EPSC 233: Earth and Life History

Total Page:16

File Type:pdf, Size:1020Kb

EPSC 233: Earth and Life History EPSC 233: Earth and Life History Galen Halverson Fall Semester, 2014 Contents 1 Introduction to Geology and the Earth System 1 1.1 The Science of Historical Geology . 1 1.2 The Earth System . 4 2 Minerals and Rocks: The Building Blocks of Earth 6 2.1 Introduction . 6 2.2 Structure of the Earth . 6 2.3 Elements and Isotopes . 7 2.4 Minerals . 9 2.5 Rocks . 10 3 Plate Tectonics 16 3.1 Introduction . 16 3.2 Continental Drift . 16 3.3 The Plate Tectonic Revolution . 17 3.4 An overview of plate tectonics . 20 3.5 Vertical Motions in the Mantle . 24 4 Geological Time and the Age of the Earth 25 4.1 Introduction . 25 4.2 Relative Ages . 25 4.3 Absolute Ages . 26 4.4 Radioactive dating . 28 4.5 Other Chronostratigraphic Techniques . 31 5 The Stratigraphic Record and Sedimentary Environments 35 5.1 Introduction . 35 5.2 Stratigraphy . 35 5.3 Describing and interpreting detrital sedimentary rocks . 36 6 Life, Fossils, and Evolution 41 6.1 Introduction . 41 6.2 Fossils . 42 6.3 Biostratigraphy . 44 6.4 The Geological Time Scale . 45 6.5 Systematics and Taxonomy . 46 6.6 Evolution . 49 6.7 Gradualism Versus Punctuated Equilibrium . 53 i ii 7 The Environment and Chemical Cycles 55 7.1 Introduction . 55 7.2 Ecology . 56 7.3 The Atmosphere . 57 7.4 The Terrestrial Realm . 61 7.5 The Marine Realm . 63 8 Origin of the Earth and the Hadean 66 8.1 Introduction . 66 8.2 Origin of the Solar System . 66 8.3 Differentiation and the origin of the Moon . 67 8.4 The Late Heavy Bombardment . 67 9 Earth's Earliest Record: the Archean 70 9.1 The Archean . 70 10 The Great Oxidation Event 75 10.1 The Great Oxidation Event . 75 11 Early{Middle Proterozoic Life and Environment 81 11.1 The Paleoproterozoic Glaciations . 81 11.2 Life in the Proterozoic . 82 12 Supercontinents and the Assembly of North America 84 12.1 Tectonics and the Supercontinental Cycle . 84 12.2 The Assembly of North America . 85 13 Neoproterozoic Snowball Earth and Rodinia Break-up 87 13.1 Introduction . 87 13.2 Rodinia break-up . 88 13.3 Geochemical Proxies . 89 13.4 Record of Neoproterozoic glaciations . 89 13.5 The Snowball Earth hypothesis . 90 14 The Ediacaran Period and the Origin of Animals 93 14.1 Introduction . 93 14.2 Chronology of Early Animal Evolution and Ediacaran Events . 95 14.3 Early Sponges? and the Molecular Clock Record of Metazoan Diversification 96 14.4 The Acritarch Extinction and Radiation . 96 14.5 The Ediacara Biota . 97 14.6 Weakly Calcified Metazoa . 100 15 The Cambrian Explosion 101 15.1 The Early Cambrian . 101 15.2 The Explosion . 107 15.3 Cambrian Biodiversity . 109 iii 16 The Early Paleozoic: Age of the Invertebrates 111 16.1 Orodovician life . 111 16.2 Simple animals . 112 16.3 The Bilateria . 114 16.4 Colonial Metazoa . 119 17 The Early{Middle Paleozoic: Paleogeography, Stratigraphy, and Envi- ronments 120 17.1 Paleozoic Tectonics and Paleogeography . 120 17.2 Paleozoic Climate . 123 18 Paleozoic Vertebrates and the Origin of Land Plants 125 18.1 Origin of the Vertebrates . 125 18.2 Fish . 125 18.3 Amphibians . 126 18.4 Reptiles . 127 18.5 Land Plants . 128 19 The Late Paleozoic and the Permo-Triassic Extinction 130 19.1 Pangaea . 130 19.2 Late Paleozoic Climate . 130 19.3 Late Paleozoic Life . 131 19.4 Extinctions in the fossil record . 133 19.5 The Big Five Mass Extinctions . 134 20 Mesozoic Life 138 20.1 Recovery from the Permo-Triassic extinction in the marine realm . 138 20.2 Life on land in the Mesozoic . 140 20.3 The End Triassic Mass Extinction . 143 21 Mesozoic Earth history 144 21.1 Breakup of Pangaea . 144 21.2 North America in the Mesozoic . 145 21.3 Mesozoic Climate . 148 22 The Cretaceous-Paleogene Mass Extinction and the Paleogene 150 22.1 The K-Pg Extinction . 150 22.2 Life in the Paleogene . 152 22.3 Paleogene Tectonics . 155 22.4 Cenozoic Climate . 156 23 The Neogene 158 23.1 Introduction . 158 23.2 Neogene Tectonics . 158 23.3 Neogene Climate . 160 23.4 Life in the Neogene . 162 iv 24 Pleistocene Glaciation and Earth System Evolution 163 24.1 The Geological Record of Pleistocene Glaciation . 163 24.2 The Oxygen-Isotopic Record of Glaciation . 164 24.3 Milankovitch Cycles . 165 25 Origin and Evolution of Hominoids 167 25.1 Early Hominid Evolution . 167 25.2 Hominin Evolution . 167 Chapter 1 Introduction to Geology and the Earth System 1.1 The Science of Historical Geology Historical geology is the study of the Earth's past. This includes the evolution of the Earth (including both its surface and interior) and the life that has inhabited it. It also includes events in the Earth's history, many of which significantly shaped the course of life, the biosphere, and more generally, the Earth System. It is virtually impossible to avoid Earth history if one work on rocks, because most rocks are old, and discerning their significance entails knowing how old and in what environment or context they were formed. Earth history simply integrates as much information as possible obtained from all the rocks on the surface of the Earth (and biological and chemical clues they contain) into a narrative of Earth's past. As you will appreciate, this is not an easy task and historical geology courses have no choice but to omit most of the details. Like most Earth history courses, a large component of this course will entail stepping through the geological time scale to understand how Earth formed then changed over the course of its 4.56 billion years. But first it will begin with introductions to the the sub-disciplines employed in studying Earth's past and tools used to interrogate it. Why study Earth history? To be honest, probably the main reason people do is because it is fundamentally interesting. If you are curious about how the Earth came to be the way it us, then.
Recommended publications
  • Cryogenian Glaciation and the Onset of Carbon-Isotope Decoupling” by N
    CORRECTED 21 MAY 2010; SEE LAST PAGE REPORTS 13. J. Helbert, A. Maturilli, N. Mueller, in Venus Eds. (U.S. Geological Society Open-File Report 2005- M. F. Coffin, Eds. (Monograph 100, American Geophysical Geochemistry: Progress, Prospects, and New Missions 1271, Abstracts of the Annual Meeting of Planetary Union, Washington, DC, 1997), pp. 1–28. (Lunar and Planetary Institute, Houston, TX, 2009), abstr. Geologic Mappers, Washington, DC, 2005), pp. 20–21. 44. M. A. Bullock, D. H. Grinspoon, Icarus 150, 19 (2001). 2010. 25. E. R. Stofan, S. E. Smrekar, J. Helbert, P. Martin, 45. R. G. Strom, G. G. Schaber, D. D. Dawson, J. Geophys. 14. J. Helbert, A. Maturilli, Earth Planet. Sci. Lett. 285, 347 N. Mueller, Lunar Planet. Sci. XXXIX, abstr. 1033 Res. 99, 10,899 (1994). (2009). (2009). 46. K. M. Roberts, J. E. Guest, J. W. Head, M. G. Lancaster, 15. Coronae are circular volcano-tectonic features that are 26. B. D. Campbell et al., J. Geophys. Res. 97, 16,249 J. Geophys. Res. 97, 15,991 (1992). unique to Venus and have an average diameter of (1992). 47. C. R. K. Kilburn, in Encyclopedia of Volcanoes, ~250 km (5). They are defined by their circular and often 27. R. J. Phillips, N. R. Izenberg, Geophys. Res. Lett. 22, 1617 H. Sigurdsson, Ed. (Academic Press, San Diego, CA, radial fractures and always produce some form of volcanism. (1995). 2000), pp. 291–306. 16. G. E. McGill, S. J. Steenstrup, C. Barton, P. G. Ford, 28. C. M. Pieters et al., Science 234, 1379 (1986). 48.
    [Show full text]
  • Geochemistry This
    TORONTOTORONTO Vol. 8, No. 4 April 1998 Call for Papers GSA TODAY — page C1 A Publication of the Geological Society of America Electronic Abstracts Submission — page C3 Antarctic Neogene Landscapes—In the 1998 Registration Refrigerator or in the Deep Freeze? Annual Issue Meeting — June GSA Today Introduction The present Molly F. Miller, Department of Geology, Box 117-B, Vanderbilt Antarctic landscape undergoes very University, Nashville, TN 37235, [email protected] slow environmental change because it is almost entirely covered by a thick, slow-moving ice sheet and thus effectively locked in a Mark C. G. Mabin, Department of Tropical Environmental Studies deep freeze. The ice sheet–landscape system is essentially stable, and Geography, James Cook University, Townsville, Queensland 4811, Australia, [email protected] Antarctic—Introduction continued on p. 2 Atmospheric Transport of Diatoms in the Antarctic Sirius Group: Pliocene Deep Freeze Arjen P. Stroeven, Department of Quaternary Research, Stockholm University, S-106 91 Stockholm, Sweden Lloyd H. Burckle, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964 Johan Kleman, Department of Physical Geography, Stockholm University, S-106, 91 Stockholm, Sweden Michael L. Prentice, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824 INTRODUCTION How did young diatoms (including some with ranges from the Pliocene to the Pleistocene) get into the Sirius Group on the slopes of the Transantarctic Mountains? Dynamicists argue for emplacement by a wet-based ice sheet that advanced across East Antarctica and the Transantarctic Mountains after flooding of interior basins by relatively warm marine waters [2 to 5 °C according to Webb and Harwood (1991)].
    [Show full text]
  • Timeline of Natural History
    Timeline of natural history This timeline of natural history summarizes significant geological and Life timeline Ice Ages biological events from the formation of the 0 — Primates Quater nary Flowers ←Earliest apes Earth to the arrival of modern humans. P Birds h Mammals – Plants Dinosaurs Times are listed in millions of years, or Karo o a n ← Andean Tetrapoda megaanni (Ma). -50 0 — e Arthropods Molluscs r ←Cambrian explosion o ← Cryoge nian Ediacara biota – z ←Earliest animals o ←Earliest plants i Multicellular -1000 — c Contents life ←Sexual reproduction Dating of the Geologic record – P r The earliest Solar System -1500 — o t Precambrian Supereon – e r Eukaryotes Hadean Eon o -2000 — z o Archean Eon i Huron ian – c Eoarchean Era ←Oxygen crisis Paleoarchean Era -2500 — ←Atmospheric oxygen Mesoarchean Era – Photosynthesis Neoarchean Era Pong ola Proterozoic Eon -3000 — A r Paleoproterozoic Era c – h Siderian Period e a Rhyacian Period -3500 — n ←Earliest oxygen Orosirian Period Single-celled – life Statherian Period -4000 — ←Earliest life Mesoproterozoic Era H Calymmian Period a water – d e Ectasian Period a ←Earliest water Stenian Period -4500 — n ←Earth (−4540) (million years ago) Clickable Neoproterozoic Era ( Tonian Period Cryogenian Period Ediacaran Period Phanerozoic Eon Paleozoic Era Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Permian Period Mesozoic Era Triassic Period Jurassic Period Cretaceous Period Cenozoic Era Paleogene Period Neogene Period Quaternary Period Etymology of period names References See also External links Dating of the Geologic record The Geologic record is the strata (layers) of rock in the planet's crust and the science of geology is much concerned with the age and origin of all rocks to determine the history and formation of Earth and to understand the forces that have acted upon it.
    [Show full text]
  • Ediacaran) of Earth – Nature’S Experiments
    The Early Animals (Ediacaran) of Earth – Nature’s Experiments Donald Baumgartner Medical Entomologist, Biologist, and Fossil Enthusiast Presentation before Chicago Rocks and Mineral Society May 10, 2014 Illinois Famous for Pennsylvanian Fossils 3 In the Beginning: The Big Bang . Earth formed 4.6 billion years ago Fossil Record Order 95% of higher taxa: Random plant divisions domains & kingdoms Cambrian Atdabanian Fauna Vendian Tommotian Fauna Ediacaran Fauna protists Proterozoic algae McConnell (Baptist)College Pre C - Fossil Order Archaean bacteria Source: Truett Kurt Wise The First Cells . 3.8 billion years ago, oxygen levels in atmosphere and seas were low • Early prokaryotic cells probably were anaerobic • Stromatolites . Divergence separated bacteria from ancestors of archaeans and eukaryotes Stromatolites Dominated the Earth Stromatolites of cyanobacteria ruled the Earth from 3.8 b.y. to 600 m. [2.5 b.y.]. Believed that Earth glaciations are correlated with great demise of stromatolites world-wide. 8 The Oxygen Atmosphere . Cyanobacteria evolved an oxygen-releasing, noncyclic pathway of photosynthesis • Changed Earth’s atmosphere . Increased oxygen favored aerobic respiration Early Multi-Cellular Life Was Born Eosphaera & Kakabekia at 2 b.y in Canada Gunflint Chert 11 Earliest Multi-Cellular Metazoan Life (1) Alga Eukaryote Grypania of MI at 1.85 b.y. MI fossil outcrop 12 Earliest Multi-Cellular Metazoan Life (2) Beads Horodyskia of MT and Aust. at 1.5 b.y. thought to be algae 13 Source: Fedonkin et al. 2007 Rise of Animals Tappania Fungus at 1.5 b.y Described now from China, Russia, Canada, India, & Australia 14 Earliest Multi-Cellular Metazoan Animals (3) Worm-like Parmia of N.E.
    [Show full text]
  • Do Gssps Render Dual Time-Rock/Time Classification and Nomenclature Redundant?
    Do GSSPs render dual time-rock/time classification and nomenclature redundant? Ismael Ferrusquía-Villafranca1 Robert M. Easton2 and Donald E. Owen3 1Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, México, DF, MEX, 45100, e-mail: [email protected] 2Ontario Geological Survey, Precambrian Geoscience Section, 933 Ramsey Lake Road, B7064 Sudbury, Ontario P3E 6B5, e-mail: [email protected] 3Department of Geology, Lamar University, Beaumont, Texas 77710, e-mail: [email protected] ABSTRACT: The Geological Society of London Proposal for “…ending the distinction between the dual stratigraphic terminology of time-rock units (of chronostratigraphy) and geologic time units (of geochronology). The long held, but widely misunderstood distinc- tion between these two essentially parallel time scales has been rendered unnecessary by the adoption of the global stratotype sections and points (GSSP-golden spike) principle in defining intervals of geologic time within rock strata.” Our review of stratigraphic princi- ples, concepts, models and paradigms through history clearly shows that the GSL Proposal is flawed and if adopted will be of disservice to the stratigraphic community. We recommend the continued use of the dual stratigraphic terminology of chronostratigraphy and geochronology for the following reasons: (1) time-rock (chronostratigraphic) and geologic time (geochronologic) units are conceptually different; (2) the subtended time-rock’s unit space between its “golden spiked-marked”
    [Show full text]
  • The Great Oxidation Event: an Expert Discussion on the Causes, the Processes, and the Still Unknowns
    ASTROBIOLOGY Volume 12, Number 12, 2012 The Astrobiology Society Roundtable ª Mary Ann Liebert, Inc. DOI: 10.1089/ast.2012.1110 The Great Oxidation Event: An Expert Discussion on the Causes, the Processes, and the Still Unknowns Moderator: Frances Westall1 Participants: Ariel Anbar,2 Woody Fischer,3 and Lee Kump4 Dr. Frances Westall (FW): Let’s begin with each of you seeming to get honed in on the Archean-Proterozoic tran- giving an overview as to the importance of biogenic pro- sition, I have always looked for a change in the solid cesses in the rise of oxygen—oxygenic photosynthesis. Lee, Earth dynamics that is linked to that, because the Archean- would you like to begin? Proterozoic boundary was defined based on geological evi- Dr. Lee Kump (LK): What is really interesting about the dence for the stabilization of continental cratons. history of atmospheric oxygenation is that there is this event That is what ultimately led Mark Barley and me to look at or interval of change from an anoxic Archean atmosphere to that issue of changes in style of tectonics at the Archean- an oxygenated post-Archean atmosphere (Holland, 1994). Proterozoic boundary, and ultimately focus on the style of When we think about the causes of the rise of oxygen and we volcanism (Kump and Barley, 2007). This was, again, the think about the Great Oxidation Event, it is really a funda- result of Holland pointing out that in modern volcanic sys- mental change in the way the Earth system functioned. It is a tems, the oxygen demand from the release of fluids, gases of new state; it is the oxygenated state that is distinct from the subaerial volcanoes was significantly less than that from the anoxic state, and it is nonreversible.
    [Show full text]
  • UC Riverside UC Riverside Electronic Theses and Dissertations
    UC Riverside UC Riverside Electronic Theses and Dissertations Title Exploring the Texture of Ocean-Atmosphere Redox Evolution on the Early Earth Permalink https://escholarship.org/uc/item/9v96g1j5 Author Reinhard, Christopher Thomas Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Exploring the Texture of Ocean-Atmosphere Redox Evolution on the Early Earth A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Geological Sciences by Christopher Thomas Reinhard September 2012 Dissertation Committee: Dr. Timothy W. Lyons, Chairperson Dr. Gordon D. Love Dr. Nigel C. Hughes ! Copyright by Christopher Thomas Reinhard 2012 ! ! The Dissertation of Christopher Thomas Reinhard is approved: ________________________________________________ ________________________________________________ ________________________________________________ Committee Chairperson University of California, Riverside ! ! ACKNOWLEDGEMENTS It goes without saying (but I’ll say it anyway…) that things like this are never done in a vacuum. Not that I’ve invented cold fusion here, but it was quite a bit of work nonetheless and to say that my zest for the enterprise waned at times would be to put it euphemistically. As it happens, though, I’ve been fortunate enough to be surrounded these last years by an incredible group of people. To those that I consider scientific and professional mentors that have kept me interested, grounded, and challenged – most notably Tim Lyons, Rob Raiswell, Gordon Love, and Nigel Hughes – thank you for all that you do. I also owe Nigel and Mary Droser a particular debt of graditude for letting me flounder a bit my first year at UCR, being understanding and supportive, and encouraging me to start down the road to where I’ve ended up (for better or worse).
    [Show full text]
  • Foundations of Complex Life: Evolution, Preservation and Detection on Earth and Beyond
    National Aeronautics and Space Administration NASA Astrobiology Institute Annual Science Report 2016 Team Report: Foundations of Complex Life: Evolution, Preservation and Detection on Earth and Beyond, Massachusetts Institute of Technology Foundations of Complex Life Evolution, Preservation and Detection on Earth and Beyond Lead Institution: Massachusetts Institute of Technology Team Overview Foundations of Complex Life is a research project investigating the early evolution and preservation of complex life on Earth. We seek insight into the early evolution and preservation of complex life by refining our ability to identify evidence of environmental and biological change in the late Mesoproterozoic to Neoproterozoic eras. Better understanding how signatures of life and environment are preserved will guide how and where to look for evidence for life elsewhere in the universe—directly supporting the Curiosity mission on Mars and helping set strategic goals for future explorations of the Solar System and studies of the early Earth. Our Team pursues these questions under five themes: I. The earliest history of animals: We use methods from molecular biology, experimental taphonomy, and paleontology to explore what caused the early divergence of animals. Principal Investigator: II. Paleontology, sedimentology, and geochemistry: We track the origin of complex Roger Summons protists and animals from their biologically simple origins by documenting the stratigraphy, isotopic records, and microfossil assemblages of well-preserved rock successions from 1200 to 650 million years ago. III. A preservation-induced oxygen tipping point: We investigate how changes in the preservation of organic carbon may have driven the Neoproterozoic oxygenation of the oceans coincident with the appearance of complex life.
    [Show full text]
  • PDF of Manuscript and Figures
    The triple origin of whales DAVID PETERS Independent Researcher 311 Collinsville Avenue, Collinsville, IL 62234, USA [email protected] 314-323-7776 July 13, 2018 RH: PETERS—TRIPLE ORIGIN OF WHALES Keywords: Cetacea, Mysticeti, Odontoceti, Phylogenetic analyis ABSTRACT—Workers presume the traditional whale clade, Cetacea, is monophyletic when they support a hypothesis of relationships for baleen whales (Mysticeti) rooted on stem members of the toothed whale clade (Odontoceti). Here a wider gamut phylogenetic analysis recovers Archaeoceti + Odontoceti far apart from Mysticeti and right whales apart from other mysticetes. The three whale clades had semi-aquatic ancestors with four limbs. The clade Odontoceti arises from a lineage that includes archaeocetids, pakicetids, tenrecs, elephant shrews and anagalids: all predators. The clade Mysticeti arises from a lineage that includes desmostylians, anthracobunids, cambaytheres, hippos and mesonychids: none predators. Right whales are derived from a sister to Desmostylus. Other mysticetes arise from a sister to the RBCM specimen attributed to Behemotops. Basal mysticetes include Caperea (for right whales) and Miocaperea (for all other mysticetes). Cetotheres are not related to aetiocetids. Whales and hippos are not related to artiodactyls. Rather the artiodactyl-type ankle found in basal archaeocetes is also found in the tenrec/odontocete clade. Former mesonychids, Sinonyx and Andrewsarchus, nest close to tenrecs. These are novel observations and hypotheses of mammal interrelationships based on morphology and a wide gamut taxon list that includes relevant taxa that prior studies ignored. Here some taxa are tested together for the first time, so they nest together for the first time. INTRODUCTION Marx and Fordyce (2015) reported the genesis of the baleen whale clade (Mysticeti) extended back to Zygorhiza, Physeter and other toothed whales (Archaeoceti + Odontoceti).
    [Show full text]
  • Caswell Et Al. 2019 Preprint Part1
    © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http:// creativecommons.org/licenses/by-nc-nd/4.0/ 1 An ecological status indicator for all time: Are AMBI and 2 M-AMBI effective indicators of change in deep time? 3 4 Bryony A. Caswell*1, 2, Chris L. J. Frid3, Angel Borja4 5 6 1Environmental Futures Research Institute, Griffith University, Gold Coast, 7 Queensland 4222, Australia. 8 2School of Environmental Science, University of Hull, Hull, HU6 7RX, UK 9 3School of Environment and Science, Griffith University, Gold Coast, QLD 4222, 10 Australia. 11 4AZTI, Marine Research Division, Herrera Kaia Portualdea s/n, 20100 Pasaia, Spain 12 13 *Corresponding author: email; Phone: +44(0)1482466341 14 15 Abstract 16 17 Increasingly environmental management seeks to limit the impacts of human 18 activities on ecosystems relative to some ‘reference’ condition, which is often the 19 presumed pre-impacted state, however such information is limited. We explore how 20 marine ecosystems in deep time (Late Jurassic)are characterised by AZTI’s Marine 21 Biotic Index (AMBI), and how the indices responded to natural perturbations. AMBI 22 is widely used to detect the impacts of human disturbance and to establish 23 management targets, and this study is the first application of these indices to a fossil 24 fauna. Our results show AMBI detected changes in past seafloor communities (well- 25 preserved fossil deposits) that underwent regional deoxygenation in a manner 26 analogous to those experiencing two decades of organic pollution. These findings 27 highlight the potential for palaeoecological data to contribute to reconstructions of 28 pre-human marine ecosystems, and hence provide information to policy makers and 29 regulators with greater temporal context on the nature of ‘pristine’ marine 30 ecosystems.
    [Show full text]
  • A Community Effort Towards an Improved Geological Time Scale
    A community effort towards an improved geological time scale 1 This manuscript is a preprint of a paper that was submitted for publication in Journal 2 of the Geological Society. Please note that the manuscript is now formally accepted 3 for publication in JGS and has the doi number: 4 5 https://doi.org/10.1144/jgs2020-222 6 7 The final version of this manuscript will be available via the ‘Peer reviewed Publication 8 DOI’ link on the right-hand side of this webpage. Please feel free to contact any of the 9 authors. We welcome feedback on this community effort to produce a framework for 10 future rock record-based subdivision of the pre-Cryogenian geological timescale. 11 1 A community effort towards an improved geological time scale 12 Towards a new geological time scale: A template for improved rock-based subdivision of 13 pre-Cryogenian time 14 15 Graham A. Shields1*, Robin A. Strachan2, Susannah M. Porter3, Galen P. Halverson4, Francis A. 16 Macdonald3, Kenneth A. Plumb5, Carlos J. de Alvarenga6, Dhiraj M. Banerjee7, Andrey Bekker8, 17 Wouter Bleeker9, Alexander Brasier10, Partha P. Chakraborty7, Alan S. Collins11, Kent Condie12, 18 Kaushik Das13, Evans, D.A.D.14, Richard Ernst15, Anthony E. Fallick16, Hartwig Frimmel17, Reinhardt 19 Fuck6, Paul F. Hoffman18, Balz S. Kamber19, Anton Kuznetsov20, Ross Mitchell21, Daniel G. Poiré22, 20 Simon W. Poulton23, Robert Riding24, Mukund Sharma25, Craig Storey2, Eva Stueeken26, Rosalie 21 Tostevin27, Elizabeth Turner28, Shuhai Xiao29, Shuanhong Zhang30, Ying Zhou1, Maoyan Zhu31 22 23 1Department
    [Show full text]
  • Climate Instability and Tipping Points in the Late Devonian
    Archived version from NCDOCKS Institutional Repository – http://libres.uncg.edu/ir/asu/ Sarah K. Carmichael, Johnny A. Waters, Cameron J. Batchelor, Drew M. Coleman, Thomas J. Suttner, Erika Kido, L.M. Moore, and Leona Chadimová, (2015) Climate instability and tipping points in the Late Devonian: Detection of the Hangenberg Event in an open oceanic island arc in the Central Asian Orogenic Belt, Gondwana Research The copy of record is available from Elsevier (18 March 2015), ISSN 1342-937X, http://dx.doi.org/10.1016/j.gr.2015.02.009. Climate instability and tipping points in the Late Devonian: Detection of the Hangenberg Event in an open oceanic island arc in the Central Asian Orogenic Belt Sarah K. Carmichael a,*, Johnny A. Waters a, Cameron J. Batchelor a, Drew M. Coleman b, Thomas J. Suttner c, Erika Kido c, L. McCain Moore a, and Leona Chadimová d Article history: a Department of Geology, Appalachian State University, Boone, NC 28608, USA Received 31 October 2014 b Department of Geological Sciences, University of North Carolina - Chapel Hill, Received in revised form 6 Feb 2015 Chapel Hill, NC 27599-3315, USA Accepted 13 February 2015 Handling Editor: W.J. Xiao c Karl-Franzens-University of Graz, Institute for Earth Sciences (Geology & Paleontology), Heinrichstrasse 26, A-8010 Graz, Austria Keywords: d Institute of Geology ASCR, v.v.i., Rozvojova 269, 165 00 Prague 6, Czech Republic Devonian–Carboniferous Chemostratigraphy Central Asian Orogenic Belt * Corresponding author at: ASU Box 32067, Appalachian State University, Boone, NC 28608, USA. West Junggar Tel.: +1 828 262 8471. E-mail address: [email protected] (S.K.
    [Show full text]