Prefrontal and Posterior Parietal Contributions to the Perceptual Awareness of Touch M
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Neural Correlates of Visual Imagery: a Co-Ordinate-Based Meta-Analysis
cortex 105 (2018) 4e25 Available online at www.sciencedirect.com ScienceDirect Journal homepage: www.elsevier.com/locate/cortex Special issue: Research report The neural correlates of visual imagery: A co-ordinate-based meta-analysis * Crawford I.P. Winlove a, , Fraser Milton b, Jake Ranson c, Jon Fulford a, Matthew MacKisack a, Fiona Macpherson d and Adam Zeman a a Medical School, University of Exeter, UK b School of Psychology, University of Exeter, UK c St George's Medical School, London, UK d Department of Philosophy, University of Glasgow, UK article info abstract Article history: Visual imagery is a form of sensory imagination, involving subjective experiences typi- Received 4 August 2017 cally described as similar to perception, but which occur in the absence of corresponding Reviewed 2 October 2017 external stimuli. We used the Activation Likelihood Estimation algorithm (ALE) to iden- Revised 11 December 2017 tify regions consistently activated by visual imagery across 40 neuroimaging studies, the Accepted 18 December 2017 first such meta-analysis. We also employed a recently developed multi-modal parcella- Published online 2 January 2018 tion of the human brain to attribute stereotactic co-ordinates to one of 180 anatomical regions, the first time this approach has been combined with the ALE algorithm. We Keywords: identified a total 634 foci, based on measurements from 464 participants. Our overall fMRI comparison identified activation in the superior parietal lobule, particularly in the left Neuroimaging hemisphere, consistent with the proposed ‘top-down’ role for this brain region in im- Imagery agery. Inferior premotor areas and the inferior frontal sulcus were reliably activated, a Imagination finding consistent with the prominent semantic demands made by many visual imagery ALE tasks. -
Visual Topography of Human Intraparietal Sulcus
5326 • The Journal of Neuroscience, May 16, 2007 • 27(20):5326–5337 Behavioral/Systems/Cognitive Visual Topography of Human Intraparietal Sulcus Jascha D. Swisher,1 Mark A. Halko,1 Lotfi B. Merabet,1,2 Stephanie A. McMains,1,3 and David C. Somers1,4 1Perceptual Neuroimaging Laboratory, Program in Neuroscience and Department of Psychology, Boston University, Boston, Massachusetts 02215, 2Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, 3Neuroscience of Attention and Perception Laboratory, Department of Psychology, Princeton University, Princeton, New Jersey 08544, and 4Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129 Human parietal cortex is implicated in a wide variety of sensory and cognitive functions, yet its precise organization remains unclear. Visual field maps provide a potential structural basis for descriptions of functional organization. Here, we detail the topography of a series of five maps of the contralateral visual hemifield within human posterior parietal cortex. These maps are located along the medial bank of the intraparietal sulcus (IPS) and are revealed by direct visual stimulation during functional magnetic resonance imaging, allowing these parietal regions to be routinely and reliably identified simultaneously with occipital visual areas. Two of these maps (IPS3 and IPS4) are novel, whereas two others (IPS1 and IPS2) have previously been revealed only by higher-order cognitive tasks. Area V7, a previously identified visual map, is observed to lie within posterior IPS and to share a foveal representation with IPS1. These parietal maps are reliably observed across scan sessions; however, their precise topography varies between individuals. -
Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans Ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai
Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai To cite this version: Hans ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai. Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex. Frontiers in Neuroanatomy, Frontiers, 2018, 12, pp.93. 10.3389/fnana.2018.00093. hal-01929541 HAL Id: hal-01929541 https://hal.archives-ouvertes.fr/hal-01929541 Submitted on 21 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW published: 19 November 2018 doi: 10.3389/fnana.2018.00093 Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans J. ten Donkelaar 1*†, Nathalie Tzourio-Mazoyer 2† and Jürgen K. Mai 3† 1 Department of Neurology, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands, 2 IMN Institut des Maladies Neurodégénératives UMR 5293, Université de Bordeaux, Bordeaux, France, 3 Institute for Anatomy, Heinrich Heine University, Düsseldorf, Germany The gyri and sulci of the human brain were defined by pioneers such as Louis-Pierre Gratiolet and Alexander Ecker, and extensified by, among others, Dejerine (1895) and von Economo and Koskinas (1925). -
Human Parietal Cortex in Action Jody C Culham and Kenneth F Valyear
Human parietal cortex in action Jody C Culham and Kenneth F Valyear Experiments using functional neuroimaging and transcranial owes, in large part, to the rapid growth of neuroimaging magnetic stimulation in humans have revealed regions of the studies, particularly experiments using functional mag- parietal lobes that are specialized for particular visuomotor netic resonance imaging (fMRI) and transcranial mag- actions, such as reaching, grasping and eye movements. In netic stimulation (TMS). addition, the human parietal cortex is recruited by processing and perception of action-related information, even when no In one popular view of the visual system [1], visual overt action occurs. Such information can include object shape information is segregated along two pathways: the ventral and orientation, knowledge about how tools are employed and stream (occipito-temporal cortex) computes vision for the understanding of actions made by other individuals. We perception, whereas the dorsal stream (occipito-parietal review the known subregions of the human posterior parietal cortex) computes vision for action. Here, we review cortex and the principles behind their organization. recent advances that address the organization of the posterior parietal cortex and the action-related subregions Addresses within it. We begin by focusing on the role of the dorsal Department of Psychology, Social Science Centre, University of stream in visually-guided real actions. However, we then Western Ontario, London, Ontario, Canada, N6A 5C2 discuss a topic that -
1. Lateral View of Lobes in Left Hemisphere TOPOGRAPHY
TOPOGRAPHY T1 Division of Cerebral Cortex into Lobes 1. Lateral View of Lobes in Left Hemisphere 2. Medial View of Lobes in Right Hemisphere PARIETAL PARIETAL LIMBIC FRONTAL FRONTAL INSULAR: buried OCCIPITAL OCCIPITAL in lateral fissure TEMPORAL TEMPORAL 3. Dorsal View of Lobes 4. Ventral View of Lobes PARIETAL TEMPORAL LIMBIC FRONTAL OCCIPITAL FRONTAL OCCIPITAL Comment: The cerebral lobes are arbitrary divisions of the cerebrum, taking their names, for the most part, from overlying bones. They are not functional subdivisions of the brain, but serve as a reference for locating specific functions within them. The anterior (rostral) end of the frontal lobe is referred to as the frontal pole. Similarly, the anterior end of the temporal lobe is the temporal pole, and the posterior end of the occipital lobe the occipital pole. TOPOGRAPHY T2 central sulcus central sulcus parietal frontal occipital lateral temporal lateral sulcus sulcus SUMMARY CARTOON: LOBES SUMMARY CARTOON: GYRI Lateral View of Left Hemisphere central sulcus postcentral superior parietal superior precentral gyrus gyrus lobule frontal intraparietal sulcus gyrus inferior parietal lobule: supramarginal and angular gyri middle frontal parieto-occipital sulcus gyrus incision for close-up below OP T preoccipital O notch inferior frontal cerebellum gyrus: O-orbital lateral T-triangular sulcus superior, middle and inferior temporal gyri OP-opercular Lateral View of Insula central sulcus cut surface corresponding to incision in above figure insula superior temporal gyrus Comment: Insula (insular gyri) exposed by removal of overlying opercula (“lids” of frontal and parietal cortex). TOPOGRAPHY T3 Language sites and arcuate fasciculus. MRI reconstruction from a volunteer. central sulcus supramarginal site (posterior Wernicke’s) Language sites (squares) approximated from electrical stimulation sites in patients undergoing operations for epilepsy or tumor removal (Ojeman and Berger). -
Using Multisensory Integration to Understand the Human Auditory Cortex
Chapter 8 Using Multisensory Integration to Understand the Human Auditory Cortex Michael S. Beauchamp Abstract Accurate and meaningful parcellation of the human cortex is an essential endeavor to facilitate the collective understanding of brain functions across sensory and cognitive domains. Unlike in the visual cortex, the details of anatomical and functional mapping associated with the earliest stages of auditory processing in the cortex are still a topic of active debate. Interestingly, aspects of multisensory pro- cessing may provide a unique window to meaningfully subdivide the auditory sen- sory areas by exploring different functional properties other than the traditional tonotopic approach. In this chapter, a tour of the auditory cortical areas is first pro- vided, starting from its core area, Heschl’s gyrus, then moving onto surrounding areas. Evidence from different sources, including postmortem studies of the human auditory cortex, resting-state functional connectivity derived from the Human Connectome Project, and electrocorticographic studies, is presented to better under- stand how different subdivisions of the human auditory cortex and its surrounding areas are involved in auditory and multisensory processing. The chapter concludes with the remaining challenges to account for individual variability in functional anatomy, particularly pertaining to multisensory processing. Keywords Auditory cortex · Cross-modal · Electrocorticography · Functional anatomy · Functional connectivity · Heschl’s gyrus · Human Connectome Project · Sensory integration · Superior temporal sulcus · Temporal cortex 8.1 Introduction The human cerebrum is divided into sensory cortices specialized for the processing of a specific sensory modality, with the visual cortex located in the occipital lobe and the auditory cortex centered on Heschl’s gyrus on the plane of the superior M. -
Visual Experience Is Necessary for the Development of Multisensory Integration
9580 • The Journal of Neuroscience, October 27, 2004 • 24(43):9580–9584 Brief Communication Visual Experience Is Necessary for the Development of Multisensory Integration Mark T. Wallace, Thomas J. Perrault Jr, W. David Hairston, and Barry E. Stein Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157 Multisensoryneuronsandtheirabilitytointegratemultisensorycuesdevelopgraduallyinthemidbrain[i.e.,superiorcolliculus(SC)].To examine the possibility that early sensory experiences might play a critical role in these maturational processes, animals were raised in the absence of visual cues. As adults, the SC of these animals were found to contain many multisensory neurons, the large majority of which were visually responsive. Although these neurons responded robustly to each of their cross-modal inputs when presented indi- vidually, they were incapable of synthesizing this information. These observations suggest that visual experiences are critical for the SC to develop the ability to integrate multisensory information and lead to the prediction that, in the absence of such experience, animals will be compromised in their sensitivity to cross-modal events. Key words: cross-modal; dark rearing; multimodal; plasticity; subcortical; superior colliculus Introduction et al., 2000). What is not evident from these studies is whether Neurons in the superior colliculus (SC) have the remarkable ca- these experiences, so critical for the normal development of indi- pacity to integrate information from the different senses, a pro- vidual sensory systems, as well as for the normal cross-modal cess that substantially enhances the salience of the initiating event topography seen in multisensory structures (King et al., 1988; (Meredith and Stein 1983, 1985, 1986; King and Palmer, 1985; Knudsen and Brainard, 1991; Benedetti and Ferro, 1995), play Wallace et al., 1996, 1998; Frens and Van Opstal 1998; Bell et al., any role in the development of the ability of the brain to synthe- 2001; Perrault et al., 2003). -
Performing a Task Jointly Enhances the Sound-Induced Flash Illusion
Performing a task jointly enhances the sound-induced flash illusion Basil Wahn1, Tim Rohe2, Anika Gearhart3, Alan Kingstone1, and Scott Sinnett3 Abstract Our different senses are stimulated continuously. Through multisensory integration, different sensory inputs may or may not be combined into a unitary percept. Simultaneous with this stimulation, people are frequently engaged in social interactions, but how multisensory integration and social processing combine is largely unknown. The present study investigated if, and how, the multisensory sound-induced flash illusion is affected by a social manipulation. In the sound-induced flash illusion, a participant typically receives one visual flash and two auditory beeps and she/he is required to indicate the number of flashes that were perceived. Often, the auditory beeps alter the perception of the flashes such that a participant tends to perceive two flashes instead of one flash. We tested whether performing a flash counting task with a partner (confederate), who was required to indicate the number of presented beeps, would modulate this illusion. We found that the sound-induced flash illusion was perceived significantly more often when the flash counting task was performed with the confederate compared to performing it alone. Yet, we no longer find this effect if visual access between the two individuals is prevented. These findings, combined with previous results, suggest that performing a multisensory task jointly – in this case an audiovisual task – lowers the extent to which an individual attends to visual information – which in turn affects the multisensory integration process. Keywords multisensory processing, social cognition, joint action, sound-induced flash illusion, double flash illusion Introduction In addition, a large body of research in the field of joint action has shown that individual task performance is affected Humans constantly receive input from multiple sensory by performing visual perceptual tasks jointly (Bockler¨ et al. -
Pain Processing in Multisensory Environments
Review article e-Neuroforum 2010 · 1:23–28 Marion Höfle1 · M. Hauck2 · A.K. Engel1 · D. Senkowski1 DOI 10.1007/s13295-010-0004-z 1 Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 2 Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg © Springer-Verlag 2010 Pain processing in multisensory environments Introduction It is well known that different environ- influences between visual and pain stim- mental and cognitive factors can modu- uli. These studies support the notion that Imagine yourself cutting peppers. While late activity in the so-called pain matrix, visual inputs can strongly affect the pro- you watch the pepper getting smaller, i.e., the network of brain regions involved cessing of painful stimuli. Finally, we give your mind might wander and the knife in pain processing [28]. Moreover, there is an outlook for future research on pain pro- accidentally carves the skin of your finger elaborate knowledge of the neurophysio- cessing in multisensory environments. and you feel a sharp pain. Painful events in logical mechanisms underlying pain pro- real-world situations do not occur in iso- cessing, as well as of the principle mecha- Dimensions of pain perception lation but often comprise input from ad- nisms of multisensory integration of non- ditional sensory modalities, i.e., the visual painful information (. Box 1). Surpris- The application of different pain models percept of the knife penetrating the finger. ingly, however, only few studies have sys- (. Box 2) revealed that pain is a complex The successful integration and recall of tematically addressed how stimuli from experience that can be described along painful stimuli in combination with high- other sensory modalities affect nocicep- two major dimensions, which themselves ly informative input of other sensory mo- tive processing. -
Imaging the Premotor Areas Nathalie Picard* and Peter L Strick†
663 Imaging the premotor areas Nathalie Picard* and Peter L Strick† Recent imaging studies of motor function provide new insights critically on a clear definition of the location and boundaries into the organization of the premotor areas of the frontal lobe. of these cortical areas. Thus, one focus of our review The pre-supplementary motor area and the rostral portion of synthesizes the new data that is relevant to this issue. the dorsal premotor cortex, the ‘pre-PMd’, are, in many respects, more like prefrontal areas than motor areas. Recent Medial wall data also suggest the existence of separate functional divisions Pre-supplementary motor area and supplementary in the rostral cingulate zone. motor area In monkeys, it is now established that area 6 on the medial Addresses wall of the brain contains two separate areas: the supple- Department of Neurobiology, University of Pittsburgh School of mentary motor area proper (SMA) in the caudal portion of Medicine, W1640 Biomedical Science Tower, 200 Lothrop Street, area 6, and the pre-SMA in the rostral portion (Figure 1a; Pittsburgh, PA 15261, USA reviewed in [2,4]). The SMA and pre-SMA are equivalent *e-mail: [email protected] †e-mail: [email protected] to fields F3 and F6 described by Matelli et al. [5]. In humans, the level of the anterior commissure (VCA line) Current Opinion in Neurobiology 2001, 11:663–672 [6] marks the border between the two areas. The division 0959-4388/01/$ — see front matter of medial area 6 into two distinct fields is based on a © 2001 Elsevier Science Ltd. -
A Practical Review of Functional MRI Anatomy of the Language and Motor Systems
REVIEW ARTICLE FUNCTIONAL A Practical Review of Functional MRI Anatomy of the Language and Motor Systems X V.B. Hill, X C.Z. Cankurtaran, X B.P. Liu, X T.A. Hijaz, X M. Naidich, X A.J. Nemeth, X J. Gastala, X C. Krumpelman, X E.N. McComb, and X A.W. Korutz ABSTRACT SUMMARY: Functional MR imaging is being performed with increasing frequency in the typical neuroradiology practice; however, many readers of these studies have only a limited knowledge of the functional anatomy of the brain. This text will delineate the locations, anatomic boundaries, and functions of the cortical regions of the brain most commonly encountered in clinical practice—specifically, the regions involved in movement and language. ABBREVIATIONS: FFA ϭ fusiform face area; IPL ϭ inferior parietal lobule; PPC ϭ posterior parietal cortex; SMA ϭ supplementary motor area; VOTC ϭ ventral occipitotemporal cortex his article serves as a review of the functional areas of the brain serving to analyze spatial position and the ventral stream working Tmost commonly mapped during presurgical fMRI studies, to identify what an object is. Influenced by the dorsal and ventral specifically targeting movement and language. We have compiled stream model of vision, Hickok and Poeppel2 hypothesized a sim- what we hope is a useful, easily portable, and concise resource that ilar framework for language. In this model, the ventral stream, or can be accessible to radiologists everywhere. We begin with a re- lexical-semantic system, is involved in sound-to-meaning map- view of the language-processing system. Then we describe the pings associated with language comprehension and semantic ac- gross anatomic boundaries, organization, and function of each cess. -
Development of Multisensory Integration Approach Model
International Journal of Applied Research 2016; 2(4): 629-633 ISSN Print: 2394-7500 ISSN Online: 2394-5869 Impact Factor: 5.2 Development of multisensory integration approach IJAR 2016; 2(4): 629-633 www.allresearchjournal.com model Received: 13-02-2016 Accepted: 15-03-2016 Prasannakumar S, Dr. Saminathan B Prasannakumar S Assistant Professor, North Abstract East Regional Institute of Education, Shillong, India. Every teacher expects optimum level of processing in mind of them students. The level of processing is mainly depends upon memory process. Most of the students have retrieval difficulties on past learning. Dr. Saminathan B Memory difficulties directly related to sensory integration. In these circumstances the investigator Assistant Professor, made an attempt to construct Multisensory integration Approach Model based on sensory process and Department of Education, perceptual process. Multisensory Integration approach model contains three parts the first part is Bharathidasan University, Instructional part, second part is processing part and third one is learning outcome part. Instructional Trichy, India. part is includes seven steps. There are relating new information to prior knowledge, Focusing attention to the information, developing sensory connection, Organizing the information, Expanding sensory images, Structuring the information and Practicing recall. The above instructional strategies develop stimulation, sensation, Attention, Perception, Imagery, conceptualization and memory. The learning outcome part contains from low level sensory integration (visual- Auditory) to high level sensory integration (Visual-Auditory-Tactile-Olfactory-Gustatory). The investigator regulates information processing of the students in brain through Multisensory Integration Approach Model. Keywords: Development, Multisensory Integration, Approach, Model 1. Introduction Development of models of teaching is the recent innovation in teaching.