Lecture 3 - Conservation Equations

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 3 - Conservation Equations Lecture 3 - Conservation Equations Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org © André Bakker (2002-2006) 1 Governing equations • The governing equations include the following conservation laws of physics: – Conservation of mass. – Newton’s second law: the change of momentum equals the sum of forces on a fluid particle. – First law of thermodynamics (conservation of energy): rate of change of energy equals the sum of rate of heat addition to and work done on fluid particle. • The fluid is treated as a continuum. For length scales of, say, 1µm and larger, the molecular structure and motions may be ignored. 2 Lagrangian vs. Eulerian description A fluid flow field can be thought Another view of fluid motion is of as being comprised of a large the Eulerian description. In the number of finite sized fluid Eulerian description of fluid particles which have mass, motion, we consider how flow momentum, internal energy, and properties change at a fluid other properties. Mathematical element that is fixed in space laws can then be written for each and time (x,y,z,t), rather than fluid particle. This is the following individual fluid Lagrangian description of fluid particles. motion. Governing equations can be derived using each method and converted to the other form. 3 Fluid element and properties Fluid element for conservation laws • The behavior of the fluid is described in terms of macroscopic properties: – Velocity u. – Pressure p. δδδ (x,y,z) z – Density ρ. – Temperature T. δδδy – Energy E. δδδx z • Typically ignore (x,y,z,t) in the notation. y • Properties are averages of a sufficiently x large number of molecules. Faces are labeled • A fluid element can be thought of as the North, East, West, smallest volume for which the continuum South, Top and Bottom assumption is valid. Properties at faces are expressed as first two terms of a Taylor series expansion, ∂p1 ∂ p 1 e.g.forp:pp=−δ x and pp =+ δ x W∂x2 E ∂ x 2 4 Mass balance • Rate of increase of mass in fluid element equals the net rate of flow of mass into element. ∂ ∂ρ • Rate of increase is: (ρδ xδyδz) = δxδyδz ∂t ∂t • The inflows (positive) and outflows (negative) are shown here: ∂(ρw ) 1 ρw+ . δδδ zxy ∂z 2 ∂(ρv ) 1 ρv+ . δδδ yxz ∂y 2 ∂(ρu ) 1 ∂(ρu) 1 ρu+ . δδδ xyz ρu − . δx δyδz ∂x 2 ∂x 2 ∂(ρv) 1 ρv − . δy δxδz z ∂y 2 y ∂(ρw) 1 x ρw − . δz δxδy ∂z 2 5 Continuity equation • Summing all terms in the previous slide and dividing by the volume δxδyδz results in: ∂ρ ∂ ρ ∂ ρ ∂ ρ + ( u) + ( v) + ( w) = 0 ∂t ∂x ∂y ∂z • In vector notation: ∂ρ + div (ρ u) = 0 ∂t Change in density Net flow of mass across boundaries Convective term • For incompressible fluids ∂ρ /∂ t = 0, and the equation becomes: div u = 0. ∂ ∂ ∂ ∂u u + v + w = i = • Alternative ways to write this: ∂ ∂ ∂ 0 and ∂ 0 x y z xi 6 Different forms of the continuity equation Finite control volume Finite control volume fixed fixed in space mass moving with flow ∂ D ∫∫∫ ρ dV + ∫∫ ρ U ⋅dS = 0 ∫∫∫ ρ dV = 0 ∂t V S Dt V Integral form Integral form Conservati on form Non − conservati on form U Infinitesimally small Infinitesimally small fluid element of fixed element fixed in space mass (“fluid particle”) moving with the flow ∂ρ Dρ + ∇ ⋅ (ρU) = 0 + ρ∇ ⋅ U = 0 ∂t Dt Differenti al form Differenti al form Conservati on form Non − conservati on form 7 Rate of change for a fluid particle • Terminology: fluid element is a volume stationary in space, and a fluid particle is a volume of fluid moving with the flow. • A moving fluid particle experiences two rates of changes: – Change due to changes in the fluid as a function of time. – Change due to the fact that it moves to a different location in the fluid with different conditions. • The sum of these two rates of changes for a property per unit mass φ is called the total or substantive derivative Dφ /Dt : φ ∂φ ∂φ ∂φ ∂φ D = + dx + dy + dz Dt ∂t ∂x dt ∂y dt ∂z dt • With dx/dt=u , dy/dt=v , dz/dt=w , this results in: Dφ ∂φ = + u.grad φ Dt ∂t 8 Rate of change for a stationary fluid element • In most cases we are interested in the changes of a flow property for a fluid element, or fluid volume, that is stationary in space. • However, some equations are easier derived for fluid particles. For a moving fluid particle, the total derivative per unit volume of this property φ is given by: Dφ ∂φ (for moving fluid particle) ρ = ρ + u.grad φ (for given location in space) Dt ∂t • For a fluid element, for an arbitrary conserved property φ: ∂ρ ∂(ρφ ) + div (ρ u) = 0 + div (ρφ u) = 0 ∂t ∂t Continuity equation Arbitrary property 9 Fluid particle and fluid element • We can derive the relationship between the equations for a fluid particle (Lagrangian) and a fluid element (Eulerian) as follows: ∂(ρφ ) ∂φ ∂ρ Dφ + div (ρφ u) = ρ + u.grad φ + φ + div (ρu) = ρ ∂t ∂t ∂t Dt zero because of continuity ∂(ρφ ) Dφ + div (ρφ u) = ρ ∂t Dt Rate of increase of Net rate of flow of Rate of increase of = φφφ of fluid element φφφ out of fluid element φφφ for a fluid particle 10 To remember so far • We need to derive conservation equations that we can solve to calculate fluid velocities and other properties. • These equations can be derived either for a fluid particle that is moving with the flow (Lagrangian) or for a fluid element that is stationary in space (Eulerian). • For CFD purposes we need them in Eulerian form, but (according to the book) they are somewhat easier to derive in Lagrangian form. • Luckily, when we derive equations for a property φ in one form, we can convert them to the other form using the relationship shown on the bottom in the previous slide. 11 Relevant entries for Φ x-momentum u Du ∂(ρu) ρ + div (ρuu) Dt ∂t y-momentum v Dv ∂(ρv) ρ + div (ρvu) Dt ∂t z-momentum w Dw ∂(ρw) ρ + div (ρwu) Dt ∂t Energy E DE ∂(ρE) ρ + div (ρEu) Dt ∂t 12 Momentum equation in three dimensions • We will first derive conservation equations for momentum and energy for fluid particles. Next we will use the above relationships to transform those to an Eulerian frame (for fluid elements). • We start with deriving the momentum equations. • Newton’s second law: rate of change of momentum equals sum of forces. • Rate of increase of x-, y-, and z-momentum: ρ Du ρ Dv ρ Dw Dt Dt Dt • Forces on fluid particles are: – Surface forces such as pressure and viscous forces. – Body forces, which act on a volume, such as gravity, centrifugal, Coriolis, and electromagnetic forces. 13 Viscous stresses • Stresses are forces per area. Unit is N/m 2 or Pa. • Viscous stresses denoted by τ. τ • Suffix notation ij is used to indicate direction. • Nine stress components. τ τ τ – xx , yy , zz are normal stresses. τ E.g. zz is the stress in the z- direction on a z-plane. – Other stresses are shear τ stresses. E.g. zy is the stress in the y-direction on a z-plane. • Forces aligned with the direction of a coordinate axis are positive. Opposite direction is negative. 14 Forces in the x-direction ∂τ 1 τ + zx δ δ δ ( zx . z) y z ∂τ ∂τ ∂ yx 1 yx 1 z 2 − τ − δ δ δ τ + δ δ δ ( yx . y) x z ( yx . y) x z ∂ ∂y 2 y 2 ∂p 1 ∂p 1 ( p − . δx)δyδz − ( p + . δx)δyδz ∂x 2 ∂x 2 ∂τ xx 1 ∂τ − τ − δ δ δ xx 1 ( xx . x) y z (τ + . δx)δyδz ∂x 2 xx ∂x 2 z ∂τ 1 y − τ − zx δ δ δ ( zx . z) x y x ∂z 2 Net force in the x-direction is the sum of all the force components in that direction. 15 Momentum equation • Set the rate of change of x-momentum for a fluid particle Du/Dt equal to: – the sum of the forces due to surface stresses shown in the previous slide, plus – the body forces. These are usually lumped together into a source term S : M Du ∂(− p +τ ) ∂τ ∂τ ρ = xx + yx + zx + S Dt ∂x ∂y ∂z Mx τ – p is a compressive stress and xx is a tensile stress. • Similarly for y- and z-momentum: Dv ∂τ ∂(− p +τ ) ∂τ ρ = xy + yy + zy + S Dt ∂x ∂y ∂z My Dw ∂τ ∂τ ∂(− p +τ ) ρ = xz + yz + zz + S ∂ ∂ ∂ Mz Dt x y z 16 Energy equation • First law of thermodynamics: rate of change of energy of a fluid particle is equal to the rate of heat addition plus the rate of work done. • Rate of increase of energy is ρDE/Dt. • Energy E = i + ½ (u 2+v 2+w 2). • Here, i is the internal (thermal energy). • ½ (u 2+v 2+w 2) is the kinetic energy. • Potential energy (gravitation) is usually treated separately and included as a source term. • We will derive the energy equation by setting the total derivative equal to the change in energy as a result of work done by viscous stresses and the net heat conduction. • Next we will subtract the kinetic energy equation to arrive at a conservation equation for the internal energy. 17 Work done by surface stresses in x-direction ∂(uτ ) 1 (uτ + zx .
Recommended publications
  • Stall/Surge Dynamics of a Multi-Stage Air Compressor in Response to a Load Transient of a Hybrid Solid Oxide Fuel Cell-Gas Turbine System
    Journal of Power Sources 365 (2017) 408e418 Contents lists available at ScienceDirect Journal of Power Sources journal homepage: www.elsevier.com/locate/jpowsour Stall/surge dynamics of a multi-stage air compressor in response to a load transient of a hybrid solid oxide fuel cell-gas turbine system * Mohammad Ali Azizi, Jacob Brouwer Advanced Power and Energy Program, University of California, Irvine, USA highlights Dynamic operation of a hybrid solid oxide fuel cell gas turbine system was explored. Computational fluid dynamic simulations of a multi-stage compressor were accomplished. Stall/surge dynamics in response to a pressure perturbation were evaluated. The multi-stage radial compressor was found robust to the pressure dynamics studied. Air flow was maintained positive without entering into severe deep surge conditions. article info abstract Article history: A better understanding of turbulent unsteady flows in gas turbine systems is necessary to design and Received 14 August 2017 control compressors for hybrid fuel cell-gas turbine systems. Compressor stall/surge analysis for a 4 MW Accepted 4 September 2017 hybrid solid oxide fuel cell-gas turbine system for locomotive applications is performed based upon a 1.7 MW multi-stage air compressor. Control strategies are applied to prevent operation of the hybrid SOFC-GT beyond the stall/surge lines of the compressor. Computational fluid dynamics tools are used to Keywords: simulate the flow distribution and instabilities near the stall/surge line. The results show that a 1.7 MW Solid oxide fuel cell system compressor like that of a Kawasaki gas turbine is an appropriate choice among the industrial Hybrid fuel cell gas turbine Dynamic simulation compressors to be used in a 4 MW locomotive SOFC-GT with topping cycle design.
    [Show full text]
  • 10. Collisions • Use Conservation of Momentum and Energy and The
    10. Collisions • Use conservation of momentum and energy and the center of mass to understand collisions between two objects. • During a collision, two or more objects exert a force on one another for a short time: -F(t) F(t) Before During After • It is not necessary for the objects to touch during a collision, e.g. an asteroid flied by the earth is considered a collision because its path is changed due to the gravitational attraction of the earth. One can still use conservation of momentum and energy to analyze the collision. Impulse: During a collision, the objects exert a force on one another. This force may be complicated and change with time. However, from Newton's 3rd Law, the two objects must exert an equal and opposite force on one another. F(t) t ti tf Dt From Newton'sr 2nd Law: dp r = F (t) dt r r dp = F (t)dt r r r r tf p f - pi = Dp = ò F (t)dt ti The change in the momentum is defined as the impulse of the collision. • Impulse is a vector quantity. Impulse-Linear Momentum Theorem: In a collision, the impulse on an object is equal to the change in momentum: r r J = Dp Conservation of Linear Momentum: In a system of two or more particles that are colliding, the forces that these objects exert on one another are internal forces. These internal forces cannot change the momentum of the system. Only an external force can change the momentum. The linear momentum of a closed isolated system is conserved during a collision of objects within the system.
    [Show full text]
  • CFD Based Design for Ejector Cooling System Using HFOS (1234Ze(E) and 1234Yf)
    energies Article CFD Based Design for Ejector Cooling System Using HFOS (1234ze(E) and 1234yf) Anas F A Elbarghthi 1,*, Saleh Mohamed 2, Van Vu Nguyen 1 and Vaclav Dvorak 1 1 Department of Applied Mechanics, Faculty of Mechanical Engineering, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic; [email protected] (V.V.N.); [email protected] (V.D.) 2 Department of Mechanical and Materials Engineering, Masdar Institute, Khalifa University of Science and Technology, Abu Dhabi, UAE; [email protected] * Correspondence: [email protected] Received: 18 February 2020; Accepted: 14 March 2020; Published: 18 March 2020 Abstract: The field of computational fluid dynamics has been rekindled by recent researchers to unleash this powerful tool to predict the ejector design, as well as to analyse and improve its performance. In this paper, CFD simulation was conducted to model a 2-D axisymmetric supersonic ejector using NIST real gas model integrated in ANSYS Fluent to probe the physical insight and consistent with accurate solutions. HFOs (1234ze(E) and 1234yf) were used as working fluids for their promising alternatives, low global warming potential (GWP), and adhering to EU Council regulations. The impact of different operating conditions, performance maps, and the Pareto frontier performance approach were investigated. The expansion ratio of both refrigerants has been accomplished in linear relationship using their critical compression ratio within 0.30% accuracy. The results show that ± R1234yf achieved reasonably better overall performance than R1234ze(E). Generally, by increasing the primary flow inlet saturation temperature and pressure, the entrainment ratio will be lower, and this allows for a higher critical operating back pressure.
    [Show full text]
  • MSME with Depth in Fluid Mechanics
    MSME with depth in Fluid Mechanics The primary areas of fluid mechanics research at Michigan State University's Mechanical Engineering program are in developing computational methods for the prediction of complex flows, in devising experimental methods of measurement, and in applying them to improve understanding of fluid-flow phenomena. Theoretical fluid dynamics courses provide a foundation for this research as well as for related studies in areas such as combustion, heat transfer, thermal power engineering, materials processing, bioengineering and in aspects of manufacturing engineering. MS Track for Fluid Mechanics The MSME degree program for fluid mechanics is based around two graduate-level foundation courses offered through the Department of Mechanical Engineering (ME). These courses are ME 830 Fluid Mechanics I Fall ME 840 Computational Fluid Mechanics and Heat Transfer Spring The ME 830 course is the basic graduate level course in the continuum theory of fluid mechanics that all students should take. In the ME 840 course, the theoretical understanding gained in ME 830 is supplemented with material on numerical methods, discretization of equations, and stability constraints appropriate for developing and using computational methods of solution to fluid mechanics and convective heat transfer problems. Students augment these courses with additional courses in fluid mechanics and satisfy breadth requirements by selecting courses in the areas of Thermal Sciences, Mechanical and Dynamical Systems, and Solid and Structural Mechanics. Graduate Course and Research Topics (Profs. Benard, Brereton, Jaberi, Koochesfahani, Naguib) ExperimentalResearch Many fluid flow phenomena are too complicated to be understood fully or predicted accurately by either theory or computational methods. Sometimes the boundary conditions of real-world problems cannot be analyzed accurately.
    [Show full text]
  • Law of Conversation of Energy
    Law of Conservation of Mass: "In any kind of physical or chemical process, mass is neither created nor destroyed - the mass before the process equals the mass after the process." - the total mass of the system does not change, the total mass of the products of a chemical reaction is always the same as the total mass of the original materials. "Physics for scientists and engineers," 4th edition, Vol.1, Raymond A. Serway, Saunders College Publishing, 1996. Ex. 1) When wood burns, mass seems to disappear because some of the products of reaction are gases; if the mass of the original wood is added to the mass of the oxygen that combined with it and if the mass of the resulting ash is added to the mass o the gaseous products, the two sums will turn out exactly equal. 2) Iron increases in weight on rusting because it combines with gases from the air, and the increase in weight is exactly equal to the weight of gas consumed. Out of thousands of reactions that have been tested with accurate chemical balances, no deviation from the law has ever been found. Law of Conversation of Energy: The total energy of a closed system is constant. Matter is neither created nor destroyed – total mass of reactants equals total mass of products You can calculate the change of temp by simply understanding that energy and the mass is conserved - it means that we added the two heat quantities together we can calculate the change of temperature by using the law or measure change of temp and show the conservation of energy E1 + E2 = E3 -> E(universe) = E(System) + E(Surroundings) M1 + M2 = M3 Is T1 + T2 = unknown (No, no law of conservation of temperature, so we have to use the concept of conservation of energy) Total amount of thermal energy in beaker of water in absolute terms as opposed to differential terms (reference point is 0 degrees Kelvin) Knowns: M1, M2, T1, T2 (Kelvin) When add the two together, want to know what T3 and M3 are going to be.
    [Show full text]
  • COMSOL Computational Fluid Dynamics for Microreactors Used in Volatile Organic Compounds Catalytic Elimination
    COMSOL Computational Fluid Dynamics for Microreactors Used in Volatile Organic Compounds Catalytic Elimination Maria Olea 1, S. Odiba1, S. Hodgson1, A. Adgar1 1School of Science and Engineering, Teesside University, Middlesbrough, United Kingdom Abstract Volatile organic compounds (VOCs) are organic chemicals that will evaporate easily into the air at room temperature and contribute majorly to the formation of photochemical ozone. They are emitted as gases from certain solids and liquids in to the atmosphere and affect indoor and outdoor air quality. They includes acetone, benzene, ethylene glycol, formaldehyde, methylene chloride, perchloroethylene, toluene, xylene, 1,3-butadiene, butane, pentane, propane, ethanol, etc. Source of VOCs emission include paints, industrial processes, transportation activities, household products such as cleaning agents, aerosols, fuel and cosmetics. Catalytic oxidation is one of the most promising elimination techniques for VOCs as a result of it flexibility and energy saving. The catalytic materials enhance the chemical reactions that convert VOCs (through oxidation) into carbon dioxide and water. Removal of volatile organic compounds at room temperature has always been a challenge to researchers. Developing a catalyst which could completely oxidize the VOCs at very low temperature in order to avoid catalyst deactivation and promote energy saving has been the key focus among researchers in the recent years. Moreover, as the oxidation reaction is highly exothermic, the use of catalytic microreactors instead of packed bed reactors was considered. Microreactors are microfabricated catalytic chemical reactors with at least one linear dimension in the micrometer range. Usually, they consist of narrow channels and exhibit large surface area-to- volume ratios which leads to high heat and mass transfer properties.
    [Show full text]
  • Heat and Energy Conservation
    1 Lecture notes in Fluid Dynamics (1.63J/2.01J) by Chiang C. Mei, MIT, Spring, 2007 CHAPTER 4. THERMAL EFFECTS IN FLUIDS 4-1-2energy.tex 4.1 Heat and energy conservation Recall the basic equations for a compressible fluid. Mass conservation requires that : ρt + ∇ · ρ~q = 0 (4.1.1) Momentum conservation requires that : = ρ (~qt + ~q∇ · ~q)= −∇p + ∇· τ +ρf~ (4.1.2) = where the viscous stress tensor τ has the components = ∂qi ∂qi ∂qk τ = τij = µ + + λ δij ij ∂xj ∂xi ! ∂xk There are 5 unknowns ρ, p, qi but only 4 equations. One more equation is needed. 4.1.1 Conservation of total energy Consider both mechanical ad thermal energy. Let e be the internal (thermal) energy per unit mass due to microscopic motion, and q2/2 be the kinetic energy per unit mass due to macroscopic motion. Conservation of energy requires D q2 ρ e + dV rate of incr. of energy in V (t) Dt ZZZV 2 ! = − Q~ · ~ndS rate of heat flux into V ZZS + ρf~ · ~qdV rate of work by body force ZZZV + Σ~ · ~qdS rate of work by surface force ZZX Use the kinematic transport theorm, the left hand side becomes D q2 ρ e + dV ZZZV Dt 2 ! 2 Using Gauss theorem the heat flux term becomes ∂Qi − QinidS = − dV ZZS ZZZV ∂xi The work done by surface stress becomes Σjqj dS = (σjini)qj dS ZZS ZZS ∂(σijqj) = (σijqj)ni dS = dV ZZS ZZZV ∂xi Now all terms are expressed as volume integrals over an arbitrary material volume, the following must be true at every point in space, 2 D q ∂Qi ∂(σijqi) ρ e + = − + ρfiqi + (4.1.3) Dt 2 ! ∂xi ∂xj As an alternative form, we differentiate the kinetic energy and get De
    [Show full text]
  • Lecture 5: Magnetic Mirroring
    !"#$%&'()%"*#%*+,-./-*+01.2(.*3+456789* !"#$%&"'()'*+,-".#'*/&&0&/-,' Dr. Peter T. Gallagher Astrophysics Research Group Trinity College Dublin :&2-;-)(*!"<-$2-"(=*%>*/-?"=)(*/%/="#* o Gyrating particle constitutes an electric current loop with a dipole moment: 1/2mv2 µ = " B o The dipole moment is conserved, i.e., is invariant. Called the first adiabatic invariant. ! o µ = constant even if B varies spatially or temporally. If B varies, then vperp varies to keep µ = constant => v|| also changes. o Gives rise to magnetic mirroring. Seen in planetary magnetospheres, magnetic bottles, coronal loops, etc. Bz o Right is geometry of mirror Br from Chen, Page 30. @-?"=)(*/2$$%$2"?* o Consider B-field pointed primarily in z-direction and whose magnitude varies in z- direction. If field is axisymmetric, B! = 0 and d/d! = 0. o This has cylindrical symmetry, so write B = Brrˆ + Bzzˆ o How does this configuration give rise to a force that can trap a charged particle? ! o Can obtain Br from " #B = 0 . In cylindrical polar coordinates: 1 " "Bz (rBr )+ = 0 r "r "z ! " "Bz => (rBr ) = #r "r "z o If " B z / " z is given at r = 0 and does not vary much with r, then r $Bz 1 2&$ Bz ) ! rBr = " #0 r dr % " r ( + $z 2 ' $z *r =0 ! 1 &$ Bz ) Br = " r( + (5.1) 2 ' $z *r =0 ! @-?"=)(*/2$$%$2"?* o Now have Br in terms of BZ, which we can use to find Lorentz force on particle. o The components of Lorentz force are: Fr = q(v" Bz # vzB" ) (1) F" = q(#vrBz + vzBr ) (2) (3) Fz = q(vrB" # v" Br ) (4) o As B! = 0, two terms vanish and terms (1) and (2) give rise to Larmor gyration.
    [Show full text]
  • Chapter 15 - Fluid Mechanics Thursday, March 24Th
    Chapter 15 - Fluid Mechanics Thursday, March 24th •Fluids – Static properties • Density and pressure • Hydrostatic equilibrium • Archimedes principle and buoyancy •Fluid Motion • The continuity equation • Bernoulli’s effect •Demonstration, iClicker and example problems Reading: pages 243 to 255 in text book (Chapter 15) Definitions: Density Pressure, ρ , is defined as force per unit area: Mass M ρ = = [Units – kg.m-3] Volume V Definition of mass – 1 kg is the mass of 1 liter (10-3 m3) of pure water. Therefore, density of water given by: Mass 1 kg 3 −3 ρH O = = 3 3 = 10 kg ⋅m 2 Volume 10− m Definitions: Pressure (p ) Pressure, p, is defined as force per unit area: Force F p = = [Units – N.m-2, or Pascal (Pa)] Area A Atmospheric pressure (1 atm.) is equal to 101325 N.m-2. 1 pound per square inch (1 psi) is equal to: 1 psi = 6944 Pa = 0.068 atm 1atm = 14.7 psi Definitions: Pressure (p ) Pressure, p, is defined as force per unit area: Force F p = = [Units – N.m-2, or Pascal (Pa)] Area A Pressure in Fluids Pressure, " p, is defined as force per unit area: # Force F p = = [Units – N.m-2, or Pascal (Pa)] " A8" rea A + $ In the presence of gravity, pressure in a static+ 8" fluid increases with depth. " – This allows an upward pressure force " to balance the downward gravitational force. + " $ – This condition is hydrostatic equilibrium. – Incompressible fluids like liquids have constant density; for them, pressure as a function of depth h is p p gh = 0+ρ p0 = pressure at surface " + Pressure in Fluids Pressure, p, is defined as force per unit area: Force F p = = [Units – N.m-2, or Pascal (Pa)] Area A In the presence of gravity, pressure in a static fluid increases with depth.
    [Show full text]
  • Fluid Dynamics and Mantle Convection
    Subduction II Fundamentals of Mantle Dynamics Thorsten W Becker University of Southern California Short course at Universita di Roma TRE April 18 – 20, 2011 Rheology Elasticity vs. viscous deformation η = O (1021) Pa s = viscosity µ= O (1011) Pa = shear modulus = rigidity τ = η / µ = O(1010) sec = O(103) years = Maxwell time Elastic deformation In general: σ ε ij = Cijkl kl (in 3-D 81 degrees of freedom, in general 21 independent) For isotropic body this reduces to Hooke’s law: σ λε δ µε ij = kk ij + 2 ij λ µ ε ε ε ε with and Lame’s parameters, kk = 11 + 22 + 33 Taking shear components ( i ≠ j ) gives definition of rigidity: σ µε 12 = 2 12 Adding the normal components ( i=j ) for all i=1,2,3 gives: σ λ µ ε κε kk = (3 + 2 ) kk = 3 kk with κ = λ + 2µ/3 = bulk modulus Linear viscous deformation (1) Total stress field = static + dynamic part: σ = − δ +τ ij p ij ij Analogous to elasticity … General case: τ = ε ij C'ijkl kl Isotropic case: τ = λ ε δ + ηε ij ' kk ij 2 ij Linear viscous deformation (2) Split in isotropic and deviatoric part (latter causes deformation): 1 σ ' = σ − σ δ = σ + pδ ij ij 3 kk ij ij ij 1 ε' = ε − ε δ ij ij 3 kk ij which gives the following stress: σ = − δ + ςε δ + ηε 'ij ( p p) ij kk ij 2 'ij ε = With compressibility term assumed 0 (Stokes condition kk 0 ) 2 ( ς = λ ' + η = bulk viscosity) 3 τ Now τ = 2 η ε or η = ij ij ij ε 2 ij η = In general f (T,d, p, H2O) Non-linear (or non-Newtonian) deformation General stress-strain relation: ε = Aτ n n = 1 : Newtonian n > 1 : non-Newtonian n → ∞ : pseudo-brittle 1 −1 1−n 1 −1/ n (1−n) / n Effective viscosity η = A τ = A ε eff 2 2 Application: different viscosities under oceans with different absolute plate motion, anisotropic viscosities by means of superposition (Schmeling, 1987) Microphysical theory and observations Maximum strength of materials (1) ‘Strength’ is maximum stress that material can resist In principle, viscous fluid has zero strength.
    [Show full text]
  • THERMODYNAMICS, HEAT TRANSFER, and FLUID FLOW, Module 3 Fluid Flow Blank Fluid Flow TABLE of CONTENTS
    Department of Energy Fundamentals Handbook THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW, Module 3 Fluid Flow blank Fluid Flow TABLE OF CONTENTS TABLE OF CONTENTS LIST OF FIGURES .................................................. iv LIST OF TABLES ................................................... v REFERENCES ..................................................... vi OBJECTIVES ..................................................... vii CONTINUITY EQUATION ............................................ 1 Introduction .................................................. 1 Properties of Fluids ............................................. 2 Buoyancy .................................................... 2 Compressibility ................................................ 3 Relationship Between Depth and Pressure ............................. 3 Pascal’s Law .................................................. 7 Control Volume ............................................... 8 Volumetric Flow Rate ........................................... 9 Mass Flow Rate ............................................... 9 Conservation of Mass ........................................... 10 Steady-State Flow ............................................. 10 Continuity Equation ............................................ 11 Summary ................................................... 16 LAMINAR AND TURBULENT FLOW ................................... 17 Flow Regimes ................................................ 17 Laminar Flow ...............................................
    [Show full text]
  • Experiment 7: Conservation of Energy
    Experiment 7: Conservation of Energy One of the most important and useful concepts in mechanics is that of \Conservation of Energy". In this experiment, you will make measurements to demonstrate the conservation of mechanical energy and its transformation between kinetic energy and potential energy. The Total Mechanical Energy, E, of a system is defined as the sum of the Kinetic Energy, K, and the Potential Energy, U: E = K + U: (1) If the system is isolated, with only conservative forces acting on its parts, the total mechanical energy of the system is a constant. The mechanical energy can, however, be transformed between its kinetic and potential forms. cannot be destroyed. Rather, the energy is transmitted from one form to another. Any change in the kinetic energy will cause a corresponding change in the potential energy, and vice versa. The conservation of energy then dictates that, ∆K + ∆U = 0 (2) where ∆K is the change in the kinetic energy, and ∆U is the change in potential energy. Potential energy is a form of stored energy and is a consequence of the work done by a force. Examples of forces which have an associated potential energy are the gravitational and the electromagnetic fields and, in mechanics, a spring. In a sense potential energy is a storage system for energy. For a body moving under the influence of a force F , the change in potential energy is given by Z f −! −! ∆U = − F · ds (3) i where i and f represent the initial and final positions of the body, respectively. Hence, from Equation 2 we have what is commonly referred to as the work-kinetic energy theorem: Z f −! −! ∆K = F · ds (4) i Consider a body of mass m, being accelerated by a compressed spring.
    [Show full text]