1 The mechanics of shallow magma reservoir outgassing. 2 A. Parmigiani1, W Degruyter2, S. Leclaire3.4, C. Huber5 and O. Bachmann1 3 1Institute of Geochemistry and Petrology, ETH Zurich, Clausiusstrasse 25, 8092 Zurich, 4 Switzerland. 5 2School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, 6 CF10 3AT, Wales, UK 7 3Computer Science Department, University of Geneva, Route de Drize 7, 1227 Carouge, 8 Switzerland 9 4Department of Chemical Engineering, Polytechnique Montréal, 2500, Chemin de 10 Polytechnique, Montreal, H3T 1J4, Canada 11 5Department of Earth, Environmental and Planetary Sciences, Brown University, Rhode 12 Island 02912, USA 13 14 Corresponding author: Andrea Parmigiani (
[email protected]) 15 Key Points: 16 x Outgassing potential of a magma reservoir is a strong function of its crystal content. 17 x Outgassing efficiency is also modulated by mechanical coupling between reservoir 18 and crust. 19 x Simulations that consider both aspects reveal that the majority of exsolved volatiles is 20 released at intermediate to high crystallinity. 21 22 Abstract 23 Magma degassing fundamentally controls the Earth’s volatile cycles. The large 24 amount of gas expelled into the atmosphere during volcanic eruptions (i.e. volcanic 25 outgassing) is the most obvious display of magmatic volatile release. However, owing to the 26 large intrusive:extrusive ratio, and considering the paucity of volatiles left in intrusive rocks 27 after final solidification, volcanic outgassing likely constitutes only a small fraction of the 28 overall mass of magmatic volatiles released to the Earth’s surface. Therefore, as most magmas 29 stall on their way to the surface, outgassing of uneruptible, crystal-rich magma storage regions 30 will play a dominant role in closing the balance of volatile element cycling between the 31 mantle and the surface.