 1965; Isherwood and Street, 1976). The feldspars break down within decomposed rock. Hazards at this stage are rockfall by hyrolysis and hydration into clays and colloids, which may avalanches and rolling rocks. Decomposed granitoid is rock migrate from the rock. Muscovite and quartz grains weather that has undergone granular disintegration. Its characteristic slowly and usually form the skeleton of saprolite.