Phd Thesis- Phyllis E. A. Dadzeasah.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Phd Thesis- Phyllis E. A. Dadzeasah.Pdf SAFETY EVALUATION AND HEPATOPROTECTIVE ACTIVITY OF THE AQUEOUS STEM BARK EXTRACT OF Spathodea campanulata A THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY In the Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences by PHYLLIS ELSIE ABAIDUWA DADZEASAH KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI JUNE, 2012 DECLARATION The experimental work described in this thesis was carried out at the Department of Pharmacology, KNUST. This work has not been submitted for any other degree. Phyllis Elsie Abaiduwa Dadzeasah ………………… ……………….. ID: 20066532 (Signature) (Date) Index No: PG2743908 Rev. Prof. Charles Ansah ………………… ……………….. (Supervisor) (Signature) (Date) …………………………. ………………….. ........................ (Head of Department) (Signature) (Date) ii ABSTRACT Spathodea campanulata, a widely used traditional African medicinal plant for skin diseases and stomach aches has not been scientifically assessed for toxicity and hepatoprotection. The aqueous extract of the stem bark of the plant Spathodea campanulata (SCE) was therefore evaluated for safety and potential hepatoprotective activity in rodents. The extract (1250, 2500, 5000 mg/kg, p.o) administered to rats and mice over a 24-hour period did not show any signs of toxicity or mortality, suggesting that the oral LD50 of the aqueous extract (in rats and mice) was beyond 5000 mg/kg. Daily administration (1250, 2500, 5000 mg/kg; p.o) of extract for 14 days did not cause any changes in behavior or alterations in haematological parameters of the animals. Serum biochemical analysis in rats showed a rise in alkaline phosphatase (ALP) (339.50±90.50 in the control to 582.5±28.50 U/L in the highest dose of 5000 mg/kg) and a decrease in Na+ concentration (147.3±1.856 mmol/L in the control to 135.0±1.00 in the 5000mg/kg dose), but no change in other parameters. These observations did not reflect in the histopathology of the liver and kidneys of treated animals. However, the diuretic test on the extract was positive. Urine output, Na+ and K+ concentration in urine were increased significantly by the administration of extract for seven days. In hepatoprotective studies, rats were pre-treated with 625 mg/kg , 1250 mg/kg, 2500 mg/kg p.o for 4 days before intoxication with carbon tetrachloride (CCl4) (1 ml/kg, 20 % in liquid paraffin, p.o) or mice and rats with 100 mg/kg, 300 mg/kg, 625 mg/kg for 4 days before intoxication with paracetamol or aflatoxin B1 (AFB1) respectively. Generally, the administration of these hepatotoxic agents caused an increase in liver weights which were prevented or restored by pre-treatment with extract in both rats and mice. The aspartate transaminase (AST), alanine transaminase (ALT), gamma glutamyl transpeptidase (GGT), bilirubin-induced by these hepatotoxic agents (CCl4, parcetamol and AFB1) were significantly reduced with SCE treatment. Additionally, administration of CCl4 daily for 5 days, followed by treatment with 100, 300, and 625 mg/kg p.o daily for 3days (curative) decreased profoundly the AST, ALT and GGT levels induced by CCl4. These results iii correlated well with the histopathological studies observed in the photomicrographs of liver for treated and control groups. Treatment with the extract decreased the extent of fatty liver and necrosis caused by the hepatotoxic agents. Lipid peroxidation measured as TBARS was elevated by CCl4 but this was reversed by treatment with the extract at all dose levels. Again, pretreatment with SCE (625 mg/kg) before hepatotoxicity by CCl4 or paracetamol restored the decrease in super oxide dismutase (SOD) and glutathione peroxidase (GPx) activity caused by the hepatotoxin. This decrease was more profound after paracetamol intoxication than it was after CCl4 intoxication. The extract (625 mg/kg) also showed strong enzyme inhibition when it reduced the total cytochrome P450 in both mice and rats when given for seven consecutive days. This decrease was also reflected in the presence of CCl4 and paracetamol. The preliminary phytochemistry which showed the presence of tannins, sterols and reducing sugars as well as the in vitro testing which gave positive results for reducing power and total phenolic content also support the activity of the plant extract in interference with hepatotoxicity. Collectively, the results indicate that the aqueous extract of Spathodea campanulata is fairly nontoxic and may exhibit hepatoprotective activity at lower doses by enhancing antioxidant protection in the cell and inhibiting total cytochrome P450 hence interfering with bioactivation of hepatotoxic agents. iv ACKNOWLEDGEMENT I am grateful to the almighty God for seeing me through the programme. Surely, it has been His grace. I also wish to express my profound gratitude to my supervisor, Rev. Prof. Charles Ansah of the Department of Pharmacology, KNUST, for supervision, particularly his suggestions, criticisms, support and mentorship which saw to the realization of this project. I am also grateful to Mr. Thomas Ansah and indeed the entire technical staff of the Department of Pharmacology, KNUST and Mr. Emmanuel Assiamah of the Department of Histology, Komfo Anokye Teaching Hospital, for their technical support and the whole staff and colleague students in the department of Pharmacology for their support. Finally, my heartfelt gratitude goes to my family and friends for their sacrifice and support. Mum and Dad, this was much your dream as it was mine; Philip, your encouragement and emotional support can never be overlooked. v TABLE OF CONTENTS DECLARATION .......................................................................................................................... II ABSTRACT ................................................................................................................................ III ACKNOWLEDGEMENT .......................................................................................................... V TABLE OF CONTENTS .......................................................................................................... VI LIST OF TABLES ................................................................................................................. XVII LIST OF FIGURES ............................................................................................................. XVIII ABBREVIATIONS .............................................................................................................. XXIII CHAPTER 1 .................................................................................................................................. 1 GENERAL INTRODUCTION .................................................................................................. 1 1.1 OVERVIEW ....................................................................................................................... 2 1.2 GLOBAL USE OF HERBAL REMEDIES ................................................................................... 2 1.3 THE PLANT SPATHODEA CAMPANULATA ............................................................. 4 1.3.1 Medicinal Uses ........................................................................................................... 6 Traditional uses ................................................................................................................... 6 1.3.2 Biological Activities of Spathodea campanulata ....................................................... 7 Molluscicidal Activity ........................................................................................................ 7 vi Hypoglycaemic Activity ..................................................................................................... 7 Antimalarial Activity .......................................................................................................... 7 Anti-inflammatory and antioxidant properties................................................................... 8 Antibacterial Activity ......................................................................................................... 8 Wound healing Activity...................................................................................................... 8 1.3.3 Some Identified Chemical Constituents of Spathodea campanulata ........................ 8 1.3.4 Non-medicinal uses .................................................................................................. 12 1.4 SAFETY EVALUATION OF MEDICINAL PLANTS .................................................. 13 1.4.1 Factors influencing Toxicity .................................................................................... 14 1.4.2 Assessment of Toxicity .............................................................................................. 15 Acute Toxicity .................................................................................................................. 15 Chronic Toxicity ............................................................................................................... 16 1.4.3 Target organ Toxicity ............................................................................................... 17 Blood Toxicity .................................................................................................................. 17 Kidney Toxicity ................................................................................................................ 18 Liver Toxicity ..................................................................................................................
Recommended publications
  • Lista Roja De Las Aves Del Uruguay 1
    Lista Roja de las Aves del Uruguay 1 Lista Roja de las Aves del Uruguay Una evaluación del estado de conservación de la avifauna nacional con base en los criterios de la Unión Internacional para la Conservación de la Naturaleza. Adrián B. Azpiroz, Laboratorio de Genética de la Conservación, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318 (CP 11600), Montevideo ([email protected]). Matilde Alfaro, Asociación Averaves & Facultad de Ciencias, Universidad de la República, Iguá 4225 (CP 11400), Montevideo ([email protected]). Sebastián Jiménez, Proyecto Albatros y Petreles-Uruguay, Centro de Investigación y Conservación Marina (CICMAR), Avenida Giannattasio Km 30.5. (CP 15008) Canelones, Uruguay; Laboratorio de Recursos Pelágicos, Dirección Nacional de Recursos Acuáticos, Constituyente 1497 (CP 11200), Montevideo ([email protected]). Cita sugerida: Azpiroz, A.B., M. Alfaro y S. Jiménez. 2012. Lista Roja de las Aves del Uruguay. Una evaluación del estado de conservación de la avifauna nacional con base en los criterios de la Unión Internacional para la Conservación de la Naturaleza. Dirección Nacional de Medio Ambiente, Montevideo. Descargo de responsabilidad El contenido de esta publicación es responsabilidad de los autores y no refleja necesariamente las opiniones o políticas de la DINAMA ni de las organizaciones auspiciantes y no comprometen a estas instituciones. Las denominaciones empleadas y la forma en que aparecen los datos no implica de parte de DINAMA, ni de las organizaciones auspiciantes o de los autores, juicio alguno sobre la condición jurídica de países, territorios, ciudades, personas, organizaciones, zonas o de sus autoridades, ni sobre la delimitación de sus fronteras o límites.
    [Show full text]
  • REGUA Bird List July 2020.Xlsx
    Birds of REGUA/Aves da REGUA Updated July 2020. The taxonomy and nomenclature follows the Comitê Brasileiro de Registros Ornitológicos (CBRO), Annotated checklist of the birds of Brazil by the Brazilian Ornithological Records Committee, updated June 2015 - based on the checklist of the South American Classification Committee (SACC). Atualizado julho de 2020. A taxonomia e nomenclatura seguem o Comitê Brasileiro de Registros Ornitológicos (CBRO), Lista anotada das aves do Brasil pelo Comitê Brasileiro de Registros Ornitológicos, atualizada em junho de 2015 - fundamentada na lista do Comitê de Classificação da América do Sul (SACC).
    [Show full text]
  • Guia Para Observação Das Aves Do Parque Nacional De Brasília
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/234145690 Guia para observação das aves do Parque Nacional de Brasília Book · January 2011 CITATIONS READS 0 629 4 authors, including: Mieko Kanegae Fernando Lima Favaro Federal University of Rio de Janeiro Instituto Chico Mendes de Conservação da Bi… 7 PUBLICATIONS 74 CITATIONS 17 PUBLICATIONS 69 CITATIONS SEE PROFILE SEE PROFILE All content following this page was uploaded by Fernando Lima Favaro on 28 May 2014. The user has requested enhancement of the downloaded file. Brasília - 2011 GUIA PARA OBSERVAÇÃO DAS AVES DO PARQUE NACIONAL DE BRASÍLIA Aílton C. de Oliveira Mieko Ferreira Kanegae Marina Faria do Amaral Fernando de Lima Favaro Fotografia de Aves Marcelo Pontes Monteiro Nélio dos Santos Paulo André Lima Borges Brasília, 2011 GUIA PARA OBSERVAÇÃO DAS AVES DO APRESENTAÇÃO PARQUE NACIONAL DE BRASÍLIA É com grande satisfação que apresento o Guia para Observação REPÚblica FEDERATiva DO BRASIL das Aves do Parque Nacional de Brasília, o qual representa um importante instrumento auxiliar para os observadores de aves que frequentam ou que Presidente frequentarão o Parque, para fins de lazer (birdwatching), pesquisas científicas, Dilma Roussef treinamentos ou em atividades de educação ambiental. Este é mais um resultado do trabalho do Centro Nacional de Pesquisa e Vice-Presidente Conservação de Aves Silvestres - CEMAVE, unidade descentralizada do Instituto Michel Temer Chico Mendes de Conservação da Biodiversidade (ICMBio) e vinculada à Diretoria de Conservação da Biodiversidade. O Centro tem como missão Ministério do Meio Ambiente - MMA subsidiar a conservação das aves brasileiras e dos ambientes dos quais elas Izabella Mônica Vieira Teixeira dependem.
    [Show full text]
  • Assessing Bird Species Popularity with Culturomics
    Familiarity breeds content: assessing bird species popularity with culturomics Ricardo A. Correia1,2, Paul R. Jepson2, Ana C. M. Malhado1 and Richard J. Ladle1,2 1 Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio´, Alagoas, Brazil 2 School of Geography and the Environment, University of Oxford, Oxford, United Kingdom ABSTRACT Understanding public perceptions of biodiversity is essential to ensure continued support for conservation efforts. Despite this, insights remain scarce at broader spatial scales, mostly due to a lack of adequate methods for their assessment. The emergence of new technologies with global reach and high levels of participation provide exciting new opportunities to study the public visibility of biodiversity and the factors that drive it. Here, we use a measure of internet saliency to assess the national and international visibility of species within four taxa of Brazilian birds (toucans, hummingbirds, parrots and woodpeckers), and evaluate how much of this visibility can be explained by factors associated with familiarity, aesthetic appeal and conservation interest. Our results strongly indicate that familiarity (human population within the range of a species) is the most important factor driving internet saliency within Brazil, while aesthetic appeal (body size) best explains variation in international saliency. Endemism and conservation status of a species had small, but often negative, effects on either metric of internet saliency. While further studies are needed to evaluate the relationship between internet content and the cultural visibility of different species, our results strongly indicate that internet saliency can be considered as a broad proxy of cultural interest. Submitted 4 December 2015 Subjects Biodiversity, Conservation biology, Computational science, Coupled natural and human Accepted 2 February 2016 systems Published 25 February 2016 Keywords Birds, Public perception, Biodiversity, Culturalness, Internet salience, Culturomics, Corresponding author Conservation Ricardo A.
    [Show full text]
  • Morphological Facilitators for Vocal Learning Explored Through the Syrinx Anatomy of A
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.11.902734; this version posted January 13, 2020. The copyright holder for this1 preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Morphological facilitators for vocal learning explored through the syrinx anatomy of a 2 basal hummingbird 3 Amanda Monte1, Alexander F. Cerwenka2, Bernhard Ruthensteiner2, Manfred Gahr1, and 4 Daniel N. Düring1,3,4* 5 * Correspondence: [email protected] 6 1 – Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, 7 Seewiesen, Germany 8 2 – SNSB-Bavarian State Collection of Zoology, Munich, Germany 9 3 – Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland 10 4 – Neuroscience Center Zurich (ZNZ), Zurich, Switzerland 11 Abstract 12 Vocal learning is a rare evolutionary trait that evolved independently in three avian clades: 13 songbirds, parrots, and hummingbirds. Although the anatomy and mechanisms of sound 14 production in songbirds are well understood, little is known about the hummingbird’s vocal 15 anatomy. We use high-resolution micro-computed tomography (μCT) and microdissection to 16 reveal the three-dimensional structure of the syrinx, the vocal organ of the black jacobin 17 (Florisuga fusca), a phylogenetically basal hummingbird species. We identify three unique 18 features of the black jacobin’s syrinx: (i) a shift in the position of the syrinx to the outside of 19 the thoracic cavity and the related loss of the sterno-tracheal muscle, (ii) complex intrinsic 20 musculature, oriented dorso-ventrally, and (iii) ossicles embedded in the medial vibratory 21 membranes.
    [Show full text]
  • Build-A-Bird
    Sedgwick Museum of Earth Sciences BUILD-A-BIRD WHAT IS BUILD-A-BIRD? HOW DOES BUILD-A- Build-a-bird is a fun crafts activity to help BIRD WORK? people learn all about different types of In the HOW TO document you will birds. The aim is to teach you how different find a worksheet and some dif- birds are adapted to different environments. ferent bird templates to cut out An adaptation is when part of the body be- and stick onto the worksheet. comes specialised for a certain function that You can cut out the head, body, means the animal has a better chance of sur- wings and legs of each of these vival in a particular environment. You have templates, then combine them in the chance to build your own bird with a any way you wish! combination of adaptations that you choose! BIRD ADAPTATIONS We have prepared some information sheets below about eight different types of birds. Most or all of these should be familiar to you. You can learn about the adaptations that different types of birds have and what environments they live in. The environment they live in determines what kinds of adaptations they have. Use these information sheets to decide what your own build-a-bird will look like. Be creative! ENVIRONMENTS Once you’ve built your bird, think about the adaptations it has and Build a bird how they relate to its lifestyle and where it yourself! lives. What food might it eat? How does it move around? Can it fly, swim or run? Lizzy Steell, Albert Chen & Daniel Field Sedgwick Museum of Earth Sciences BUILD-A-BIRD: GROUND BIRDS BILL Many ground birds have a gently curved bill (beak) they may use ENVIRONMENT to peck at the ground, eating a Ground birds may spend most diet of plants, seeds and insects.
    [Show full text]
  • The Vocal Organ of Hummingbirds Shows Convergence with Songbirds Tobias Riede & Christopher R
    www.nature.com/scientificreports OPEN The vocal organ of hummingbirds shows convergence with songbirds Tobias Riede & Christopher R. Olson* How sound is generated in the hummingbird syrinx is largely unknown despite their complex vocal behavior. To fll this gap, syrinx anatomy of four North American hummingbird species were investigated by histological dissection and contrast-enhanced microCT imaging, as well as measurement of vocalizations in a heliox atmosphere. The placement of the hummingbird syrinx is uniquely located in the neck rather than inside the thorax as in other birds, while the internal structure is bipartite with songbird-like anatomical features, including multiple pairs of intrinsic muscles, a robust tympanum and several accessory cartilages. Lateral labia and medial tympaniform membranes consist of an extracellular matrix containing hyaluronic acid, collagen fbers, but few elastic fbers. Their upper vocal tract, including the trachea, is shorter than predicted for their body size. There are between- species diferences in syrinx measurements, despite similar overall morphology. In heliox, fundamental frequency is unchanged while upper-harmonic spectral content decrease in amplitude, indicating that syringeal sounds are produced by airfow-induced labia and membrane vibration. Our fndings predict that hummingbirds have fne control of labia and membrane position in the syrinx; adaptations that set them apart from closely related swifts, yet shows convergence in their vocal organs with those of oscines. Due to their small body size, hummingbirds have experienced selection for a number of traits that have set them apart from other avian lineages1. Various modes of acoustic communication are among those traits2. For example, some hummingbirds use elements of their plumage to generate sounds for efective communication with con- specifcs3.
    [Show full text]
  • Bioone COMPLETE
    BioOne COMPLETE Introduction to the Skeleton of Hummingbirds (Aves: Apodiformes, Trochilidae) in Functional and Phylogenetic Contexts Author: Zusi, Richard L., Division of Birds, National Museum of Natural History, P.O. Box 37012, Smithsonian Institution, Washington, D.C. 20013, USA Source: Ornithological Monographs No. 77 Published By: American Ornithological Society URL: https://doi.org/10.1525/om.2013.77.L1 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/ebooks on 1/14/2019 Terms of Use: https://bioone.org/terms-of-use Access provided by University of New Mexico Ornithological Monographs Volume (2013), No. 77, 1-94 © The American Ornithologists' Union, 2013. Printed in USA. INTRODUCTION TO THE SKELETON OF HUMMINGBIRDS (AVES: APODIFORMES, TROCHILIDAE) IN FUNCTIONAL AND PHYLOGENETIC CONTEXTS R ic h a r d L. Z u s i1 Division of Birds, National Museum of Natural History, P.O.
    [Show full text]
  • Floresta Nacional De Lorena
    Plano de Manejo Floresta Nacional de Lorena São Paulo Volume I – Diagnóstico Maio de 2013 Instituto Chico Mendes de Conservação da Biodiversidade Instituto Chico Mendes de Conservação da Biodiversidade Instituto Chico Mendes de Conservação da Biodiversidade i Plano de Manejo da Floresta Nacional de Lorena Volume I - Diagnóstico Lorena, SP 2016 ii PRESIDÊNCIA DA REPÚBLICA Dilma Vana Rousseff - Presidente MINISTÉRIO DO MEIO AMBIENTE Izabella Mônica Vieira Teixeira - Ministra INSTITUTO CHICO MENDES DE CONSERVAÇÃO DA BIODIVERSIDADE Claúdio Carrera Maretti - Presidente DIRETORIA DE CRIAÇÃO E MANEJO DE UNIDADES DE CONSERVAÇÃO Lilian Letícia Mitiko Hangae - Diretora COORDENAÇÃO GERAL DE CRIAÇÃO, PLANEJAMENTO E AVALIAÇÃO DE UNIDADES DE CONSERVAÇÃO Felipe Melo Rezende - Coordenador Geral- Substituto COORDENAÇÃO DE ELABORAÇÃO E REVISÃO DO PLANO DE MANEJO Érica de Oliveira Coutinho - Coordenadora COORDENAÇÃO REGIONAL - CR-8 Andréa de Nóbrega Ribeiro – Coordenadora Regional FLORESTA NACIONAL DE LORENA Luiz Benedito Rangel – Chefe iii Equipe do ICMBio responsável pela Coordenação e Supervisão da Elaboração do Plano de Manejo Coordenação Geral Cirineu Jorge Lorensi - Analista Ambiental, Eng. Ftal, Me. Ofélia de Fátima Gil Willmersdorf - Analista Ambiental, Eng.Agr., D.ra Supervisão Técnica Cirineu Jorge Lorensi - Analista Ambiental, Eng. Ftal, Me. M.Sc.Ofélia de Fátima Gil Willmersdorf – Analista Ambiental, Eng.Agr., D.ra Equipe de Elaboração do Plano de Manejo Adelvan Pereira - Técnico Ambiental Cesar Augusto G. R.Vasini – Analista Ambiental Evandro Gonsalves Chaves – Analista Ambiental, ex-chefe da Flona Isis Akemi Morimoto – Analista Ambiental João Lúcio Antunes de Vasconcelos – Técnico – Técnico Administrativo José Raimundo de Oliveira – Técnico Ambiental Luiz Benedito Rangel – Técnico Ambiental Luiz Carlos dos Santos – Técnico Ambiental Manuel Luciano Nunes - Técnico Administrativo Miguel von Behr – Analista Ambiental, ex-chefe da Flona Maria Aparecida de O.
    [Show full text]
  • Morphological Facilitators for Vocal Learning Explored Through the Syrinx Anatomy of A
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.11.902734; this version posted January 13, 2020. The copyright holder for this1 preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Morphological facilitators for vocal learning explored through the syrinx anatomy of a 2 basal hummingbird 3 Amanda Monte1, Alexander F. Cerwenka2, Bernhard Ruthensteiner2, Manfred Gahr1, and 4 Daniel N. Düring1,3,4* 5 * Correspondence: [email protected] 6 1 – Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, 7 Seewiesen, Germany 8 2 – SNSB-Bavarian State Collection of Zoology, Munich, Germany 9 3 – Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland 10 4 – Neuroscience Center Zurich (ZNZ), Zurich, Switzerland 11 Abstract 12 Vocal learning is a rare evolutionary trait that evolved independently in three avian clades: 13 songbirds, parrots, and hummingbirds. Although the anatomy and mechanisms of sound 14 production in songbirds are well understood, little is known about the hummingbird’s vocal 15 anatomy. We use high-resolution micro-computed tomography (μCT) and microdissection to 16 reveal the three-dimensional structure of the syrinx, the vocal organ of the black jacobin 17 (Florisuga fusca), a phylogenetically basal hummingbird species. We identify three unique 18 features of the black jacobin’s syrinx: (i) a shift in the position of the syrinx to the outside of 19 the thoracic cavity and the related loss of the sterno-tracheal muscle, (ii) complex intrinsic 20 musculature, oriented dorso-ventrally, and (iii) ossicles embedded in the medial vibratory 21 membranes.
    [Show full text]
  • Birds from Cerradão Woodland, an Overlooked Forest of the Cerrado Region, Brazil
    Volume 51(17):259‑273, 2011 BIRDS FROM CERRADÃO WOODLAND, AN OVERLOOKED FOREST OF THE CERRADO REGION, BRAZIL 1,4,5 VAGNER CAVARZERE 2 GABRIEL PARMEZANI MORAES 3 ANDRELI CRISTINA DALBETO 3 FERNANDA DE GÓES MACIEL 2 REGINALDO JOSÉ DONATELLI ABSTRACT The Cerrado region still receives relatively little ornithological attention, although it is regard- ed as the only tropical savanna in the world considered to be a biodiversity hotspot. Cerradão is one of the least known and most deforested Cerrado physiognomies and few recent bird surveys have been conducted in these forests. In order to rescue bird records and complement the few existing inventories of this under-studied forest type in the state of São Paulo, we looked for published papers on birds of cerradão. Additionally we surveyed birds at a 314-ha cerradão remnant located in central São Paulo, Brazil, from September 2005-December 2006 using unlimited distance transect counts. Out of 95 investigations involving cerradão bird studies, only 17 (18%) investigations teased apart bird species recorded inside cerradão from those recorded in other physiognomies of Cerrado. Except for one study, no research found more than 64 species in this type of forest, a result shared within many regions from Brazil and Bolivia. Differences in species richness do not seem be related with levels of disturbance of landscape or fragment size. Considering all species recorded in cerradão in Brazil and Bolivia, a compila- tion of data accumulated 250 species in 36 families and 15 orders. In recent surveys at central São Paulo, we recorded 48 species in 20 families, including the Pale-bellied Tyrant-Manakin Neopelma pallescens, threatened in São Paulo, and the Helmeted Manakin Antilophia ga- leata, near threatened in the state and endemic to the Cerrado region.
    [Show full text]
  • Torpor in Three Species of Brazilian Hummingbirds Under Semi-Natural Conditions Author(S): Claus Bech, Augusto S
    Torpor in Three Species of Brazilian Hummingbirds under Semi-Natural Conditions Author(s): Claus Bech, Augusto S. Abe, John Fleng Steffensen, Martin Berger and Jose Eduardo P. W. Bicudo Source: The Condor, Vol. 99, No. 3 (Aug., 1997), pp. 780-788 Published by: University of California Press on behalf of the Cooper Ornithological Society Stable URL: http://www.jstor.org/stable/1370489 . Accessed: 15/01/2014 07:54 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. University of California Press and Cooper Ornithological Society are collaborating with JSTOR to digitize, preserve and extend access to The Condor. http://www.jstor.org This content downloaded from 186.217.234.34 on Wed, 15 Jan 2014 07:54:58 AM All use subject to JSTOR Terms and Conditions The Condor 99:780-788 C The Cooper Ornithological Society 1997 TORPOR IN THREE SPECIES OF BRAZILIAN HUMMINGBIRDS UNDER SEMI-NATURAL CONDITIONS1 CLAUSBECH Department of Zoology, Norwegian University of Science and Technology, N-7034 Trondheim, Norway, e-mail: [email protected] AUGUSTo S. ABE Departmento de Zoologia, Universidade Estadual Paulista, BR-13506900 Rio Claro, Sp, Brazil JOHN FLENG STEFFENSEN2 Department of Zoophysiology, University of Aarhus, DK-8000 Aarhus C., Denmark MARTIN BERGER Westfiilisches Museum fiir Naturkunde, D-48161 Miinster, Germany JOSEEDUARDO P.
    [Show full text]