Copyrighted Material

Total Page:16

File Type:pdf, Size:1020Kb

Copyrighted Material Index Page numbers in italics refer to fi gures; those in bold to tables Acasta gneisses 347 sea fl oor divided into 84 diversity of 288–9 accretionary orogens, structure 287, 309, Aleutian accretionary prism growth latest phase of compression 289 336–42 rate 267 Andean foreland, styles of tectonic active, seismic refl ection profi les 295, 315, Aleutian arc, focal mechanism solutions of shortening 292, 292, 293, 294 340, 342 earthquakes 256, 257 foreland basement thrusts 292, 293 Canadian Cordillera 336–7, 338, 339, 341, Aleutian–Alaska arc, prominent gap in segmentation of foreland 292, 294 376 seismicity 259, 261 thick-skinned and thin-skinned fold and common features of 338, 340, 502 alkaline series, includes shoshonitic thrust belts 292, 293 western North America 336, 337 lavas 271 Andean-type subduction, specifi c types of accretionary prisms 251, 264–9, 270 Alpine Fault, New Zealand 228–30, 338 deposit 417–18 accumulation of sediments including accommodation of oblique slip 244, 245, backarc environment, granite belts with olistostromes 267 246 tin and tungsten 417–18 creation of mélange 268 Breaksea Basin once continuous with stratabound copper sulfi des 417 décollement 264, 266 Dagg Basin 220, 221, 222 Andes, central 301–2 sliding on 267 central segment, weakly/non-partitioned arcuate shape (orocline) 294 deformation front 264 style of transpressional evolution of shortening (model) 300 development of 243, 244 deformation 213, 223 fl at and steep subduction zones 289, 291 and development of forearc basin 267 change in relative plate motion, oblique Neogene volcanism above steeply fold and thrust belt 264 continent–continent collision 228 dipping slab 289 frontal accretion 265 crustal structure below 213, 242, 242 rotation round vertical axis during the large negative anomalies 252 dextral movement, accommodation Neogene 294 lateral growth 265–6 of 213, 220, 228 seismic refl ection profi le suggests long-term circulation of material in 267 dextral transform fault 113, 113 presence of fl uids 274–5, 296 Nankai Trough 264, 266 Five Fingers Basin 220, 221 strongest inter-plate coupling 298, 299 lateral growth rate 267 large crustal root beneath Southern volcanic gaps and fl at slab segments 289 out-of-sequence thrusts 266, 266 Alps 213, 228–9 Andes, central, deep structure 294–7 overall shape in profi le a tapered interpretation of mantle deformation cold lithosphere of Brazilian Shield to wedge 267, 268 below the Fault 229, 229 east 296–7 mechanical adjustments of late Cenozoic, became locus of slip crustal thickness 286, 294 oversteepened surface slope 267 between plates 228 lithospheric thinning beneath the thickened by tectonic shortening 267 linear trace extends across South Puna 293, 294 pore fl uid pressure Island 211, 213, 215 lithospheric-scale cross-section 296 and fl uid fl ow, sensitivity to Resolution segment, pull-apart basin 220, low wave speed zone beneath Los Frailes fl uctuations in 269, 269, 270 221 ignimbrite fi eld 296, 297 increasing and decreasing restraining bend 220, 221 refl ectors mark top of subducting Nazca mechanisms 268–9 southern segment, strike-slip partitioned Plate 294 proto-décollement zone 264 transpression 221, 223 seismic refl ection profi le across Taiwan 332, 333 COPYRIGHTEDsurface uplift and exhumation MATERIAL 243–4 294, 295 tectonic underplating 266, 267 unusually thin seismogenic layer 243 contrasts with those collected under top defi ned by trench slope break 267 vertical thickness of root below South fossil mountain belts 294, 296, 338, accretionary wedges see accretionary prisms Island 230 341, 364 accretive/constructive plate margins 92, 122 explanations of root geometry 230, distinct Moho conspicuously symmetric magnetic lineations 84, 112 230 absent 294 Adama Rift Basin 158, 159, 160, 161 Alpine–Himalayan belt 411 Andes, central and southern, general Aegean Sea 153, 162, 163, 164 Altyn Tagh Fault 316, 318, 321 geology 291–4 Afar Depression 155, 157, 203 Amazonia–Laurentia collision 372 Altiplano-Puna 288, 291 Afar hotspot, Ethiopian fl ood basalts 101, Americas–Europe and Africa, similarity of period of intense crustal 172 coastlines noted 2 shortening 291–2 African superswell 176, 394 Andean cordillera Quebrada Blanca Bright Spot 295, 296 age provinces compression in overriding plate and zone of low seismic wave speeds matched across S Atlantic 58–9, 59 mountain building 288 beneath 296 463 464 INDEX Andes, central and southern, general Archean cratons 419 axial magma chamber 143 geology (cont’d) banded iron formations (BIFs) 350, 419 seismic evidence for 131–3 backarc region 288, 292, 294 general geology 350 Neogene shortening 292 granite-greenstone belts 350, 352–3 backarc basins 251–2, 252, 279–85 Chile Ridge currently subducting 294 greenstone belts 350 backarc lavas, compositional Liquiñe–Ofqui fault zone 294 high grade gneiss terranes 350 variation 282 models simulating deformation in 321 tonalite-trondhjemite-granodiorite in continental settings 284–5, 285 narrow forearc region 292 (TTG) suites 350 in context of Andean-type convergent Precordillera exposes Precambrian low velocity zones weak or absent 349 margins 279–80 basement 292 lowest surface heat fl ow of any most characterized by thin, hot Western and Eastern cordillera 288, 291 region 349 lithosphere 285, 296 Andes, Chilean, arc compression 263, 273 understanding of mineral deposits is form behind volcanic arc in the overriding andesites complicated 412–13 plate 279 calc-alkaline series 271 Archean metallogenesis, many aspects heat fl ow decreases with age 383 high-Mg (boninites) 353 require further investigation 419 Lau basin 280, 281, 281 anorthosite 350 Archean tectonics 349–61 model of crustal accretion for 282–3, massif-type 419 crustal structure 355–8 283, 284 anorthosite-mangerite-charnockite-granite horizontal and vertical tectonics 358–61 weaker mantle or thinner (AMCG) suites 363 Archean–Proterozoic boundary, change in lithosphere 254 anorthosite massifs 363 nature of lithosphere-forming magmas 282 anoxic event 409 processes 364 mechanisms postulated for formation Antarctica Arctic water, provides enhanced of 282–4 fi rst major build-up of ice 409 precipitation over Antarctica 411 roll-back mechanism 282, 300, 344 warming and deglaciation in late Arequipa Massif 292 sources of tension 282 Oligocene 409, 410 aseismic creep 233 model of formation generalized mid-Oligocene, surrounded by southern aseismic ridges 289 283–4 Ocean 408, 409 Asia, in continuum models of most associated with extensional tectonics separation from Africa 407, 409 indentation 321 and high heat fl ow 279 separation from India 408, 409 Asia, fi nite element models oceanic, crustal composition 280–1 sudden build-up of ice, mid- and late- effect of indenter shape on distribution of regions of crustal extension and Miocene 409, 410–11 deformation 322–3, 322, 323, 324 accretion 92 Appalachian fold belt–Caledonian fold belt lateral escape of crust 323 rifting of existing island arc along its of N Europe, continuity 58, 59 lithosphere especially viscous and length 280 Appalachian orogen, data collected in strong 323 structures corresponding to mid-ocean Newfoundland 340, 341 modeled as a viscous sheet 322, 322 ridges not always present exotic terranes accreted onto Laurentia asthenosphere 44, 48–51 281–2 margin 340, 341 anomalously hot 159 backarc spreading centers, backarc crustal many rifted from NW Gondwana 340, beneath Africa 176 accretion and subduction, 376 and mantle drag force 389 linkages 282 seismic refl ection data may mark old mantle melting point most closely Baikal Rift (System) 153, 153, 159 subduction zone 340, 341 approached 49, 49 Baltica 372 apparent polar wander curves 67–8 and relative movement of plates 49 Banda forearc see Australia–Banda arc APW for Gondwana, disagreement over Atacama Fault (System) 97, 292 collision zone details 68, 70 Atlantic ocean, reconstruction of continents Banda volcanic arc 330 positions of South Pole 4, 68 around 55–8 banded iron formations (BIF) 350, 361 continental drift has occurred 67, 69 atmosphere common in Archean cratons 419 paleomagnetic signature of plate removal and return of CO2 to 411, 412 Algoma and Superior types 419 convergence/divergence 67–8, 70 and seawater, changes in chemistry of 8 basalts 78 two methods of displaying paleomagnetic aulacogens (failed rifts) 153, 421 backarc basins, variation in data 67, 68 Australia, western, evidence for collision and geochemistry 283–4 arc magmatism 271–5 suturing of Yilgarn and Pilbara fl ood basalts general model of 252, 273–5, 274 cratons 365 continental 101, 101, 153, 154, 171, 172, depth to zone of seismicity 273 Australia–Banda arc collision zone 330, 331 172 mechanisms of melt generation Australian–Antarctica boundary, comparison tholeiitic 172–3 272–4 of models REVEL and NUVEL-1A mid-ocean ridge arc–continent collision 287, 330–2 109, 109 from slow- and ultra-slow spreading active examples 330 Australian–Pacifi c plates, and oblique ridges 140 oblique, Taiwan 287, 332, 333 continent–continent collision 228 refl ect fractionation environment after sequence of events 330 Avalonia 340, 341, 376 partial melting 140 Timor–Banda arc region 330, 331 rifted from Gondwana 376, 377 rift, enriched 172 INDEX 465 subducting, chemical reactions in 275, metamorphic core complexes 167, confi ning pressure, increasing with 276, 277 169, 170 depth 35 tholeiitic 175, 354, 354 Sevier Desert Detachment Fault 169, and differential stress 34–5 basin inversion 303 170 Griffi th theory of fracture 34 in association with strike-slip faulting 222, slip on low-angle normal
Recommended publications
  • Geochemistry This
    TORONTOTORONTO Vol. 8, No. 4 April 1998 Call for Papers GSA TODAY — page C1 A Publication of the Geological Society of America Electronic Abstracts Submission — page C3 Antarctic Neogene Landscapes—In the 1998 Registration Refrigerator or in the Deep Freeze? Annual Issue Meeting — June GSA Today Introduction The present Molly F. Miller, Department of Geology, Box 117-B, Vanderbilt Antarctic landscape undergoes very University, Nashville, TN 37235, [email protected] slow environmental change because it is almost entirely covered by a thick, slow-moving ice sheet and thus effectively locked in a Mark C. G. Mabin, Department of Tropical Environmental Studies deep freeze. The ice sheet–landscape system is essentially stable, and Geography, James Cook University, Townsville, Queensland 4811, Australia, [email protected] Antarctic—Introduction continued on p. 2 Atmospheric Transport of Diatoms in the Antarctic Sirius Group: Pliocene Deep Freeze Arjen P. Stroeven, Department of Quaternary Research, Stockholm University, S-106 91 Stockholm, Sweden Lloyd H. Burckle, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964 Johan Kleman, Department of Physical Geography, Stockholm University, S-106, 91 Stockholm, Sweden Michael L. Prentice, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824 INTRODUCTION How did young diatoms (including some with ranges from the Pliocene to the Pleistocene) get into the Sirius Group on the slopes of the Transantarctic Mountains? Dynamicists argue for emplacement by a wet-based ice sheet that advanced across East Antarctica and the Transantarctic Mountains after flooding of interior basins by relatively warm marine waters [2 to 5 °C according to Webb and Harwood (1991)].
    [Show full text]
  • Provided for Non-Commercial Research and Educational Use. Not for Reproduction, Distribution Or Commercial Use
    Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use. This article was originally published in the Treatise on Geophysics, published by Elsevier and the attached copy is provided by Elsevier for the author’s benefit and for the benefit of the author’s institution, for non-commercial research and educational use including use in instruction at your institution, posting on a secure network (not accessible to the public) within your institution, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: http://www.elsevier.com/locate/permissionusematerial Information taken from the copyright line. The Editor-in-Chief is listed as Gerald Schubert and the imprint is Academic Press. Author's personal copy 7.09 Hot Spots and Melting Anomalies G. Ito, University of Hawaii, Honolulu, HI, USA P. E. van Keken, University of Michigan, Ann Arbor, MI, USA ª 2007 Elsevier B.V. All rights reserved. 7.09.1 Introduction 372 7.09.2 Characteristics 373 7.09.2.1 Volcano Chains and Age Progression 373 7.09.2.1.1 Long-lived age-progressive volcanism 373 7.09.2.1.2 Short-lived age-progressive volcanism 381 7.09.2.1.3 No age-progressive volcanism 382 7.09.2.1.4 Continental hot spots 383 7.09.2.1.5 The hot-spot reference frame 386
    [Show full text]
  • And the Digital Data Files Contained on It (The “Content”), Is Governed by the Terms Set out on This Page (“Terms of Use”)
    ISBN 978-1-4249-9924-8 [DVD] ISBN 978-1-4249-9925-5[ZIP FILE] THESE TERMS GOVERN YOUR USE OF THIS PRODUCT Your use of this electronic information product (“EIP”), and the digital data files contained on it (the “Content”), is governed by the terms set out on this page (“Terms of Use”). By opening the EIP and viewing the Content , you (the “User”) have accepted, and have agreed to be bound by, the Terms of Use. EIP and Content: This EIP and Content is offered by the Province of Ontario’s Ministry of Northern Development and Mines (MNDM) as a public service, on an “as-is” basis. Recommendations and statements of opinions expressed are those of the author or authors and are not to be construed as statement of government policy. You are solely responsible for your use of the EIP and its Content. You should not rely on the Content for legal advice nor as authoritative in your particular circumstances. Users should verify the accuracy and applicability of any Content before acting on it. MNDM does not guarantee, or make any warranty express or implied, that the Content is current, accurate, complete or reliable or that the EIP is free from viruses or other harmful components. MNDM is not responsible for any damage however caused, which results, directly or indirectly, from your use of the EIP or the Content. MNDM assumes no legal liability or responsibility for the EIP or the Content whatsoever. Links to Other Web Sites: This EIP or the Content may contain links, to Web sites that are not operated by MNDM.
    [Show full text]
  • Synoptic Taxonomy of Major Fossil Groups
    APPENDIX Synoptic Taxonomy of Major Fossil Groups Important fossil taxa are listed down to the lowest practical taxonomic level; in most cases, this will be the ordinal or subordinallevel. Abbreviated stratigraphic units in parentheses (e.g., UCamb-Ree) indicate maximum range known for the group; units followed by question marks are isolated occurrences followed generally by an interval with no known representatives. Taxa with ranges to "Ree" are extant. Data are extracted principally from Harland et al. (1967), Moore et al. (1956 et seq.), Sepkoski (1982), Romer (1966), Colbert (1980), Moy-Thomas and Miles (1971), Taylor (1981), and Brasier (1980). KINGDOM MONERA Class Ciliata (cont.) Order Spirotrichia (Tintinnida) (UOrd-Rec) DIVISION CYANOPHYTA ?Class [mertae sedis Order Chitinozoa (Proterozoic?, LOrd-UDev) Class Cyanophyceae Class Actinopoda Order Chroococcales (Archean-Rec) Subclass Radiolaria Order Nostocales (Archean-Ree) Order Polycystina Order Spongiostromales (Archean-Ree) Suborder Spumellaria (MCamb-Rec) Order Stigonematales (LDev-Rec) Suborder Nasselaria (Dev-Ree) Three minor orders KINGDOM ANIMALIA KINGDOM PROTISTA PHYLUM PORIFERA PHYLUM PROTOZOA Class Hexactinellida Order Amphidiscophora (Miss-Ree) Class Rhizopodea Order Hexactinosida (MTrias-Rec) Order Foraminiferida* Order Lyssacinosida (LCamb-Rec) Suborder Allogromiina (UCamb-Ree) Order Lychniscosida (UTrias-Rec) Suborder Textulariina (LCamb-Ree) Class Demospongia Suborder Fusulinina (Ord-Perm) Order Monaxonida (MCamb-Ree) Suborder Miliolina (Sil-Ree) Order Lithistida
    [Show full text]
  • Giant Radiating Mafic Dyke Swarm of the Emeishan Large Igneous Province: Identifying the Mantle Plume Centre
    doi: 10.1111/ter.12154 Giant radiating mafic dyke swarm of the Emeishan Large Igneous Province: Identifying the mantle plume centre Hongbo Li,1,2 Zhaochong Zhang,1 Richard Ernst,3,4 Linsu L€u,2 M. Santosh,1 Dongyang Zhang1 and Zhiguo Cheng1 1State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China; 2Geologi- cal Museum of China, Beijing 100034, China; 3Department of Earth Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada; 4Ernst Geosciences, 43 Margrave Avenue, Ottawa, ON K1T 3Y2, Canada ABSTRACT In many continental large igneous provinces, giant radiating and recognized six dyke sub-swarms, forming an overall dyke swarms are typically interpreted to result from the arri- radiating dyke swarm and converging in the Yongren area, val of a mantle plume at the base of the lithosphere. Mafic Yunnan province. This location coincides with the maximum dyke swarms in the Emeishan large igneous province (ELIP) pre-eruptive domal uplift, and is close to the locations of have not received much attention prior to this study. We high-temperature picrites. Our study suggests that the Yon- show that the geochemical characteristics and geochronologi- gren area may represent the mantle plume centre during the cal data of the mafic dykes are broadly similar to those of peak of Emeishan magmatism. the spatially associated lavas, suggesting they were derived from a common parental magma. Based on the regional geo- Terra Nova, 27, 247–257, 2015 logical data and our field observations, we mapped the spa- tial distribution patterns of mafic dyke swarms in the ELIP, ridge by a continent (Gower and swarms and their distributions pro- Introduction Krogh, 2002), edge-driven enhanced vide an opportunity to further test Large igneous provinces (LIPs) are mantle convection (King and Ander- the plume model for the ELIP.
    [Show full text]
  • Instability of the Southern Canadian Shield During the Late Proterozoic 2 3 Kalin T
    1 Instability of the southern Canadian Shield during the late Proterozoic 2 3 Kalin T. McDannella,b*, Peter K. Zeitlera, and David A. Schneiderc 4 5 aDepartment of Earth and Environmental Sciences, Lehigh University, 1 W. Packer Ave. Bethlehem PA, 18015 USA 6 7 bGeological Survey of Canada, Natural Resources Canada, 3303 – 33 St NW Calgary AB, T2L 2A7 Canada 8 9 cDepartment of Earth & Environmental Sciences, University of Ottawa, 25 Templeton Ave., Ottawa ON, K1N 6N5 10 Canada 11 12 *corresponding author: [email protected]; [email protected] 13 14 ABSTRACT 15 Cratons are generally considered to comprise lithosphere that has remained tectonically 16 quiescent for billions of years. Direct evidence for stability is mainly founded in the Phanerozoic 17 sedimentary record and low-temperature thermochronology, but for extensive parts of Canada, 18 earlier stability has been inferred due to the lack of an extensive rock record in both time and 19 space. We used 40Ar/39Ar multi-diffusion domain (MDD) analysis of K-feldspar to constrain 20 cratonic thermal histories across an intermediate (~150-350°C) temperature range in an attempt 21 to link published high-temperature geochronology that resolves the timing of orogenesis and 22 metamorphism with lower-temperature data suited for upper-crustal burial and unroofing 23 histories. This work is focused on understanding the transition from Archean-Paleoproterozoic 24 crustal growth to later intervals of stability, and how uninterrupted that record is throughout 25 Earth’s Proterozoic “Middle Age.” Intermediate-temperature thermal histories of cratonic rocks 26 at well-constrained localities within the southern Canadian Shield of North America challenge 27 the stability worldview because our data indicate that these rocks were at elevated temperatures 28 in the Proterozoic.
    [Show full text]
  • 4 Biennial Structural Geology & Tectonics Forum 2016
    Program, Abstract and Information Book 4th Biennial Structural Geology & Tectonics Forum 2016 Sonoma State University Rohnert Park, CA August 1st – 3rd Forum Staff and Organizational Committee Forum Organizers: Matty Mookerjee (Sonoma State University) Steering Committee: Yvette Kuiper (Colorado School of Mines) and Paul Karabinos (Williams College) Technical Session Organizers: Katherine Boggs (Mount Royal University) and Steve Wojtal (Oberlin College) Field Trip Organizers: Christie Rowe (McGill University) and Sarah Roeske (UC Davis) Short Course Organizers: Kurt Burmeister (U. of the Pacific) and Saad Haq (Purdue University) Web Site : Barbara Tewksbury (Hamilton College) Logistics: Elisabeth (Liz) Ketterman and Dena Peacock (Sonoma State University) Registration: Conferences and Events Services (Sonoma State University) Finance Committee: Emily Peterman (Bowdoin College) and Hal Bosbyshell (West Chester University) TABLE OF CONTENTS GENERAL INFORMATION ....................................................................................ii CAMPUS MAPS…………………………………………………………………………………………..……vi FORUM PROGRAM ...............................................................................................1 Saturday, July 30th ....................................................................................1 Sunday, July 31st ......................................................................................3 Monday, August 1st ..................................................................................5 Tuesday, August 2nd .................................................................................7
    [Show full text]
  • 7.09 Hot Spots and Melting Anomalies G
    7.09 Hot Spots and Melting Anomalies G. Ito, University of Hawaii, Honolulu, HI, USA P. E. van Keken, University of Michigan, Ann Arbor, MI, USA ª 2007 Elsevier B.V. All rights reserved. 7.09.1 Introduction 372 7.09.2 Characteristics 373 7.09.2.1 Volcano Chains and Age Progression 373 7.09.2.1.1 Long-lived age-progressive volcanism 373 7.09.2.1.2 Short-lived age-progressive volcanism 381 7.09.2.1.3 No age-progressive volcanism 382 7.09.2.1.4 Continental hot spots 383 7.09.2.1.5 The hot-spot reference frame 386 7.09.2.2 Topographic Swells 387 7.09.2.3 Flood Basalt Volcanism 388 7.09.2.3.1 Continental LIPs 388 7.09.2.3.2 LIPs near or on continental margins 389 7.09.2.3.3 Oceanic LIPs 391 7.09.2.3.4 Connections to hot spots 392 7.09.2.4 Geochemical Heterogeneity and Distinctions from MORB 393 7.09.2.5 Mantle Seismic Anomalies 393 7.09.2.5.1 Global seismic studies 393 7.09.2.5.2 Local seismic studies of major hot spots 395 7.09.2.6 Summary of Observations 399 7.09.3 Dynamical Mechanisms 400 7.09.3.1 Methods 400 7.09.3.2 Generating the Melt 401 7.09.3.2.1 Temperature 402 7.09.3.2.2 Composition 402 7.09.3.2.3 Mantle flow 404 7.09.3.3 Swells 405 7.09.3.3.1 Generating swells: Lubrication theory 405 7.09.3.3.2 Generating swells: Thermal upwellings and intraplate hot spots 407 7.09.3.3.3 Generating swells: Thermal upwellings and hot-spot–ridge interaction 408 7.09.3.4 Dynamics of Buoyant Upwellings 410 7.09.3.4.1 TBL instabilities 410 7.09.3.4.2 Thermochemical instabilities 411 7.09.3.4.3 Effects of variable mantle properties 412 7.09.3.4.4 Plume
    [Show full text]
  • EPSC 233: Earth and Life History
    EPSC 233: Earth and Life History Galen Halverson Fall Semester, 2014 Contents 1 Introduction to Geology and the Earth System 1 1.1 The Science of Historical Geology . 1 1.2 The Earth System . 4 2 Minerals and Rocks: The Building Blocks of Earth 6 2.1 Introduction . 6 2.2 Structure of the Earth . 6 2.3 Elements and Isotopes . 7 2.4 Minerals . 9 2.5 Rocks . 10 3 Plate Tectonics 16 3.1 Introduction . 16 3.2 Continental Drift . 16 3.3 The Plate Tectonic Revolution . 17 3.4 An overview of plate tectonics . 20 3.5 Vertical Motions in the Mantle . 24 4 Geological Time and the Age of the Earth 25 4.1 Introduction . 25 4.2 Relative Ages . 25 4.3 Absolute Ages . 26 4.4 Radioactive dating . 28 4.5 Other Chronostratigraphic Techniques . 31 5 The Stratigraphic Record and Sedimentary Environments 35 5.1 Introduction . 35 5.2 Stratigraphy . 35 5.3 Describing and interpreting detrital sedimentary rocks . 36 6 Life, Fossils, and Evolution 41 6.1 Introduction . 41 6.2 Fossils . 42 6.3 Biostratigraphy . 44 6.4 The Geological Time Scale . 45 6.5 Systematics and Taxonomy . 46 6.6 Evolution . 49 6.7 Gradualism Versus Punctuated Equilibrium . 53 i ii 7 The Environment and Chemical Cycles 55 7.1 Introduction . 55 7.2 Ecology . 56 7.3 The Atmosphere . 57 7.4 The Terrestrial Realm . 61 7.5 The Marine Realm . 63 8 Origin of the Earth and the Hadean 66 8.1 Introduction . 66 8.2 Origin of the Solar System .
    [Show full text]
  • Flow Fabric Determination of Two Mesoproterozoic Midcontinent Rift Dike Swarms, Northeastern Minnesota
    FLOW FABRIC DETERMINATION OF TWO MESOPROTEROZOIC MIDCONTINENT RIFT DIKE SWARMS, NORTHEASTERN MINNESOTA A thesis submitted to the Kent State University Graduate College in partial fulfillment of the requirements for the degree of Master of Science by Elizabeth May Fein May, 2009 Thesis written by Elizabeth May Fein B.A., Oberlin College, 2003 M.S., Kent State University, 2009 Approved by ___________________________________, Advisor Daniel Holm ___________________________________, Chair, Department of Geology Daniel Holm ___________________________________, Dean, College of Arts and Sciences Timothy Moerland ii DEPARTMENT OF GEOLOGY THESIS APPROVAL FORM This thesis, entitled Flow fabric determination of two Mesoproterozoic midcontinent rift dike swarms, northeastern Minnesota has been submitted by Elizabeth Fein in partial fulfillment of the requirements for the Master of Science in Geology. The undersigned member’s of the student’s thesis committee have read this thesis and indicated their approval or disapproval of the same. Approval Date Disapproval Date _______________________________ _______________________________ Daniel Holm Daniel Holm _______________________________ _______________________________ Donald Palmer Donald Palmer _______________________________ _______________________________ David Schneider David Schneider iii Table of Contents List of Figures…………………………………………………………………………....v List of Tables…………………………………………………………………………….vi Acknowledgements…………………………………………………………………….vii Abstract ………………………………………………………………………………….1 1. Introduction
    [Show full text]
  • Subduction to Strike-Slip Transitions on Plate Boundaries
    Penrose Conference SUBDUCTION TO STRIKE-SLIP TRANSITIONS ON PLATE BOUNDARIES Puerto Plata, Dominican Republic January 18-24, 1999 ABSTRACT VOLUME Conveners: Paul Mann, Nancy Grindlay and James Dolan Sponsored by the Geological Society of America, Petroleum Research Fund, NSF and NASA Penrose Conference: Subduction to Strike-Slip Transitions on Plate Boundaries, Jan. 18-24, 1999 STRUCTURAL GEOLOGY AND SEDIMENTOLOGY OF A PLIOCENE INNER-TRENCH SLOPE SUCCESSION, NORTHWESTERN ECUADOR K. R. AALTO Dept. of Geology, Humboldt State Univ., Arcata, CA, USA 95521, [email protected] The Pliocene Upper Onzole Formation exposed in the vicinity of Punta Gorda, near Esmeraldas, Ecuador, is composed mainly of fine-grained mud turbidites, having regular vertical sequences of sedimentary structures associated with a positive grading, and bioturbation restricted mostly to the tops of beds. The remainder of beds measured consist of volcanic ash, mud pelagite, and glauconitic silt-sand turbidites. Vertical sequential analysis of stratigraphic sections for the most part show no pronounced trends in bed thickness or grain size. Volcanic ashes are crystal-vitric tuffs occurring in four bedding styles: A) normally- graded ashes with burrowed gradational tops and sharp wavy bases; B) ashes that form part of a complex microstratigraphy consisting of thinly-bedded mudstone, silt-sand turbidites, tuffaceous mudstone, and ash beds; C) less conspicuous ash laminae and ash-filled burrows; and D) a tuffaceous bed with ash and mud swirled together in convolute layers. Ash chemistry suggests an Andean high-K calc-alkaline provenance. Facies relations, paleontologic data and regional geologic setting suggest sediment accumulation on an inner trench slope in a basin situated oceanward of the Pliocene trench-slope break.
    [Show full text]
  • Stratiform Chromite Deposit Model
    Stratiform Chromite Deposit Model Chapter E of Mineral Deposit Models for Resource Assessment Scientific Investigations Report 2010–5070–E U.S. Department of the Interior U.S. Geological Survey COVER: Photograph showing outcropping of the Bushveld LG6 chromitite seam. Photograph courtesy of Klaus J. Schulz, U.S. Geological Survey. Stratiform Chromite Deposit Model By Ruth F. Schulte, Ryan D. Taylor, Nadine M. Piatak, and Robert R. Seal II Chapter E of Mineral Deposit Model for Resource Assessment Scientific Investigations Report 2010–5070–E U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Schulte, R.F., Taylor, R.D., Piatak, N.M., and Seal, R.R., II, 2012, Stratiform chromite deposit model, chap. E of Mineral deposit models for resource assessment: U.S.
    [Show full text]