RESEARCH ARTICLE Area 2 of primary somatosensory cortex encodes kinematics of the whole arm Raeed H Chowdhury1,2*, Joshua I Glaser3,4,5, Lee E Miller1,6,7,8* 1Department of Biomedical Engineering, Northwestern University, Evanston, United States; 2Systems Neuroscience Institute, University of Pittsburgh, Pittsburgh, United States; 3Interdepartmental Neuroscience Program, Northwestern University, Chicago, United States; 4Department of Statistics, Columbia University, New York, United States; 5Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States; 6Department of Physiology, Northwestern University, Chicago, United States; 7Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, United States; 8Shirley Ryan AbilityLab, Chicago, United States Abstract Proprioception, the sense of body position, movement, and associated forces, remains poorly understood, despite its critical role in movement. Most studies of area 2, a proprioceptive area of somatosensory cortex, have simply compared neurons’ activities to the movement of the hand through space. Using motion tracking, we sought to elaborate this relationship by characterizing how area 2 activity relates to whole arm movements. We found that a whole-arm model, unlike classic models, successfully predicted how features of neural activity changed as monkeys reached to targets in two workspaces. However, when we then evaluated this whole-arm model across active and passive movements, we found that many neurons did not consistently represent the whole arm over both conditions. These results suggest that 1) neural activity in area 2 includes representation of the whole arm during reaching and 2) many of these neurons represented limb state differently during active and passive movements. *For correspondence:
[email protected] (RHC);
[email protected] (LEM) Introduction Moving in an uncontrolled environment is a remarkably complex feat.