Copyrighted Material
Index Page numbers in italics refer to fi gures; those in bold to tables Acasta gneisses 347 sea fl oor divided into 84 diversity of 288–9 accretionary orogens, structure 287, 309, Aleutian accretionary prism growth latest phase of compression 289 336–42 rate 267 Andean foreland, styles of tectonic active, seismic refl ection profi les 295, 315, Aleutian arc, focal mechanism solutions of shortening 292, 292, 293, 294 340, 342 earthquakes 256, 257 foreland basement thrusts 292, 293 Canadian Cordillera 336–7, 338, 339, 341, Aleutian–Alaska arc, prominent gap in segmentation of foreland 292, 294 376 seismicity 259, 261 thick-skinned and thin-skinned fold and common features of 338, 340, 502 alkaline series, includes shoshonitic thrust belts 292, 293 western North America 336, 337 lavas 271 Andean-type subduction, specifi c types of accretionary prisms 251, 264–9, 270 Alpine Fault, New Zealand 228–30, 338 deposit 417–18 accumulation of sediments including accommodation of oblique slip 244, 245, backarc environment, granite belts with olistostromes 267 246 tin and tungsten 417–18 creation of mélange 268 Breaksea Basin once continuous with stratabound copper sulfi des 417 décollement 264, 266 Dagg Basin 220, 221, 222 Andes, central 301–2 sliding on 267 central segment, weakly/non-partitioned arcuate shape (orocline) 294 deformation front 264 style of transpressional evolution of shortening (model) 300 development of 243, 244 deformation 213, 223 fl at and steep subduction zones 289, 291 and development of forearc basin 267 change in relative plate
[Show full text]