Paleomagnetic Evidence for a Large Rotation of the Yukon Block Relative to Laurentia: Implications for a Low-Latitude Sturtian Glaciation and the Breakup of Rodinia

Total Page:16

File Type:pdf, Size:1020Kb

Paleomagnetic Evidence for a Large Rotation of the Yukon Block Relative to Laurentia: Implications for a Low-Latitude Sturtian Glaciation and the Breakup of Rodinia Paleomagnetic evidence for a large Yukon block rotation relative to Laurentia Paleomagnetic evidence for a large rotation of the Yukon block relative to Laurentia: Implications for a low-latitude Sturtian glaciation and the breakup of Rodinia Athena E. Eyster1,†, Roger R. Fu2, Justin V. Strauss3, Benjamin P. Weiss2, Charlie F. Roots4,§, Galen P. Halverson5, David A.D. Evans6, and Francis A. Macdonald1 1Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, Massachusetts 02138, USA 2Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Building 54-724, Cambridge, Massachusetts 02139, USA 3Department of Earth Sciences, Dartmouth College, HB6105 Fairchild Hall, Hanover, New Hampshire 03755, USA 4Natural Resources Canada, c/o Box 2703, K-102, Whitehorse, Yukon Y1A 2C6, Canada 5Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montréal, Québec H3A0E8, Canada 6Department of Geology and Geophysics, Yale University, New Haven, Connecticut 06520, USA ABSTRACT in Mesoproterozoic and Paleoproterozoic Alternatively, Turner and Long (2008) argued strata, and realigns the orientation of the ca. for NE-SW extension on the western margin of Understanding the tectonic history of the 1260 Ma Bear River dikes with the Mack- Laurentia based on the interpretation of multi- supercontinent Rodinia is crucial for testing enzie dike swarm of northern Canada. This ple NE-SW–oriented structures in the Macken- proposed links among Neoproterozoic tec- reconstruction also facilitates future studies zie Mountains as transfer faults. In addition to tonics, supercontinent cycles, climate, and that relate Neoproterozoic sedimentary and these older structures, which can be interpreted biogeochemistry. The Neoproterozoic Mount structural patterns to the fragmentation of as recording early Neoproterozoic rifting, late Harper volcanics of the Ogilvie Mountains, Rodinia. Finally, this low-latitude pole sup- Neoproterozoic rifting (Windermere Supergroup Yukon, Canada, interfinger with Sturtian- ports the snowball Earth interpretation of and Sequence C of Young et al., 1979) is thought age (ca. 717–660 Ma) glacial deposits that the ca. 717 Ma Sturtian glacial deposits. to have occurred during two separate intervals: were deposited in narrow, fault-bounded ca. 780–660 Ma (Jefferson and Parrish, 1989; basins related to the breakup of Rodinia. INTRODUCTION Mustard, 1991) and ca. 580–560 Ma in the Here, we present new paleomagnetic data southern Cordillera (Colpron et al., 2002; Lund, from the Mount Harper volcanics and iso- The protracted breakup of the superconti- 2008; Lund et al., 2010; Yonkee et al., 2014). late four paleomagnetic directions: a low- nent Rodinia has long been associated with There are numerous candidates for the conti- temperature direction recording the present Neo protero zoic environmental and biological nents that rifted away from Laurentia’s northern geomagnetic field, a mid-temperature direc- change (Kirschvink, 1992; Hoffman and Schrag, and western margins, including Antarctica, Aus- tion consistent with a Cretaceous overprint, 2002; Goddéris et al., 2003). However, the age, tralia, South China, North China, Siberia, and and two high-temperature directions, one of geometry, configuration, and kinematics of Ro- West Africa (Sears and Price, 1978; Moores, which is carried by hematite and likely rep- dinia’s fragmentation remain poorly constrained. 1991; Hoffman, 1991; Dalziel, 1997; Sears and resents a chemical overprint, and the other Because Neoproterozoic-Cambrian strata on the Price, 2003; Pisarevsky et al., 2003; Li et al., of which is carried by magnetite and likely margins of Laurentia are interpreted as pas- 2008; Evans, 2009; Fu et al., 2015; Ernst et al., is a primary direction. This primary pole sive margin sequences (Hoffman, 1991), many 2016). Irrespective of the identity of its former passes the fold and conglomerate tests and paleo geo graphic reconstructions place it at the conjugate partners in Rodinia, Yukon records includes a reversal but is 50° away from the core of Rodinia (e.g., Li et al., 2008). Due to the Neoproterozoic tectonic evolution of both coeval 721–712 Ma Laurentian Franklin this central location, studies of Laurentian basins the northern and western margins of Laurentia large igneous province pole. This difference can assist in understanding the breakup of Ro- (e.g., Thorkelson et al., 2005; Macdonald et al., can be reconciled using a 50° counterclock- dinia (e.g., Ross, 1991; Macdonald et al., 2012; 2012; Strauss et al., 2015), and it is a keystone wise rotation of the Yukon block relative to Strauss et al., 2015). Several discrete extensional for future attempts to elucidate the extensional Laurentia. The prerotation reconstruction of events on the western margin of Laurentia have history in this part of Rodinia. the Yukon block relative to Laurentia aligns been attributed to the rifting of Rodinia, im- Recent geochronological data from Neo- Neoproterozoic fault orientations and facies plying a prolonged and complex breakup his- protero zoic sedimentary successions in Yukon belts between the Wernecke and Mackenzie tory. Early Neoproterozoic (ca. 1.2–0.78 Ga enable more accurate constraints on basin- Mountains, rectifies paleoflow measurements Sequence B of Young et al., 1979) sedimentary forming events in Laurentia during the early successions were interpreted as recording basin- fragmentation of Rodinia. In the Coal Creek †aeyster@ fas .harvard .edu forming events consistent with a NNW-facing inlier of west-central Yukon (Figs. 1 and 2), early §Deceased. margin in present coordinates (Aitken, 1981). Neoproterozoic synsedimentary faulting and GSA Bulletin; Month/Month 2016; v. 128; no. X/X; p. 1–21; doi: 10.1130/B31425.1; 8 figures; 1 table; Data Repository item 2016255.; published online XX Month 2016. For permission to copy, contact [email protected] Geological Society of America Bulletin, v. 1XX, no. XX/XX 1 © 2016 Geological Society of America Eyster et al. 67°N Paleozoic, or Neoproterozoic age. In addition, Richardson fault Yukon NW Park et al. (1992) acknowledged that their re- ka sults were inconclusive due to limited sampling, T Alas Yukon and that additional sampling and examination were needed to validate or refute them. Here, 66°N Knorr Faul we present new paleomagnetic results from the Yukon ar Tatonduk ra Mount Harper volcanics that resolve these un- inlier block y certainties, allowing us to infer the geometry of t Mackenzie Mtn Ogilvie Mtns 65°N Neoproterozoic synsedimentary structures rela- W tive to the Laurentian craton and relative motions Coal Creek e r n inlier e c Snake River Faul Hart River k e s during the breakup of Rodinia, and additionally, inlier Wernecke M 141°W t n to explore the paleomagnetic constraints on the inlier s TintinaTintina faul DDawson thrust 64°N ca. 717 Ma Yukon glacial deposits that may re- awson thru t Dawson cord the initiation of snowball Earth glaciation fault t st 1 on Laurentia. 138°W 0100 136°W 134°W 132°W Selwyn Basi GEOLOGICAL SETTING km Paleozoic to Tertiary cover strata 63°N The Yukon block (Jeletsky, 1962) is a crustal 130°W n fragment separated from contiguous Laurentia Richardson trough 2 to the east by the Richardson trough and the Cryogenian–Ediacaran Windermere Supergroup (Sequence C) Richardson fault array (Fig. 1). The Richardson 128°W Tonian-Cryogenian Mackenzie Mountains Supergroup & trough represents a Cambrian–Devonian deep- Pinguicula and Fifteenmile Groups (Sequence B) water basin formed above a failed rift arm be- Mesoproterozoic Wernecke Supergroup (Sequence A) tween the Yukon block and Mackenzie Platform area detailed in Fig. 2A additional areas noted in text: (Gabrielse, 1967; Pugh, 1983; Norris, 1985; Franklin Large Igneous Province 1. Nite Creek Cecile et al., 1997; Morrow, 1999; Rohr et al., regions of positive aeromagnetic anomalies 2. Thundercloud Range 2011). The Richardson fault array is a regional- scale fault system with a history of reactivation approximate boundary between Yukon block and Laurentia that has controlled sedimentation and deforma- Figure 1. Map of northwest Canada with Proterozoic inliers. Note Richardson trough (after tion in the area since its inception in the Protero- Morrow, 1999) and Richardson fault array separate the Tatonduk, Coal Creek, Hart River, zoic (Eisbacher, 1981, 1983; Norris, 1985, 1997; and Wernecke inliers from the Mackenzie Mountains. The cross-hatched areas indicate Aitken and McMechan, 1992; Aitken, 1993; aeromagnetic highs following Aspler et al. (2003) and Pilkington and Saltus (2009). The Abbott, 1996, 1997; Crawford et al., 2010; Rohr solid green line depicts approximate boundary between the Yukon block and Laurentia. et al., 2011). Proterozoic strata in the Yukon Inset depicts the extent of the Franklin large igneous province (red; Buchan and Ernst, block consist of three major successions (Young 2004, 2013; Buchan et al., 2010). NWT—Northwest Territories. et al., 1979) exposed in four inliers: the Taton- duk, Coal Creek, Hart River, and Wernecke inliers (Fig. 1). The oldest rocks consist of Se- subsidence have been linked to extension on et al., 2000; Denyszyn et al., 2009a, 2009b). quence A, a polydeformed succession of mixed the northern margin of Laurentia (Mac donald Taken at face value, these data connect exten- carbonate and siliciclastic strata of the late Paleo- et al., 2012). In contrast, the later Neoprotero - sion or transtension recorded in
Recommended publications
  • Geochemistry This
    TORONTOTORONTO Vol. 8, No. 4 April 1998 Call for Papers GSA TODAY — page C1 A Publication of the Geological Society of America Electronic Abstracts Submission — page C3 Antarctic Neogene Landscapes—In the 1998 Registration Refrigerator or in the Deep Freeze? Annual Issue Meeting — June GSA Today Introduction The present Molly F. Miller, Department of Geology, Box 117-B, Vanderbilt Antarctic landscape undergoes very University, Nashville, TN 37235, [email protected] slow environmental change because it is almost entirely covered by a thick, slow-moving ice sheet and thus effectively locked in a Mark C. G. Mabin, Department of Tropical Environmental Studies deep freeze. The ice sheet–landscape system is essentially stable, and Geography, James Cook University, Townsville, Queensland 4811, Australia, [email protected] Antarctic—Introduction continued on p. 2 Atmospheric Transport of Diatoms in the Antarctic Sirius Group: Pliocene Deep Freeze Arjen P. Stroeven, Department of Quaternary Research, Stockholm University, S-106 91 Stockholm, Sweden Lloyd H. Burckle, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964 Johan Kleman, Department of Physical Geography, Stockholm University, S-106, 91 Stockholm, Sweden Michael L. Prentice, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824 INTRODUCTION How did young diatoms (including some with ranges from the Pliocene to the Pleistocene) get into the Sirius Group on the slopes of the Transantarctic Mountains? Dynamicists argue for emplacement by a wet-based ice sheet that advanced across East Antarctica and the Transantarctic Mountains after flooding of interior basins by relatively warm marine waters [2 to 5 °C according to Webb and Harwood (1991)].
    [Show full text]
  • Large Igneous Provinces: a Driver of Global Environmental and Biotic Changes, Geophysical Monograph 255, First Edition
    2 Radiometric Constraints on the Timing, Tempo, and Effects of Large Igneous Province Emplacement Jennifer Kasbohm1, Blair Schoene1, and Seth Burgess2 ABSTRACT There is an apparent temporal correlation between large igneous province (LIP) emplacement and global envi- ronmental crises, including mass extinctions. Advances in the precision and accuracy of geochronology in the past decade have significantly improved estimates of the timing and duration of LIP emplacement, mass extinc- tion events, and global climate perturbations, and in general have supported a temporal link between them. In this chapter, we review available geochronology of LIPs and of global extinction or climate events. We begin with an overview of the methodological advances permitting improved precision and accuracy in LIP geochro- nology. We then review the characteristics and geochronology of 12 LIP/event couplets from the past 700 Ma of Earth history, comparing the relative timing of magmatism and global change, and assessing the chronologic support for LIPs playing a causal role in Earth’s climatic and biotic crises. We find that (1) improved geochronol- ogy in the last decade has shown that nearly all well-dated LIPs erupted in < 1 Ma, irrespective of tectonic set- ting; (2) for well-dated LIPs with correspondingly well-dated mass extinctions, the LIPs began several hundred ka prior to a relatively short duration extinction event; and (3) for LIPs with a convincing temporal connection to mass extinctions, there seems to be no single characteristic that makes a LIP deadly. Despite much progress, higher precision geochronology of both eruptive and intrusive LIP events and better chronologies from extinc- tion and climate proxy records will be required to further understand how these catastrophic volcanic events have changed the course of our planet’s surface evolution.
    [Show full text]
  • Provided for Non-Commercial Research and Educational Use. Not for Reproduction, Distribution Or Commercial Use
    Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use. This article was originally published in the Treatise on Geophysics, published by Elsevier and the attached copy is provided by Elsevier for the author’s benefit and for the benefit of the author’s institution, for non-commercial research and educational use including use in instruction at your institution, posting on a secure network (not accessible to the public) within your institution, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: http://www.elsevier.com/locate/permissionusematerial Information taken from the copyright line. The Editor-in-Chief is listed as Gerald Schubert and the imprint is Academic Press. Author's personal copy 7.09 Hot Spots and Melting Anomalies G. Ito, University of Hawaii, Honolulu, HI, USA P. E. van Keken, University of Michigan, Ann Arbor, MI, USA ª 2007 Elsevier B.V. All rights reserved. 7.09.1 Introduction 372 7.09.2 Characteristics 373 7.09.2.1 Volcano Chains and Age Progression 373 7.09.2.1.1 Long-lived age-progressive volcanism 373 7.09.2.1.2 Short-lived age-progressive volcanism 381 7.09.2.1.3 No age-progressive volcanism 382 7.09.2.1.4 Continental hot spots 383 7.09.2.1.5 The hot-spot reference frame 386
    [Show full text]
  • Magmatic Records of the Late Paleoproterozoic to Neoproterozoic 14 Extensional and Rifting Events in the North China Craton: a Preliminary Review
    Magmatic Records of the Late Paleoproterozoic to Neoproterozoic 14 Extensional and Rifting Events in the North China Craton: A Preliminary Review Shuan-Hong Zhang and Yue Zhao Abstract The North China Craton (NCC) is characterized by multistages of extensional and continental rifting and deposition of thick marine or interactive marine and terrestrial clastic and carbonate platform sediments without angular unconformity during Earth’s middle age of 1.70–0.75 Ga. Factors controlling these multistages of extensional and continental rifting events in the NCC can be either from the craton itself or from the neighboring continents being connected during these periods. Two large igneous provinces including the ca. 1.32 Ga mafic sill swarms in Yanliao rift (aulacogen) in the northern NCC and the ca. 0.92–0.89 Ga Xu-Huai–Dalian–Sariwon mafic sill swarms in southeastern and eastern NCC, have recently been identified from the NCC. Rocks from these two large igneous provinces exhibit similar geochemical features of tholeiitic compositions and intraplate characteristics. Formation of these two large igneous provinces was accompanied by pre-magmatic uplift as indicated by the field relations between the sills and their hosted sedimentary rocks. The Yanliao and Xu-Huai–Dalian–Sariwon large igneous provinces represent two continental rifting events that have led to rifting to drifting transition and breakup of the northern margin of the NCC from the Columbia (Nuna) supercontinent and the southeastern margin of the NCC from the Rodinia supercontinent, respectively. As shown by the ca. 200 Ma Central Atlantic Magmatic Province related to breakup of the Pangea supercontinent and initial opening of the Central Atlantic Ocean and the ca.
    [Show full text]
  • Copyrighted Material
    Index Page numbers in italics refer to fi gures; those in bold to tables Acasta gneisses 347 sea fl oor divided into 84 diversity of 288–9 accretionary orogens, structure 287, 309, Aleutian accretionary prism growth latest phase of compression 289 336–42 rate 267 Andean foreland, styles of tectonic active, seismic refl ection profi les 295, 315, Aleutian arc, focal mechanism solutions of shortening 292, 292, 293, 294 340, 342 earthquakes 256, 257 foreland basement thrusts 292, 293 Canadian Cordillera 336–7, 338, 339, 341, Aleutian–Alaska arc, prominent gap in segmentation of foreland 292, 294 376 seismicity 259, 261 thick-skinned and thin-skinned fold and common features of 338, 340, 502 alkaline series, includes shoshonitic thrust belts 292, 293 western North America 336, 337 lavas 271 Andean-type subduction, specifi c types of accretionary prisms 251, 264–9, 270 Alpine Fault, New Zealand 228–30, 338 deposit 417–18 accumulation of sediments including accommodation of oblique slip 244, 245, backarc environment, granite belts with olistostromes 267 246 tin and tungsten 417–18 creation of mélange 268 Breaksea Basin once continuous with stratabound copper sulfi des 417 décollement 264, 266 Dagg Basin 220, 221, 222 Andes, central 301–2 sliding on 267 central segment, weakly/non-partitioned arcuate shape (orocline) 294 deformation front 264 style of transpressional evolution of shortening (model) 300 development of 243, 244 deformation 213, 223 fl at and steep subduction zones 289, 291 and development of forearc basin 267 change in relative plate
    [Show full text]
  • And the Digital Data Files Contained on It (The “Content”), Is Governed by the Terms Set out on This Page (“Terms of Use”)
    ISBN 978-1-4249-9924-8 [DVD] ISBN 978-1-4249-9925-5[ZIP FILE] THESE TERMS GOVERN YOUR USE OF THIS PRODUCT Your use of this electronic information product (“EIP”), and the digital data files contained on it (the “Content”), is governed by the terms set out on this page (“Terms of Use”). By opening the EIP and viewing the Content , you (the “User”) have accepted, and have agreed to be bound by, the Terms of Use. EIP and Content: This EIP and Content is offered by the Province of Ontario’s Ministry of Northern Development and Mines (MNDM) as a public service, on an “as-is” basis. Recommendations and statements of opinions expressed are those of the author or authors and are not to be construed as statement of government policy. You are solely responsible for your use of the EIP and its Content. You should not rely on the Content for legal advice nor as authoritative in your particular circumstances. Users should verify the accuracy and applicability of any Content before acting on it. MNDM does not guarantee, or make any warranty express or implied, that the Content is current, accurate, complete or reliable or that the EIP is free from viruses or other harmful components. MNDM is not responsible for any damage however caused, which results, directly or indirectly, from your use of the EIP or the Content. MNDM assumes no legal liability or responsibility for the EIP or the Content whatsoever. Links to Other Web Sites: This EIP or the Content may contain links, to Web sites that are not operated by MNDM.
    [Show full text]
  • Synoptic Taxonomy of Major Fossil Groups
    APPENDIX Synoptic Taxonomy of Major Fossil Groups Important fossil taxa are listed down to the lowest practical taxonomic level; in most cases, this will be the ordinal or subordinallevel. Abbreviated stratigraphic units in parentheses (e.g., UCamb-Ree) indicate maximum range known for the group; units followed by question marks are isolated occurrences followed generally by an interval with no known representatives. Taxa with ranges to "Ree" are extant. Data are extracted principally from Harland et al. (1967), Moore et al. (1956 et seq.), Sepkoski (1982), Romer (1966), Colbert (1980), Moy-Thomas and Miles (1971), Taylor (1981), and Brasier (1980). KINGDOM MONERA Class Ciliata (cont.) Order Spirotrichia (Tintinnida) (UOrd-Rec) DIVISION CYANOPHYTA ?Class [mertae sedis Order Chitinozoa (Proterozoic?, LOrd-UDev) Class Cyanophyceae Class Actinopoda Order Chroococcales (Archean-Rec) Subclass Radiolaria Order Nostocales (Archean-Ree) Order Polycystina Order Spongiostromales (Archean-Ree) Suborder Spumellaria (MCamb-Rec) Order Stigonematales (LDev-Rec) Suborder Nasselaria (Dev-Ree) Three minor orders KINGDOM ANIMALIA KINGDOM PROTISTA PHYLUM PORIFERA PHYLUM PROTOZOA Class Hexactinellida Order Amphidiscophora (Miss-Ree) Class Rhizopodea Order Hexactinosida (MTrias-Rec) Order Foraminiferida* Order Lyssacinosida (LCamb-Rec) Suborder Allogromiina (UCamb-Ree) Order Lychniscosida (UTrias-Rec) Suborder Textulariina (LCamb-Ree) Class Demospongia Suborder Fusulinina (Ord-Perm) Order Monaxonida (MCamb-Ree) Suborder Miliolina (Sil-Ree) Order Lithistida
    [Show full text]
  • Giant Radiating Mafic Dyke Swarm of the Emeishan Large Igneous Province: Identifying the Mantle Plume Centre
    doi: 10.1111/ter.12154 Giant radiating mafic dyke swarm of the Emeishan Large Igneous Province: Identifying the mantle plume centre Hongbo Li,1,2 Zhaochong Zhang,1 Richard Ernst,3,4 Linsu L€u,2 M. Santosh,1 Dongyang Zhang1 and Zhiguo Cheng1 1State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China; 2Geologi- cal Museum of China, Beijing 100034, China; 3Department of Earth Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada; 4Ernst Geosciences, 43 Margrave Avenue, Ottawa, ON K1T 3Y2, Canada ABSTRACT In many continental large igneous provinces, giant radiating and recognized six dyke sub-swarms, forming an overall dyke swarms are typically interpreted to result from the arri- radiating dyke swarm and converging in the Yongren area, val of a mantle plume at the base of the lithosphere. Mafic Yunnan province. This location coincides with the maximum dyke swarms in the Emeishan large igneous province (ELIP) pre-eruptive domal uplift, and is close to the locations of have not received much attention prior to this study. We high-temperature picrites. Our study suggests that the Yon- show that the geochemical characteristics and geochronologi- gren area may represent the mantle plume centre during the cal data of the mafic dykes are broadly similar to those of peak of Emeishan magmatism. the spatially associated lavas, suggesting they were derived from a common parental magma. Based on the regional geo- Terra Nova, 27, 247–257, 2015 logical data and our field observations, we mapped the spa- tial distribution patterns of mafic dyke swarms in the ELIP, ridge by a continent (Gower and swarms and their distributions pro- Introduction Krogh, 2002), edge-driven enhanced vide an opportunity to further test Large igneous provinces (LIPs) are mantle convection (King and Ander- the plume model for the ELIP.
    [Show full text]
  • Instability of the Southern Canadian Shield During the Late Proterozoic 2 3 Kalin T
    1 Instability of the southern Canadian Shield during the late Proterozoic 2 3 Kalin T. McDannella,b*, Peter K. Zeitlera, and David A. Schneiderc 4 5 aDepartment of Earth and Environmental Sciences, Lehigh University, 1 W. Packer Ave. Bethlehem PA, 18015 USA 6 7 bGeological Survey of Canada, Natural Resources Canada, 3303 – 33 St NW Calgary AB, T2L 2A7 Canada 8 9 cDepartment of Earth & Environmental Sciences, University of Ottawa, 25 Templeton Ave., Ottawa ON, K1N 6N5 10 Canada 11 12 *corresponding author: [email protected]; [email protected] 13 14 ABSTRACT 15 Cratons are generally considered to comprise lithosphere that has remained tectonically 16 quiescent for billions of years. Direct evidence for stability is mainly founded in the Phanerozoic 17 sedimentary record and low-temperature thermochronology, but for extensive parts of Canada, 18 earlier stability has been inferred due to the lack of an extensive rock record in both time and 19 space. We used 40Ar/39Ar multi-diffusion domain (MDD) analysis of K-feldspar to constrain 20 cratonic thermal histories across an intermediate (~150-350°C) temperature range in an attempt 21 to link published high-temperature geochronology that resolves the timing of orogenesis and 22 metamorphism with lower-temperature data suited for upper-crustal burial and unroofing 23 histories. This work is focused on understanding the transition from Archean-Paleoproterozoic 24 crustal growth to later intervals of stability, and how uninterrupted that record is throughout 25 Earth’s Proterozoic “Middle Age.” Intermediate-temperature thermal histories of cratonic rocks 26 at well-constrained localities within the southern Canadian Shield of North America challenge 27 the stability worldview because our data indicate that these rocks were at elevated temperatures 28 in the Proterozoic.
    [Show full text]
  • Supercontinent Reconstruction the Palaeomagnetically Viable, Long
    Geological Society, London, Special Publications The palaeomagnetically viable, long-lived and all-inclusive Rodinia supercontinent reconstruction David A. D. Evans Geological Society, London, Special Publications 2009; v. 327; p. 371-404 doi:10.1144/SP327.16 Email alerting click here to receive free email alerts when new articles cite this service article Permission click here to seek permission to re-use all or part of this article request Subscribe click here to subscribe to Geological Society, London, Special Publications or the Lyell Collection Notes Downloaded by on 21 December 2009 © 2009 Geological Society of London The palaeomagnetically viable, long-lived and all-inclusive Rodinia supercontinent reconstruction DAVID A. D. EVANS Department of Geology & Geophysics, Yale University, New Haven, CT 06520-8109, USA (e-mail: [email protected]) Abstract: Palaeomagnetic apparent polar wander (APW) paths from the world’s cratons at 1300–700 Ma can constrain the palaeogeographic possibilities for a long-lived and all-inclusive Rodinia supercontinent. Laurentia’s APW path is the most complete and forms the basis for super- position by other cratons’ APW paths to identify possible durations of those cratons’ inclusion in Rodinia, and also to generate reconstructions that are constrained both in latitude and longitude relative to Laurentia. Baltica reconstructs adjacent to the SE margin of Greenland, in a standard and geographically ‘upright’ position, between c. 1050 and 600 Ma. Australia reconstructs adja- cent to the pre-Caspian margin of Baltica, geographically ‘inverted’ such that cratonic portions of Queensland are juxtaposed with that margin via collision at c. 1100 Ma. Arctic North America reconstructs opposite to the CONgo þ Sa˜o Francisco craton at its DAmaride–Lufilian margin (the ‘ANACONDA’ fit) throughout the interval 1235–755 Ma according to palaeomag- netic poles of those ages from both cratons, and the reconstruction was probably established during the c.
    [Show full text]
  • 7.09 Hot Spots and Melting Anomalies G
    7.09 Hot Spots and Melting Anomalies G. Ito, University of Hawaii, Honolulu, HI, USA P. E. van Keken, University of Michigan, Ann Arbor, MI, USA ª 2007 Elsevier B.V. All rights reserved. 7.09.1 Introduction 372 7.09.2 Characteristics 373 7.09.2.1 Volcano Chains and Age Progression 373 7.09.2.1.1 Long-lived age-progressive volcanism 373 7.09.2.1.2 Short-lived age-progressive volcanism 381 7.09.2.1.3 No age-progressive volcanism 382 7.09.2.1.4 Continental hot spots 383 7.09.2.1.5 The hot-spot reference frame 386 7.09.2.2 Topographic Swells 387 7.09.2.3 Flood Basalt Volcanism 388 7.09.2.3.1 Continental LIPs 388 7.09.2.3.2 LIPs near or on continental margins 389 7.09.2.3.3 Oceanic LIPs 391 7.09.2.3.4 Connections to hot spots 392 7.09.2.4 Geochemical Heterogeneity and Distinctions from MORB 393 7.09.2.5 Mantle Seismic Anomalies 393 7.09.2.5.1 Global seismic studies 393 7.09.2.5.2 Local seismic studies of major hot spots 395 7.09.2.6 Summary of Observations 399 7.09.3 Dynamical Mechanisms 400 7.09.3.1 Methods 400 7.09.3.2 Generating the Melt 401 7.09.3.2.1 Temperature 402 7.09.3.2.2 Composition 402 7.09.3.2.3 Mantle flow 404 7.09.3.3 Swells 405 7.09.3.3.1 Generating swells: Lubrication theory 405 7.09.3.3.2 Generating swells: Thermal upwellings and intraplate hot spots 407 7.09.3.3.3 Generating swells: Thermal upwellings and hot-spot–ridge interaction 408 7.09.3.4 Dynamics of Buoyant Upwellings 410 7.09.3.4.1 TBL instabilities 410 7.09.3.4.2 Thermochemical instabilities 411 7.09.3.4.3 Effects of variable mantle properties 412 7.09.3.4.4 Plume
    [Show full text]
  • EPSC 233: Earth and Life History
    EPSC 233: Earth and Life History Galen Halverson Fall Semester, 2014 Contents 1 Introduction to Geology and the Earth System 1 1.1 The Science of Historical Geology . 1 1.2 The Earth System . 4 2 Minerals and Rocks: The Building Blocks of Earth 6 2.1 Introduction . 6 2.2 Structure of the Earth . 6 2.3 Elements and Isotopes . 7 2.4 Minerals . 9 2.5 Rocks . 10 3 Plate Tectonics 16 3.1 Introduction . 16 3.2 Continental Drift . 16 3.3 The Plate Tectonic Revolution . 17 3.4 An overview of plate tectonics . 20 3.5 Vertical Motions in the Mantle . 24 4 Geological Time and the Age of the Earth 25 4.1 Introduction . 25 4.2 Relative Ages . 25 4.3 Absolute Ages . 26 4.4 Radioactive dating . 28 4.5 Other Chronostratigraphic Techniques . 31 5 The Stratigraphic Record and Sedimentary Environments 35 5.1 Introduction . 35 5.2 Stratigraphy . 35 5.3 Describing and interpreting detrital sedimentary rocks . 36 6 Life, Fossils, and Evolution 41 6.1 Introduction . 41 6.2 Fossils . 42 6.3 Biostratigraphy . 44 6.4 The Geological Time Scale . 45 6.5 Systematics and Taxonomy . 46 6.6 Evolution . 49 6.7 Gradualism Versus Punctuated Equilibrium . 53 i ii 7 The Environment and Chemical Cycles 55 7.1 Introduction . 55 7.2 Ecology . 56 7.3 The Atmosphere . 57 7.4 The Terrestrial Realm . 61 7.5 The Marine Realm . 63 8 Origin of the Earth and the Hadean 66 8.1 Introduction . 66 8.2 Origin of the Solar System .
    [Show full text]