Stall/Surge Dynamics of a Multi-Stage Air Compressor in Response to a Load Transient of a Hybrid Solid Oxide Fuel Cell-Gas Turbine System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2.0 Axial-Flow Compressors 2.0-1 Introduction the Compressors in Most Gas Turbine Applications, Especially Units Over 5MW, Use Axial fl Ow Compressors
2.0 Axial-Flow Compressors 2.0-1 Introduction The compressors in most gas turbine applications, especially units over 5MW, use axial fl ow compressors. An axial fl ow compressor is one in which the fl ow enters the compressor in an axial direction (parallel with the axis of rotation), and exits from the gas turbine, also in an axial direction. The axial-fl ow compressor compresses its working fl uid by fi rst accelerating the fl uid and then diffusing it to obtain a pressure increase. The fl uid is accelerated by a row of rotating airfoils (blades) called the rotor, and then diffused in a row of stationary blades (the stator). The diffusion in the stator converts the velocity increase gained in the rotor to a pressure increase. A compressor consists of several stages: 1) A combination of a rotor followed by a stator make-up a stage in a compressor; 2) An additional row of stationary blades are frequently used at the compressor inlet and are known as Inlet Guide Vanes (IGV) to ensue that air enters the fi rst-stage rotors at the desired fl ow angle, these vanes are also pitch variable thus can be adjusted to the varying fl ow requirements of the engine; and 3) In addition to the stators, another diffuser at the exit of the compressor consisting of another set of vanes further diffuses the fl uid and controls its velocity entering the combustors and is often known as the Exit Guide Vanes (EGV). In an axial fl ow compressor, air passes from one stage to the next, each stage raising the pressure slightly. -
CFD Based Design for Ejector Cooling System Using HFOS (1234Ze(E) and 1234Yf)
energies Article CFD Based Design for Ejector Cooling System Using HFOS (1234ze(E) and 1234yf) Anas F A Elbarghthi 1,*, Saleh Mohamed 2, Van Vu Nguyen 1 and Vaclav Dvorak 1 1 Department of Applied Mechanics, Faculty of Mechanical Engineering, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic; [email protected] (V.V.N.); [email protected] (V.D.) 2 Department of Mechanical and Materials Engineering, Masdar Institute, Khalifa University of Science and Technology, Abu Dhabi, UAE; [email protected] * Correspondence: [email protected] Received: 18 February 2020; Accepted: 14 March 2020; Published: 18 March 2020 Abstract: The field of computational fluid dynamics has been rekindled by recent researchers to unleash this powerful tool to predict the ejector design, as well as to analyse and improve its performance. In this paper, CFD simulation was conducted to model a 2-D axisymmetric supersonic ejector using NIST real gas model integrated in ANSYS Fluent to probe the physical insight and consistent with accurate solutions. HFOs (1234ze(E) and 1234yf) were used as working fluids for their promising alternatives, low global warming potential (GWP), and adhering to EU Council regulations. The impact of different operating conditions, performance maps, and the Pareto frontier performance approach were investigated. The expansion ratio of both refrigerants has been accomplished in linear relationship using their critical compression ratio within 0.30% accuracy. The results show that ± R1234yf achieved reasonably better overall performance than R1234ze(E). Generally, by increasing the primary flow inlet saturation temperature and pressure, the entrainment ratio will be lower, and this allows for a higher critical operating back pressure. -
MSME with Depth in Fluid Mechanics
MSME with depth in Fluid Mechanics The primary areas of fluid mechanics research at Michigan State University's Mechanical Engineering program are in developing computational methods for the prediction of complex flows, in devising experimental methods of measurement, and in applying them to improve understanding of fluid-flow phenomena. Theoretical fluid dynamics courses provide a foundation for this research as well as for related studies in areas such as combustion, heat transfer, thermal power engineering, materials processing, bioengineering and in aspects of manufacturing engineering. MS Track for Fluid Mechanics The MSME degree program for fluid mechanics is based around two graduate-level foundation courses offered through the Department of Mechanical Engineering (ME). These courses are ME 830 Fluid Mechanics I Fall ME 840 Computational Fluid Mechanics and Heat Transfer Spring The ME 830 course is the basic graduate level course in the continuum theory of fluid mechanics that all students should take. In the ME 840 course, the theoretical understanding gained in ME 830 is supplemented with material on numerical methods, discretization of equations, and stability constraints appropriate for developing and using computational methods of solution to fluid mechanics and convective heat transfer problems. Students augment these courses with additional courses in fluid mechanics and satisfy breadth requirements by selecting courses in the areas of Thermal Sciences, Mechanical and Dynamical Systems, and Solid and Structural Mechanics. Graduate Course and Research Topics (Profs. Benard, Brereton, Jaberi, Koochesfahani, Naguib) ExperimentalResearch Many fluid flow phenomena are too complicated to be understood fully or predicted accurately by either theory or computational methods. Sometimes the boundary conditions of real-world problems cannot be analyzed accurately. -
Turbofan Engine Malfunction Recognition and Response Final Report
07/17/09 Turbofan Engine Malfunction Recognition and Response Final Report Foreword This document summarizes the work done to develop generic text and video training material on the recognition and appropriate response to turbofan engine malfunctions, and to develop a simulator upgrade package improving the realism of engine malfunction simulation. This work was undertaken as a follow-on to the AIA/AECMA report on Propulsion System Malfunction Plus Inappropriate Crew Response (PSM+ICR), published in 1998, and implements some of the recommendations made in the PSM+ICR report. The material developed is closely based upon the PSM+ICR recommendations. The work was sponsored and co-chaired by the ATA and FAA. The organizations involved in preparation and review of the material included regulatory authorities, accident investigation authorities, pilot associations, airline associations, airline operators, training companies and airplane and engine manufacturers. The FAA is publishing the text and video material, and will make the simulator upgrade package available to interested parties. Reproduction and adaptation of the text and video material to meet the needs of individual operators is anticipated and encouraged. Copies may be obtained by contacting: FAA Engine & Propeller Directorate ANE-110 12 New England Executive Park Burlington, MA 01803 1 07/17/09 Contributing Organizations and Individuals Note: in order to expedite progress and maximize the participation of US airlines, it was decided to hold all meetings in North America. European regulators, manufacturers and operators were both invited to attend and informed of the progress of the work. Air Canada Capt. E Jokinen ATA Jim Mckie AirTran Capt. Robert Stienke Boeing Commercial Aircraft Van Winters CAE/ Flight Safety Boeing Capt. -
Axial Compressor Stall and Surge Prediction by Measurements
International Journal of Rotating Machinery (C) 1999 OPA (Overseas Publishers Association) N.V. 1999, Vol. 5, No. 2, pp. 77-87 Published by license under Reprints available directly from the publisher the Gordon and Breach Science Photocopying permitted by license only Publishers imprint. Printed in Malaysia. Axial Compressor Stall and Surge Prediction by Measurements H. HONEN * Institut jFtr Strahlantriebe und Turboarbeitsmaschinen, RWTH Aachen /Aachen University of Technology), 52062 Aachen, Germany (Received 3 April 1997;In final form 10 July 1997) The paper deals with experimental investigations and analyses of unsteady pressure dis- tributions in different axial compressors. Based on measurements in a single stage research compressor the influence of increasing aerodynamic load onto the pressure and velocity fluctuations is demonstrated. Detailed measurements in a 14-stage and a 17-stage gas turbine compressor are reported. For both compressors parameters could be found which are clearly influenced by the aerodynamic load. For the 14-stage compressor the principles for the monitoring of aerodynamic load and stall are reported. Results derived from a monitoring system for multi stage compressors based on these principles are demonstrated. For the 17-stage compressor the data enhance- ment of the measuring signals is shown. The parameters derived from these results provide a good base for the development of another prediction method for the compressor stability limit. In order design an on-line system the classification of the operating and load conditions is provided by a neural net. The training results of the net show a good agreement with different experiments. Keywords." Stall and surge monitoring, Unsteady pressure measurements, Compressor load analysis, Load parameters, Neural nets 1. -
A Study on the Stall Detection of an Axial Compressor Through Pressure Analysis
applied sciences Article A Study on the Stall Detection of an Axial Compressor through Pressure Analysis Haoying Chen 1,† ID , Fengyong Sun 2,†, Haibo Zhang 2,* and Wei Luo 1,† 1 Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing 210016, China; [email protected] (H.C.); [email protected] (W.L.) 2 AVIC Aero-engine Control System Institute, No. 792 Liangxi Road, Wuxi 214000, China; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Received: 5 June 2017; Accepted: 22 July 2017; Published: 28 July 2017 Abstract: In order to research the inherent working laws of compressors nearing stall state, a series of compressor experiments are conducted. With the help of fast Fourier transform, the amplitude–frequency characteristics of pressures at the compressor inlet, outlet and blade tip region outlet are analyzed. Meanwhile, devices imitating inlet distortion were applied in the compressor inlet distortion disturbance. The experimental results indicated that compressor blade tip region pressure showed a better performance than the compressor’s inlet and outlet pressures in regards to describing compressor characteristics. What’s more, compressor inlet distortion always disturbed the compressor pressure characteristics. Whether with inlet distortion or not, the pressure characteristics of pressure periodicity and amplitude frequency could always be maintained in compressor blade tip pressure. For the sake of compressor real-time stall detection application, a compressor stall detection algorithm is proposed to calculate the compressor pressure correlation coefficient. The algorithm also showed a good monotonicity in describing the relationship between the compressor surge margin and the pressure correlation coefficient. -
COMSOL Computational Fluid Dynamics for Microreactors Used in Volatile Organic Compounds Catalytic Elimination
COMSOL Computational Fluid Dynamics for Microreactors Used in Volatile Organic Compounds Catalytic Elimination Maria Olea 1, S. Odiba1, S. Hodgson1, A. Adgar1 1School of Science and Engineering, Teesside University, Middlesbrough, United Kingdom Abstract Volatile organic compounds (VOCs) are organic chemicals that will evaporate easily into the air at room temperature and contribute majorly to the formation of photochemical ozone. They are emitted as gases from certain solids and liquids in to the atmosphere and affect indoor and outdoor air quality. They includes acetone, benzene, ethylene glycol, formaldehyde, methylene chloride, perchloroethylene, toluene, xylene, 1,3-butadiene, butane, pentane, propane, ethanol, etc. Source of VOCs emission include paints, industrial processes, transportation activities, household products such as cleaning agents, aerosols, fuel and cosmetics. Catalytic oxidation is one of the most promising elimination techniques for VOCs as a result of it flexibility and energy saving. The catalytic materials enhance the chemical reactions that convert VOCs (through oxidation) into carbon dioxide and water. Removal of volatile organic compounds at room temperature has always been a challenge to researchers. Developing a catalyst which could completely oxidize the VOCs at very low temperature in order to avoid catalyst deactivation and promote energy saving has been the key focus among researchers in the recent years. Moreover, as the oxidation reaction is highly exothermic, the use of catalytic microreactors instead of packed bed reactors was considered. Microreactors are microfabricated catalytic chemical reactors with at least one linear dimension in the micrometer range. Usually, they consist of narrow channels and exhibit large surface area-to- volume ratios which leads to high heat and mass transfer properties. -
The Power for Flight: NASA's Contributions To
The Power Power The forFlight NASA’s Contributions to Aircraft Propulsion for for Flight Jeremy R. Kinney ThePower for NASA’s Contributions to Aircraft Propulsion Flight Jeremy R. Kinney Library of Congress Cataloging-in-Publication Data Names: Kinney, Jeremy R., author. Title: The power for flight : NASA’s contributions to aircraft propulsion / Jeremy R. Kinney. Description: Washington, DC : National Aeronautics and Space Administration, [2017] | Includes bibliographical references and index. Identifiers: LCCN 2017027182 (print) | LCCN 2017028761 (ebook) | ISBN 9781626830387 (Epub) | ISBN 9781626830370 (hardcover) ) | ISBN 9781626830394 (softcover) Subjects: LCSH: United States. National Aeronautics and Space Administration– Research–History. | Airplanes–Jet propulsion–Research–United States– History. | Airplanes–Motors–Research–United States–History. Classification: LCC TL521.312 (ebook) | LCC TL521.312 .K47 2017 (print) | DDC 629.134/35072073–dc23 LC record available at https://lccn.loc.gov/2017027182 Copyright © 2017 by the National Aeronautics and Space Administration. The opinions expressed in this volume are those of the authors and do not necessarily reflect the official positions of the United States Government or of the National Aeronautics and Space Administration. This publication is available as a free download at http://www.nasa.gov/ebooks National Aeronautics and Space Administration Washington, DC Table of Contents Dedication v Acknowledgments vi Foreword vii Chapter 1: The NACA and Aircraft Propulsion, 1915–1958.................................1 Chapter 2: NASA Gets to Work, 1958–1975 ..................................................... 49 Chapter 3: The Shift Toward Commercial Aviation, 1966–1975 ...................... 73 Chapter 4: The Quest for Propulsive Efficiency, 1976–1989 ......................... 103 Chapter 5: Propulsion Control Enters the Computer Era, 1976–1998 ........... 139 Chapter 6: Transiting to a New Century, 1990–2008 .................................... -
Nasa Tm X-71633 Prediction of Compressor Stall For
NASA TECHN ICAL NASA TM X-71633 MEMORANDUM C,- PREDICTION OF COMPRESSOR STALL FOR DISTORTED AND UNDISTORTED FLOW BY USE OF A MULTISTAGE COMPRESSOR SIMULATION ON THE DIGITAL COMPUTER by Carl Jo Daniele and Fred Teren Lewis Research Center Cleveland, Ohio 44135 TECHNICAL PAPER to be presented at Thirteenth Aerospace Sciences Meeting sponsored by American Institute of Aeronautics and Astronautics Pasadena, California, January 20-22, 1975 (NASA-TM-X-71633) PREDICTION OF N75- 13190 COMPRESSOR STALL FOR DISTORTED AND UNDISTORTED FLOW BY USE OF A MULTISTAGE COMPRESSOR SIMULATION ON THE DIGITAL Unclas COMPUTER (NASA) 12 p HC $3.25 CSCL 20D G3/34 03669 PREDICTION OF COMPRESSOR STALL FOR DISTORTED AND UNDISTORTED FLOW BY USE OF A MULTISTAGE COMPRESSOR SIMULATION ON THE DIGITAL COMPUTER Carl J. Daniele and Fred Teren National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio Abstract 6 ratio of total pressure to sea level pressure A simulation technique is presented for the prediction of compressor stall for axial-flow com- a ratio of total temperature to sea level pressors for clean and distorted inlet flow. The temperature simulation is implemented on the digital computer and uses stage stacking and lumped-volume gas dy- p weight density, kg/m 3 ; ibm/ft 3 namics. The resulting nonlinear differential equations are linearized about a steady-state op- O flow coefficient erating point, and a Routh-Hurwitz stability test is performed on the linear system matrix. Par- pressure coefficient S allel compressor theory is utilized to extend the 0 technique to the distorted inlet flow problem. T temperature coefficient L The method is applied to the eight-stage J85-13 compressor. -
THERMODYNAMICS, HEAT TRANSFER, and FLUID FLOW, Module 3 Fluid Flow Blank Fluid Flow TABLE of CONTENTS
Department of Energy Fundamentals Handbook THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW, Module 3 Fluid Flow blank Fluid Flow TABLE OF CONTENTS TABLE OF CONTENTS LIST OF FIGURES .................................................. iv LIST OF TABLES ................................................... v REFERENCES ..................................................... vi OBJECTIVES ..................................................... vii CONTINUITY EQUATION ............................................ 1 Introduction .................................................. 1 Properties of Fluids ............................................. 2 Buoyancy .................................................... 2 Compressibility ................................................ 3 Relationship Between Depth and Pressure ............................. 3 Pascal’s Law .................................................. 7 Control Volume ............................................... 8 Volumetric Flow Rate ........................................... 9 Mass Flow Rate ............................................... 9 Conservation of Mass ........................................... 10 Steady-State Flow ............................................. 10 Continuity Equation ............................................ 11 Summary ................................................... 16 LAMINAR AND TURBULENT FLOW ................................... 17 Flow Regimes ................................................ 17 Laminar Flow ............................................... -
Performance Evaluation of Multipurpose Solar Heating System
Mechanics and Mechanical Engineering Vol. 20, No. 4 (2016) 359{370 ⃝c Lodz University of Technology Performance Evaluation of Multipurpose Solar Heating System R. Venkatesh Department of Mechanical Engineering Srinivasan Engineering College Perambalur, Tamilnadu, India V. Vijayan Department of Mechanical Engineering K. Ramakrishnan College of Technology Samayapuram, Trichy, Tamilnadu, India Received (29 May 2016) Revised (26 July 2016) Accepted (25 September 2016) In order to increase the heat transfer and thermal performance of solar collectors, a multipurpose solar collector is designed and investigated experimentally by combining the solar water collector and solar air collector. In this design, the storage tank of the conventional solar water collector is modified as riser tubes and header and is fitted in the bottom of the solar air heater. This paper presents the study of fluid flow and heat transfer in a multipurpose solar air heater by using Computational Fluid Dynamics (CFD) which reduces time and cost. The result reveals that in the multipurpose solar air heater at load condition, for flow rate of 0.0176 m3/s m2, the maximum average thermal efficiency was 73.06% for summer and 67.15 % for winter season. In multipurpose solar air heating system, the simulated results are compared to experimental values and the deviation falls within ± 11.61% for summer season and ± 10.64% for winter season. It proves that the simulated (CFD) results falls within the acceptable limits. Keywords: solar water collector, solar air collector, fluid flow, heat transfer and Compu- tational fluid dynamics. 1. Introduction Solar energy plays an important role in low{temperature thermal applications, since it replaces a considerable amount of conventional fuel. -
Accident Prevention December 1993
F L I G H T S A F E T Y F O U N D A T I O N Accident Prevention Vol. 50 No. 12 For Everyone Concerned with the Safety of Flight December 1993 Training, Deicing and Emergency Checklist Linked in MD-81 Accident Following Clear-ice Ingestion by Engines While the crew of a Scandinavian Airlines System (SAS) jet transport was praised for its skill in executing an off-airport landing in an aircraft without operating engines, Swedish accident investigators found serious deficiencies in aircraft ground deicing procedures and no awareness of a throttle system that contributed to the severity of engine surges that destroyed both engines. Editorial Staff Report The crash of a Scandinavian Airlines System (SAS) McDonnell While the aircraft was being deiced on the ground, the Douglas DC-9-81 (MD-81) after clear ice was ingested by captain mentioned the procedure to follow in the event of the engines raises serious issues about training, quality an engine failure at Stockholm, saying (of the procedure), control and flight operations, an official Swedish aircraft “Engine failure follow … standard instrument departure accident investigation said. [SID] ... 2,000 ... that’s very general.” The aircraft’s right engine began to surge shortly after The aircraft took off at 0847 hours local time, the report takeoff from Stockholm/Arlanda Airport on Dec. 27, 1991, said. Sunrise was at 0848. Weather was reported at 0850 as according to a recent report by the Swedish Board of wind 360 degrees at 11 knots, visibility 6.2 miles (10 Accident Investigation (BAI).