Imaging the Premotor Areas Nathalie Picard* and Peter L Strick†

Total Page:16

File Type:pdf, Size:1020Kb

Imaging the Premotor Areas Nathalie Picard* and Peter L Strick† 663 Imaging the premotor areas Nathalie Picard* and Peter L Strick† Recent imaging studies of motor function provide new insights critically on a clear definition of the location and boundaries into the organization of the premotor areas of the frontal lobe. of these cortical areas. Thus, one focus of our review The pre-supplementary motor area and the rostral portion of synthesizes the new data that is relevant to this issue. the dorsal premotor cortex, the ‘pre-PMd’, are, in many respects, more like prefrontal areas than motor areas. Recent Medial wall data also suggest the existence of separate functional divisions Pre-supplementary motor area and supplementary in the rostral cingulate zone. motor area In monkeys, it is now established that area 6 on the medial Addresses wall of the brain contains two separate areas: the supple- Department of Neurobiology, University of Pittsburgh School of mentary motor area proper (SMA) in the caudal portion of Medicine, W1640 Biomedical Science Tower, 200 Lothrop Street, area 6, and the pre-SMA in the rostral portion (Figure 1a; Pittsburgh, PA 15261, USA reviewed in [2,4]). The SMA and pre-SMA are equivalent *e-mail: [email protected] †e-mail: [email protected] to fields F3 and F6 described by Matelli et al. [5]. In humans, the level of the anterior commissure (VCA line) Current Opinion in Neurobiology 2001, 11:663–672 [6] marks the border between the two areas. The division 0959-4388/01/$ — see front matter of medial area 6 into two distinct fields is based on a © 2001 Elsevier Science Ltd. All rights reserved. collection of anatomical and functional data [2,4]. Because Abbreviations the pre-SMA was born out of a premotor area — the tradi- CCZ caudal cingulate zone tional SMA of Woolsey et al. [7] — the common perception CMAd dorsal cingulate motor area is that the pre-SMA is also a motor area. However, the CMAr rostral cingulate motor area connectivity and physiology of the pre-SMA suggest that it CMAv ventral cingulate motor area is more like a prefrontal area than a motor area. Prefrontal FEF frontal eye field fMRI functional magnetic resonance imaging areas provide cognitive, sensory or motivational inputs for M1 primary motor cortex motor behavior, whereas the motor areas are concerned PMd dorsal premotor cortex with more concrete aspects of movement (e.g. muscle PMv ventral premotor cortex patterns). Two important differences in the anatomical RCZ rostral cingulate zone RCZa anterior rostral cingulate zone connections of the SMA and pre-SMA support this view. RCZp posterior rostral cingulate zone First, only the SMA is directly connected to M1 and to the SMA supplementary motor area spinal cord [1,8–11]. Second, only the pre-SMA is inter- VCA line level of the anterior commissure connected with the prefrontal cortex [12–14]. These anatomical features, among others, are reflected by differ- Introduction ential patterns of activity in the SMA and pre-SMA [4]. Large regions of the brain located on the lateral surface and In neuroimaging studies, the pre-SMA/SMA distinction is on the medial wall of each hemisphere participate in the the clearest example of an anatomical and functional generation and control of movement. The premotor areas dissociation that emerged from the primate model [2]. In in the frontal lobe have the anatomical substrate to the following, we describe recent findings that provide influence motor output, both through connections with the further support for this dissociation. primary motor cortex (M1) and through direct projections to the spinal cord (e.g. [1]). In monkeys, the frontal lobe Initially, studies in monkeys suggested that the pre-SMA contains six well-defined premotor areas (Figure 1a). The has involved in learning sequential movements [15–17]. presence of analogous areas in humans has been inferred This motor view of pre-SMA function was supported by from functional imaging studies (Figure 1b) [2,3]. the observation that, in humans, activation of the pre-SMA However, the definition of premotor areas in humans is increased in parallel to acquisition of a motor sequence still evolving. Some associations between anatomy and task [18]. In contrast, SMA activation during the same task function proposed in the past [2] have been validated by was related simply to aspects of motor execution. More recent imaging data, and other associations are emerging. recent studies by the same group have resulted in a modi- fied view of pre-SMA function. Sakai et al. [19] recently In this review, we present the results of salient imaging compared pre-SMA activation in closely matched tasks studies that have helped to increase our understanding of that all required visuo–motor associations, but varied in the underlying anatomical and functional organization of motor and perceptual sequence components. Activation of the premotor areas. Much recent effort in the field of func- the pre-SMA occurred in all tasks related to visuo–motor tional imaging has been to examine brain regions involved association demands rather than to sequential components. in cognitive operations. The interpretation of activations In fact, pre-SMA activation was greatest in the conditional in premotor cortex during cognitive operations depends task, in which non-sequential responses were arbitrarily 664 Motor systems Figure 1 (a)Pre- (b) Motor areas of the frontal lobe in monkeys SMA SMA Pre- SMA M1 (a) and homologous areas in the human (b). SMA In humans, the border between areas 6 and 4 M1 on the lateral surface is located in the anterior CCZ bank of the central sulcus [65]. For illustration, CMAd RCZp CMAr CMAv RCZa the border is drawn on the surface of the hemisphere along the central sulcus (bottom, white dotted line). Except for the most medial portion, M1 does not occupy the precentral gyrus. Pictures of the monkey brain courtesy of Richard P Dum; pictures of the human brain reproduced with permission from [93]. PMd M1 Pre- PMd PMd FEF M1 PMv F7 F2 F1 FEF 44 45 PMv F4 F5 Current Opinion in Neurobiology determined by the color of visual cues, and showed a motor preparation, during working memory delays of a relative decrease in sequential paradigms. This important match to sample task [26] (Figure 2c). In addition, the study shows conclusively that activation of the pre-SMA in pre-SMA showed transient activation associated with shifts these tasks has little to do with motor sequence learning of attention to visual object features (shape, color, location) per se. Instead, pre-SMA activation occurs in association in a card sorting task [27]. Attending to various features of with establishing or retrieving visuo–motor associations visual stimuli was found to activate the pre-SMA equally in (see also [20,21]). The activity in the pre-SMA in associa- another context [28]. These results suggest that pre-SMA tion with visually cued changes between motor sequences function is more closely related to processing or mainte- [22,23] may also be due to the role of the pre-SMA in nance of relevant sensory information than response retrieving visuo–motor associations. selection or production. Additional studies have extended the involvement of Overall, neuroimaging studies leave no doubt that the the pre-SMA to associations based on auditory stimuli pre-SMA is fundamentally different from the SMA. [24••,25] (Figure 2a). Visual and auditory versions of a con- Activation of the SMA, caudal to the VCA line, is observed ditional choice reaction time paradigm generated pre-SMA primarily in relation to aspects of movement behavior. In activations of equal magnitude [25]. Thus, the contribu- contrast, pre-SMA activation, rostral to the VCA line, is tion of the pre-SMA to sensory–motor associations is associated with cognitive aspects of a variety of tasks (see modality-independent. In addition, the contribution of also [29–34]). These findings, together with anatomical the pre-SMA appears to be effector-independent. Similar results, suggest that the pre-SMA might be functionally regions are activated in conditional manual motor [24••,25] considered a region of prefrontal cortex. and oculomotor tasks [21] (Figure 2b). This is consistent with the poor somatotopic organization of the pre-SMA [2] Cingulate motor areas and supports the view that the pre-SMA operates at a more The cingulate sulcus contains three separate motor areas in abstract level. In contrast, SMA activation displayed only primates: the rostral cingulate motor area (CMAr), the cau- movement-related activation in visual or auditory tasks. dal cingulate motor area in the ventral bank of the sulcus (CMAv) and the caudal cingulate motor area in the dorsal It must be emphasized that pre-SMA activation during bank of the sulcus (CMAd; Figure 1a). We have proposed conditional motor behaviors was not due to response [2] that corresponding areas are also present in humans: a selection or preparation [19,24••]. In fact, activation patterns rostral cingulate zone (RCZ) with two subdivisions (anterior: of the pre-SMA during non-conditional behavior suggest RCZa, and posterior: RCZp) and a caudal cingulate that its contribution to sensory–motor association is zone (CCZ; Figure 1b). The anatomical variability of the detached from motor aspects of the task. For example, the cingulate sulcus in humans complicates functional analysis pre-SMA displayed sustained activation, independent of of this region [35–37]. As a consequence, a degree of Imaging the premotor areas Picard and Strick 665 Figure 2 Anatomical and functional distinction of the (a)Pre- (b) (c) SMA SMA and the pre-SMA in three different tasks. SMA SMA SEF (a) Top: activation in the SMA and pre-SMA during an auditory conditional task; bottom: selective activation in the pre-SMA during an CCZ auditory–motor association task.
Recommended publications
  • Prefrontal and Posterior Parietal Contributions to the Perceptual Awareness of Touch M
    www.nature.com/scientificreports OPEN Prefrontal and posterior parietal contributions to the perceptual awareness of touch M. Rullmann1,2,5, S. Preusser1,5 & B. Pleger1,3,4* Which brain regions contribute to the perceptual awareness of touch remains largely unclear. We collected structural magnetic resonance imaging scans and neurological examination reports of 70 patients with brain injuries or stroke in S1 extending into adjacent parietal, temporal or pre-/frontal regions. We applied voxel-based lesion-symptom mapping to identify brain areas that overlap with an impaired touch perception (i.e., hypoesthesia). As expected, patients with hypoesthesia (n = 43) presented lesions in all Brodmann areas in S1 on postcentral gyrus (BA 1, 2, 3a, 3b). At the anterior border to BA 3b, we additionally identifed motor area BA 4p in association with hypoesthesia, as well as further ventrally the ventral premotor cortex (BA 6, BA 44), assumed to be involved in whole-body perception. At the posterior border to S1, we found hypoesthesia associated efects in attention-related areas such as the inferior parietal lobe and intraparietal sulcus. Downstream to S1, we replicated previously reported lesion-hypoesthesia associations in the parietal operculum and insular cortex (i.e., ventral pathway of somatosensory processing). The present fndings extend this pathway from S1 to the insular cortex by prefrontal and posterior parietal areas involved in multisensory integration and attention processes. Te primary somatosensory cortex (S1) in monkeys can be divided into four Brodmann areas: (BA) 1, 2, 3a, and 3b. Each BA consists of a somatotopically organized map that subserves distinct somatosensory functions1–3.
    [Show full text]
  • A Practical Review of Functional MRI Anatomy of the Language and Motor Systems
    REVIEW ARTICLE FUNCTIONAL A Practical Review of Functional MRI Anatomy of the Language and Motor Systems X V.B. Hill, X C.Z. Cankurtaran, X B.P. Liu, X T.A. Hijaz, X M. Naidich, X A.J. Nemeth, X J. Gastala, X C. Krumpelman, X E.N. McComb, and X A.W. Korutz ABSTRACT SUMMARY: Functional MR imaging is being performed with increasing frequency in the typical neuroradiology practice; however, many readers of these studies have only a limited knowledge of the functional anatomy of the brain. This text will delineate the locations, anatomic boundaries, and functions of the cortical regions of the brain most commonly encountered in clinical practice—specifically, the regions involved in movement and language. ABBREVIATIONS: FFA ϭ fusiform face area; IPL ϭ inferior parietal lobule; PPC ϭ posterior parietal cortex; SMA ϭ supplementary motor area; VOTC ϭ ventral occipitotemporal cortex his article serves as a review of the functional areas of the brain serving to analyze spatial position and the ventral stream working Tmost commonly mapped during presurgical fMRI studies, to identify what an object is. Influenced by the dorsal and ventral specifically targeting movement and language. We have compiled stream model of vision, Hickok and Poeppel2 hypothesized a sim- what we hope is a useful, easily portable, and concise resource that ilar framework for language. In this model, the ventral stream, or can be accessible to radiologists everywhere. We begin with a re- lexical-semantic system, is involved in sound-to-meaning map- view of the language-processing system. Then we describe the pings associated with language comprehension and semantic ac- gross anatomic boundaries, organization, and function of each cess.
    [Show full text]
  • Neuromodulation: Harnessing Neuroplasticity with Brain Stimulation and Rehabilitation
    Neuromodulation: Harnessing Neuroplasticity with Brain Stimulation and Rehabilitation Presenters: Cecília N. Prudente, PT, MS, PhD1 Bernadette T. Gillick, PT, MS, PhD1 Colum MacKinnon, PhD2 Teresa J.Kimberley, PT, PhD1 1Dept. of Rehabilitation Medicine 2Dept. of Neurology Conflicts of interest TJK: consulting income from MicroTransponder Others: Nothing to declare Learning objectives 1. Be familiar with forms of brain stimulation 2. Be able to identify safety and feasibility of each technique 3. Understand the purposes of using the parameters of brain stimulation 4. Translate brain stimulation research into clinical implications Harnessing neuroplasticity to improve motor function 1. Neuromodulation tools 2. Down-regulation 3. Up-regulation 4. Hijacking neural firing patterns 5. Where are we now, where are we going, and how do we get there? 6. Discussion Harnessing neuroplasticity to improve motor function 1. Neuromodulation tools 2. Down-regulation 3. Up-regulation 4. Hijacking neural firing patterns 5. Where are we now, where are we going, and how do we get there? 6. Discussion What is neuromodulation? http://blog.cambridgeconsultants.com/medical-technology/wp- content/uploads/2014/05/Neuromodulation.jpg Publications per year 1200 1000 800 Neuromodulation 600 Neuromodulation & rehabilitation 400 200 0 2016 1978 1988 1998 2008 Source: Pubmed How to neuromodulate? Healthy state Neuroplasticity Injury Medications Neuromodulation Rehabilitation Neuromodulation tools Why neuromodulate? E I Healthy state : greater excitability : greater inhibition
    [Show full text]
  • A Scoping Review of Neuromodulation Techniques in Neurodegenerative Diseases: a Useful Tool for Clinical Practice?
    medicina Review A Scoping Review of Neuromodulation Techniques in Neurodegenerative Diseases: A Useful Tool for Clinical Practice? Fabio Marson 1,2 , Stefano Lasaponara 3,4 and Marco Cavallo 5,6,* 1 Research Institute for Neuroscience, Education and Didactics, Fondazione Patrizio Paoletti, 06081 Assisi, Italy; [email protected] 2 Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy 3 Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; [email protected] 4 Department of Human Sciences, LUMSA University, 00193 Rome, Italy 5 Faculty of Psychology, eCampus University, 22060 Novedrate, Italy 6 Clinical Psychology Service, Saint George Foundation, 12030 Cavallermaggiore, Italy * Correspondence: [email protected]; Tel.: +39-347-830-6430 Abstract: Background and Objectives: Neurodegenerative diseases that typically affect the elderly such as Alzheimer’s disease, Parkinson’s disease and frontotemporal dementia are typically char- acterised by significant cognitive impairment that worsens significantly over time. To date, viable pharmacological options for the cognitive symptoms in these clinical conditions are lacking. In recent years, various studies have employed neuromodulation techniques to try and contrast patients’ decay. Materials and Methods: We conducted an in-depth literature review of the state-of-the-art of the contribution of these techniques across these neurodegenerative diseases. Results: The present review reports that neuromodulation techniques targeting cognitive impairment do not allow to Citation: Marson, F.; Lasaponara, S.; Cavallo, M. A Scoping Review of draw yet any definitive conclusion about their clinical efficacy although preliminary evidence is very Neuromodulation Techniques in encouraging. Conclusions: Further and more robust studies should evaluate the potentialities and Neurodegenerative Diseases: A limitations of the application of these promising therapeutic tools to neurodegenerative diseases.
    [Show full text]
  • Motivational System Modulates Brain Responses During Exploratory Decision‑Making Chia‑Wei Li1, Carol Yeh‑Yun Lin2*, Ting‑Ting Chang3,4, Nai‑Shing Yen3,4 & Danchi Tan5
    www.nature.com/scientificreports OPEN Motivational system modulates brain responses during exploratory decision‑making Chia‑Wei Li1, Carol Yeh‑Yun Lin2*, Ting‑Ting Chang3,4, Nai‑Shing Yen3,4 & Danchi Tan5 Managers face risk in explorative decision‑making and those who are better at such decisions can achieve future viability. To understand what makes a manager efective at explorative decision‑ making requires an analysis of the manager’s motivational characteristics. The behavioral activation/ inhibition system (BAS/BIS), ftting the motivational orientation of “approach” or “avoidance,” can afect individual decision‑making. However, very little is known about the neural correlates of BAS/BIS orientation and their interrelationship with the mental activity during explorative decision‑making. We conducted an fMRI study on 111 potential managers to investigate how the brain responses of explorative decision‑making interact with BAS/BIS. Participants were separated into high‑ and low‑ performance groups based on the median exploration‑score. The low‑performance group showed signifcantly higher BAS than that of the high‑performance group, and its BAS had signifcant negative association with neural networks related to reward‑seeking during explorative decision‑making. Moreover, the BIS of the low‑performance group was negatively correlated with the activation of cerebral regions responding to risk‑choice during explorative decision‑making. Our fnding showed that BAS/BIS was associated with the brain activation during explorative decision‑making only in the low‑performance group. This study contributed to the understanding of the micro‑foundations of strategically relevant decision‑making and has an implication for management development. Organizations need both exploitation and exploration in order to survive and prosper in changing environments1–3.
    [Show full text]
  • Mirror Neurons for Execution, Observation, and Imagery ⁎ Flavia Filimon,A, Jonathan D
    www.elsevier.com/locate/ynimg NeuroImage 37 (2007) 1315–1328 Human cortical representations for reaching: Mirror neurons for execution, observation, and imagery ⁎ Flavia Filimon,a, Jonathan D. Nelson,a,b Donald J. Hagler,a and Martin I. Serenoa aDepartment of Cognitive Science, University of California, San Diego, 9500 Gilman Dr. #0515, La Jolla, CA 92093-0515, USA bComputational Neurobiology Laboratory, Salk Institute, La Jolla, CA, USA Received 5 April 2007; revised 27 May 2007; accepted 8 June 2007 Available online 18 June 2007 We used functional magnetic resonance imaging (fMRI) to map the Electrophysiological studies in macaques have identified several cortical representations of executed reaching, observed reaching, and frontal areas involved in hand action representations (Preuss et al., imagined reaching in humans. Whereas previous studies have mostly 1996; Muakkassa and Strick, 1979; Matelli and Luppino, 2001; examined hand actions related to grasping, hand–object interactions, Rizzolatti et al., 1988). For instance, both dorsal premotor cortex or local finger movements, here we were interested in reaching only (i.e. (PMd, or F2 and F7) and ventral premotor cortex (PMv, or F4 and the transport phase of the hand to a particular location in space), F5) contain arm/hand representations that are specific to certain without grasping. We hypothesized that mirror neuron areas specific to reaching-related representations would be active in all three conditions. motor actions, such as grasping or reaching (Matelli and Luppino, An overlap between executed, observed, and imagined reaching 2001). More specifically, neurons that respond to both hand action activations was found in dorsal premotor cortex as well as in the execution (e.g.
    [Show full text]
  • The Cingulate Cortex and Limbic Systems for Emotion, Action, and Memory
    Brain Structure and Function https://doi.org/10.1007/s00429-019-01945-2 REVIEW The cingulate cortex and limbic systems for emotion, action, and memory Edmund T. Rolls1,2 Received: 19 April 2019 / Accepted: 19 August 2019 © The Author(s) 2019 Abstract Evidence is provided for a new conceptualization of the connectivity and functions of the cingulate cortex in emotion, action, and memory. The anterior cingulate cortex receives information from the orbitofrontal cortex about reward and non-reward outcomes. The posterior cingulate cortex receives spatial and action-related information from parietal cortical areas. It is argued that these inputs allow the cingulate cortex to perform action–outcome learning, with outputs from the midcingulate motor area to premotor areas. In addition, because the anterior cingulate cortex connects rewards to actions, it is involved in emotion; and because the posterior cingulate cortex has outputs to the hippocampal system, it is involved in memory. These apparently multiple diferent functions of the cingulate cortex are related to the place of this proisocortical limbic region in brain connectivity. Keywords Cingulate cortex · Limbic systems · Hippocampus · Orbitofrontal cortex · Emotion · Memory · Depression Introduction: the cingulate cortex and other stream processing areas that decode ‘what’ the stimulus is limbic structures (Rolls 2014b, 2016a, 2019a, b). The hippocampus is a key structure in episodic memory with inputs from the dorsal A key area included by Broca in his limbic lobe (Broca stream cortical areas about space, action, and ‘where’ events 1878) is the cingulate cortex, which hooks around the cor- occur, as well as from the ‘what’ ventral processing stream pus callosum.
    [Show full text]
  • How Does the Brain Produce Movement?
    p CHAPTER 10 How Does the Brain Produce Movement? The Hierarchical Control The Basal Ganglia and of Movement the Cerebellum The Forebrain and Movement Initiation The Basal Ganglia and Movement Force The Brainstem and Species-Typical Movement Focus on Disorders: Tourette’s Syndrome Focus on Disorders: Autism The Cerebellum and Movement Skill The Spinal Cord and Movement Execution Focus on Disorders: Paraplegia The Organization of the Somatosensory System The Organization of the Somatosensory Receptors and Sensory Perception Motor System Dorsal-Root Ganglion Neurons The Motor Cortex The Somatosensory Pathways to the Brain The Corticospinal Tracts Spinal-Cord Responses to Somatosensory Input The Motor Neurons The Vestibular System and Balance The Control of Muscles Exploring the Somatosensory The Motor Cortex and Skilled System Movements The Somatosensory Homunculus Investigating Neural Control of Skilled Movements The Effects of Damage to the Somatosensory Cortex The Control of Skilled Movements in Other Species The Somatosensory Cortex and Complex How Motor Cortex Damage Affects Skilled Movement Movements Kevork Djansezian/AP Photo Micrograph: Dr. David Scott/Phototake 354 I p amala is a female Indian elephant that lives at the In one way, however, Kamala uses this versatile trunk zoo in Calgary, Canada. Her trunk, which is really very unusually for an elephant (Onodera & Hicks, 1999). K just a greatly extended upper lip and nose, con- She is one of only a few elephants in the world that paints sists of about 2000 fused muscles. A pair of nostrils runs its with its trunk (Figure 10-1). Like many artists, she paints length and fingerlike projections are located at its tip.
    [Show full text]
  • Schaer K., Jahn G., Lotze M. (2012) Fmri-Activation During Drawing A
    Behavioural Brain Research 233 (2012) 209–216 Contents lists available at SciVerse ScienceDirect Behavioural Brain Research j ournal homepage: www.elsevier.com/locate/bbr Research report fMRI-activation during drawing a naturalistic or sketchy portrait a b a,∗ K. Schaer ,G.Jahn , M. Lotze a Functional Imaging Unit, Center for Diagnostic Radiology and Neuroradiology, University of Greifswald, Greifswald, Germany b Department of Psychology, University of Greifswald, Greifswald, Germany h i g h l i g h t s We used fMRI to measure 20 naive subjects during drawing a portrait. Participants were able to track their drawing online. We identified three important circuits specific for the process of portrait drawing. Circuits where: face perception, location encoding, and continuous feedback processes. Representations involved: fusiform gyrus, precuneus, parietal sulcus, and cerebellum. a r t i c l e i n f o a b s t r a c t Article history: Neural processes for naturalistic drawing might be discerned into object recognition and analysis, atten- Received 8 March 2012 tion processes guiding eye hand interaction, encoding of visual features in an allocentric reference frame, Received in revised form 3 May 2012 a transfer into the motor command and precise motor guidance with tight sensorimotor feedback. Cere- Accepted 8 May 2012 bral representations in a real life paradigm during naturalistic drawing have sparsely been investigated. Available online 15 May 2012 Using a functional Magnetic Resonance Imaging (fMRI) paradigm we measured 20 naive subjects during drawing a portrait from a frontal face presented as a photograph. Participants were asked to draw the Keywords: portrait in either a naturalistic or a sketchy characteristic way.
    [Show full text]
  • Primary Motor and Sensory Cortical Areas Communicate Via Spatiotemporally Coordinated Networks at Multiple Frequencies
    Primary motor and sensory cortical areas communicate via spatiotemporally coordinated networks at multiple frequencies Fritzie I. Arce-McShanea,1, Callum F. Rossa, Kazutaka Takahashia, Barry J. Sessleb, and Nicholas G. Hatsopoulosa,c,d,1 aDepartment of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637; bFaculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; cCommittee on Computational Neuroscience, University of Chicago, Chicago, IL 60637; and dCommittee on Neurobiology, University of Chicago, Chicago, IL 60637 Edited by Nancy Kopell, Boston University, Boston, MA, and approved March 9, 2016 (received for review January 22, 2016) Skilled movements rely on sensory information to shape optimal show that interactions between MIo and SIo involve coherent motor responses, for which the sensory and motor cortical areas networks at multiple frequencies. Cortical processes may make are critical. How these areas interact to mediate sensorimotor inte- use of the dynamics of oscillatory rhythms and coherence phase gration is largely unknown. Here, we measure intercortical coherence to coordinate the activation of sensorimotor networks at multiple between the orofacial motor (MIo) and somatosensory (SIo) areas of spatial and temporal scales. cortex as monkeys learn to generate tongue-protrusive force. We report that coherence between MIo and SIo is reciprocal and that Results neuroplastic changes in coherence gradually emerge over a few We trained two naïve monkeys to protrude the tongue onto a days. These functional networks of coherent spiking and local field force transducer and apply isometric force at the level cued by potentials exhibit frequency-specific spatiotemporal properties. target positions shown on a video screen (Fig.
    [Show full text]
  • Area 2 of Primary Somatosensory Cortex Encodes Kinematics of the Whole Arm Raeed H Chowdhury1,2*, Joshua I Glaser3,4,5, Lee E Miller1,6,7,8*
    RESEARCH ARTICLE Area 2 of primary somatosensory cortex encodes kinematics of the whole arm Raeed H Chowdhury1,2*, Joshua I Glaser3,4,5, Lee E Miller1,6,7,8* 1Department of Biomedical Engineering, Northwestern University, Evanston, United States; 2Systems Neuroscience Institute, University of Pittsburgh, Pittsburgh, United States; 3Interdepartmental Neuroscience Program, Northwestern University, Chicago, United States; 4Department of Statistics, Columbia University, New York, United States; 5Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States; 6Department of Physiology, Northwestern University, Chicago, United States; 7Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, United States; 8Shirley Ryan AbilityLab, Chicago, United States Abstract Proprioception, the sense of body position, movement, and associated forces, remains poorly understood, despite its critical role in movement. Most studies of area 2, a proprioceptive area of somatosensory cortex, have simply compared neurons’ activities to the movement of the hand through space. Using motion tracking, we sought to elaborate this relationship by characterizing how area 2 activity relates to whole arm movements. We found that a whole-arm model, unlike classic models, successfully predicted how features of neural activity changed as monkeys reached to targets in two workspaces. However, when we then evaluated this whole-arm model across active and passive movements, we found that many neurons did not consistently represent the whole arm over both conditions. These results suggest that 1) neural activity in area 2 includes representation of the whole arm during reaching and 2) many of these neurons represented limb state differently during active and passive movements. *For correspondence: [email protected] (RHC); [email protected] (LEM) Introduction Moving in an uncontrolled environment is a remarkably complex feat.
    [Show full text]
  • Fiber Tracts of the Dorsal Language Stream in the Human Brain
    LABORATORY INVESTIGATION J Neurosurg 124:1396–1405, 2016 Fiber tracts of the dorsal language stream in the human brain Kaan Yagmurlu, MD,1 Erik H. Middlebrooks, MD,2 Necmettin Tanriover, MD,3 and Albert L. Rhoton Jr., MD1 Departments of 1Neurological Surgery and 2Radiology, University of Florida, Gainesville, Florida; and 3Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University, Turkey OBJECTIVE The aim of this study was to examine the arcuate (AF) and superior longitudinal fasciculi (SLF), which to- gether form the dorsal language stream, using fiber dissection and diffusion imaging techniques in the human brain. METHODS Twenty-five formalin-fixed brains (50 hemispheres) and 3 adult cadaveric heads, prepared according to the Klingler method, were examined by the fiber dissection technique. The authors’ findings were supported with MR trac- tography provided by the Human Connectome Project, WU-Minn Consortium. The frequencies of gyral distributions were calculated in segments of the AF and SLF in the cadaveric specimens. RESULTS The AF has ventral and dorsal segments, and the SLF has 3 segments: SLF I (dorsal pathway), II (middle pathway), and III (ventral pathway). The AF ventral segment connects the middle (88%; all percentages represent the area of the named structure that is connected to the tract) and posterior (100%) parts of the superior temporal gyri and the middle part (92%) of the middle temporal gyrus to the posterior part of the inferior frontal gyrus (96% in pars oper- cularis, 40% in pars triangularis) and the ventral premotor cortex (84%) by passing deep to the lower part of the supra- marginal gyrus (100%).
    [Show full text]