Revised Instrumental Hypocpnters and Correlation Off Earthquake Locations and Tectonics in the Central United States
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Copyrighted Material
Index Page numbers in italics refer to fi gures; those in bold to tables Acasta gneisses 347 sea fl oor divided into 84 diversity of 288–9 accretionary orogens, structure 287, 309, Aleutian accretionary prism growth latest phase of compression 289 336–42 rate 267 Andean foreland, styles of tectonic active, seismic refl ection profi les 295, 315, Aleutian arc, focal mechanism solutions of shortening 292, 292, 293, 294 340, 342 earthquakes 256, 257 foreland basement thrusts 292, 293 Canadian Cordillera 336–7, 338, 339, 341, Aleutian–Alaska arc, prominent gap in segmentation of foreland 292, 294 376 seismicity 259, 261 thick-skinned and thin-skinned fold and common features of 338, 340, 502 alkaline series, includes shoshonitic thrust belts 292, 293 western North America 336, 337 lavas 271 Andean-type subduction, specifi c types of accretionary prisms 251, 264–9, 270 Alpine Fault, New Zealand 228–30, 338 deposit 417–18 accumulation of sediments including accommodation of oblique slip 244, 245, backarc environment, granite belts with olistostromes 267 246 tin and tungsten 417–18 creation of mélange 268 Breaksea Basin once continuous with stratabound copper sulfi des 417 décollement 264, 266 Dagg Basin 220, 221, 222 Andes, central 301–2 sliding on 267 central segment, weakly/non-partitioned arcuate shape (orocline) 294 deformation front 264 style of transpressional evolution of shortening (model) 300 development of 243, 244 deformation 213, 223 fl at and steep subduction zones 289, 291 and development of forearc basin 267 change in relative plate -
4 Biennial Structural Geology & Tectonics Forum 2016
Program, Abstract and Information Book 4th Biennial Structural Geology & Tectonics Forum 2016 Sonoma State University Rohnert Park, CA August 1st – 3rd Forum Staff and Organizational Committee Forum Organizers: Matty Mookerjee (Sonoma State University) Steering Committee: Yvette Kuiper (Colorado School of Mines) and Paul Karabinos (Williams College) Technical Session Organizers: Katherine Boggs (Mount Royal University) and Steve Wojtal (Oberlin College) Field Trip Organizers: Christie Rowe (McGill University) and Sarah Roeske (UC Davis) Short Course Organizers: Kurt Burmeister (U. of the Pacific) and Saad Haq (Purdue University) Web Site : Barbara Tewksbury (Hamilton College) Logistics: Elisabeth (Liz) Ketterman and Dena Peacock (Sonoma State University) Registration: Conferences and Events Services (Sonoma State University) Finance Committee: Emily Peterman (Bowdoin College) and Hal Bosbyshell (West Chester University) TABLE OF CONTENTS GENERAL INFORMATION ....................................................................................ii CAMPUS MAPS…………………………………………………………………………………………..……vi FORUM PROGRAM ...............................................................................................1 Saturday, July 30th ....................................................................................1 Sunday, July 31st ......................................................................................3 Monday, August 1st ..................................................................................5 Tuesday, August 2nd .................................................................................7 -
Subduction to Strike-Slip Transitions on Plate Boundaries
Penrose Conference SUBDUCTION TO STRIKE-SLIP TRANSITIONS ON PLATE BOUNDARIES Puerto Plata, Dominican Republic January 18-24, 1999 ABSTRACT VOLUME Conveners: Paul Mann, Nancy Grindlay and James Dolan Sponsored by the Geological Society of America, Petroleum Research Fund, NSF and NASA Penrose Conference: Subduction to Strike-Slip Transitions on Plate Boundaries, Jan. 18-24, 1999 STRUCTURAL GEOLOGY AND SEDIMENTOLOGY OF A PLIOCENE INNER-TRENCH SLOPE SUCCESSION, NORTHWESTERN ECUADOR K. R. AALTO Dept. of Geology, Humboldt State Univ., Arcata, CA, USA 95521, [email protected] The Pliocene Upper Onzole Formation exposed in the vicinity of Punta Gorda, near Esmeraldas, Ecuador, is composed mainly of fine-grained mud turbidites, having regular vertical sequences of sedimentary structures associated with a positive grading, and bioturbation restricted mostly to the tops of beds. The remainder of beds measured consist of volcanic ash, mud pelagite, and glauconitic silt-sand turbidites. Vertical sequential analysis of stratigraphic sections for the most part show no pronounced trends in bed thickness or grain size. Volcanic ashes are crystal-vitric tuffs occurring in four bedding styles: A) normally- graded ashes with burrowed gradational tops and sharp wavy bases; B) ashes that form part of a complex microstratigraphy consisting of thinly-bedded mudstone, silt-sand turbidites, tuffaceous mudstone, and ash beds; C) less conspicuous ash laminae and ash-filled burrows; and D) a tuffaceous bed with ash and mud swirled together in convolute layers. Ash chemistry suggests an Andean high-K calc-alkaline provenance. Facies relations, paleontologic data and regional geologic setting suggest sediment accumulation on an inner trench slope in a basin situated oceanward of the Pliocene trench-slope break. -
Deep Crustal Expressions of Exhumed Strike-Slip Fault Systems: Shear Zone Initiation on Rheological Boundaries
Earth-Science Reviews 162 (2016) 155–176 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Invited review Deep crustal expressions of exhumed strike-slip fault systems: Shear zone initiation on rheological boundaries Shuyun Cao a,b,⁎, Franz Neubauer b a State Key Laboratory of Geological Processes and Mineral Resources, Center for Global Tectonics and School of Earth Sciences, China University of Geosciences, Wuhan 430074, China b Dept. Geography and Geology, University of Salzburg, Hellbrunnerstr. 34, A-5020 Salzburg, Austria article info abstract Article history: The formation of major exhumed strike-slip faults represents one of the most important dynamic processes af- Received 22 February 2016 fecting the evolution of the Earth's lithosphere. Detailed models of the potential initiation, their properties and Received in revised form 20 September 2016 architecture of orogen-scale exhumed strike-slip faults, which are often subparallel to mountain ranges, are Accepted 21 September 2016 rare. The initiation of strike-slip faults is at depth, where temperature-controlled rheological weakening mecha- Available online 23 September 2016 nisms play the essential role localizing future strike-slip faults. In this review study, we highlight that in pluton- and metamorphic core complex (MCC)-controlled tectonic settings, as end-members, the initiation of strike-slip Keywords: Exhumed strike-slip fault faults occurs by rheological weakening along hot-to-cold contacts deep within the crust and mantle lithosphere, Metamorphic core complex respectively. These endmember processes are potential mechanisms for the initiation of orogen-scale exhumed Pluton strike-slip faults at depth result in a specific thermal and structural architecture. -
Appendix Data Summary Tables
D APPENDIX DATA SUMMARY TABLES Default Source Characteristics for CEUS SSC Project Study Region Table D-5.4 Future Earthquake Characteristics RLME Sources Table D-6.1.1 Charlevoix RLME Table D-6.1.2 Charleston RLME Table D-6.1.3 Cheraw Fault RLME Table D-6.1.4 Oklahoma Aulacogen RLME Table D-6.1.5 Reelfoot Rift–New Madrid Seismic Zone RLMEs [No Table D-6.1.6] [Reelfoot Rift–Eastern Rift Margin RLME; see Table D-6.1.5] [No Table D-6.1.7] [Reelfoot Rift–Marianna RLME; see Table D-6.1.5] [No Table D-6.1.8] [Reelfoot Rift–Commerce Fault Zone RLME; see Table D-6.1.5] Table D-6.1.9 Wabash Valley RLME Seismotectonic Zones Table D-7.3.1 St. Lawrence Rift Zone (SLR) Table D-7.3.2 Great Meteor Hotspot Zone (GMH) Table D-7.3.3 Northern Appalachian Zone (NAP) Table D-7.3.4 Paleozoic Extended Crust Zone (PEZ; narrow [N] and wide [W]) [No Table D-7.3.5] [Illinois Basin-Extended Basement Zone (IBEB); see Table D-6.1.9] [No Table D-7.3.6] [Reelfoot Rift Zone (RR) including Rough Creek Graben (RR-RCG); see Table D-6.1.5] Table D-7.3.7 Extended Continental Crust Zone–Atlantic Margin (ECC-AM) [No Table D-7.3.8] [Atlantic Highly Extended Crust Zone (AHEX); see Table D-7.3.7] Table D-7.3.9 Extended Continental Crust Zone–Gulf Coast (ECC-GC) [No Table D-7.3.10] [Gulf Coast Highly Extended Crust Zone (GHEX); see Table D-7.3.9] [No Table D-7.3.11] [Oklahoma Aulacogen (OKA); see Table D-6.1.4] Table D-7.3.12 Midcontinent-Craton Zone (MidC) D-1 Mmax Zones Criteria for defining the MESE/NMESE boundary for the two-zone alternative are discussed in Section 6.2.2. -
Ruscetta and Foley 1981 DOE-ID
DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. DOE/ :ID/l20 7 9 -- 3 9 DE82 003944 GEOTHERMAL DIRECT HEAT PROGRAM GL ENW OOD SPRINGS TECHNICAL CONFERENCE PROCEEDINGS VOLUME I PAPERS PRESENTED STATE COUPLED GEOTHERMAL RESOURCE ASSESSMENT PROGRAF1 Carl A. Ruscetta Duncan Foley Editors May 1981 Work performed ilnder Contract No. DE-AC07-801 D12079 % L>ISTRIBUTION OF. THIS DOCUMENT. 1s WUMIIED c NOTICE This report was prepared to document work sponsored by the United States Government. Neither the United States nor its agent, the United States Department of Energy, nor any Federal employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.