Effects of Sewage Sludge on Solution Chemistry and Plant Uptake of Cu in Sulphide Mine Tailings at Different Weathering Stages

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Sewage Sludge on Solution Chemistry and Plant Uptake of Cu in Sulphide Mine Tailings at Different Weathering Stages Applied Geochemistry 24 (2009) 475–482 Contents lists available at ScienceDirect Applied Geochemistry journal homepage: www.elsevier.com/locate/apgeochem Effects of sewage sludge on solution chemistry and plant uptake of Cu in sulphide mine tailings at different weathering stages Lovisa Stjernman Forsberg a,*, Dan Berggren Kleja a, Maria Greger b, Stig Ledin a a Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, SE-750 07 Uppsala, Sweden b Department of Botany, Stockholm University, SE-106 91 Stockholm, Sweden article info abstract Article history: This climate chamber experiment examines the effects of sewage sludge (SS) on sulphide mine tailings Received 4 June 2008 from the Aitik Cu mine in northern Sweden. The effects of SS were determined from Cu in solution Accepted 10 December 2008 and Cu uptake and growth of plants on tailings showing 3 different degrees of weathering. Possible rela- Available online 27 December 2008 tionships between Cu content in plants and Cu in solution measured in tailings (total dissolved Cu and free Cu) were also evaluated. Red fescue (Festuca rubra) was grown for 6 weeks in pots of the different Editorial handling by X.D. Li tailings treated with SS or NPK fertiliser. Soil solution was sampled with Rhizon tension lysimeters 2À and analysed for pH, dissolved organic C (DOC), free Cu, total dissolved Cu and SO4 . The effects of SS on Cu in solution and plants depended on the degree of weathering. In tailings with a low degree of sul- phide oxidation, SS application resulted in increased solubility and shoot accumulation of Cu compared with NPK-treated tailings, probably due to DOC forming soluble complexes with Cu. Sewage sludge also seemed to promote translocation of Cu to shoots in those tailings. In highly weathered tailings, lower contents of total dissolved Cu and free Cu in solution and lower Cu levels in shoots were found in SS-trea- ted samples than in NPK-treated. In the moderately weathered tailings, Cu concentrations in solutions were generally similar between treatments, but lower contents of Cu were found in shoots and roots of the fescue grown in the SS-treatment. Irrespective of degree of weathering and treatment, both free Cu and total dissolved Cu concentration in tailings correlated strongly with Cu levels found in fescue shoots. Ó 2008 Elsevier Ltd. All rights reserved. 1. Introduction etation on the tailings deposit. Addition of sewage sludge (SS) has been shown to increase the survival and biomass production When metals are extracted from sulphide ores, tailings with of plants due to the contribution of nutrients and organic matter varying contents of sulphides are generated. Weathering sulphide (Pietz et al., 1989; Pichtel et al., 1994; Stoltz and Greger, 2002; tailings have a stronger tendency to leach metals and acid material Forsberg and Ledin, 2006). The original material for SS is the solid than other weathering tailings, as H2SO4 and metal ions are gener- waste that is separated through sedimentation from municipal ated during the oxidation of the metal sulphides (Singer and sewage water and the organic matter content usually ranges from Stumm, 1970; Kleinmann et al., 1981). Pyrite is the dominant me- 50% to 60% (Theodoratos et al., 2000). The interest in using SS on tal sulphide mineral in many sulphide deposits, but the tailings of- mine tailings is increasing worldwide, as sewage sludge consti- ten contain variable amounts of other metal sulphides, e.g. tutes a huge disposal problem, while the area of abandoned mine chalcopyrite, CuFeS2 (Ferguson and Erickson, 1988). tailings deposits is increasing. However, the effects of SS on mobil- Establishment of vegetation on a tailings deposit may decrease ity and plant availability of metals in the tailings are of great envi- water leaching, improve the quality of polluted soil solution, re- ronmental concern. Although solid phase organic matter is known duce wind and water erosion, increase stability of the land surface to immobilise metals (Bahaminyakamwe et al., 2006) several stud- and improve the aesthetic appearance of the mine area (Shetron ies have shown that there is a risk of increased solubility and plant and Duffek, 1970; Bradshaw and Chadwick, 1980; Clemensson-Lin- uptake of metals due to the formation of soluble complexes be- dell et al., 1992). However, mine tailings are sterile in terms of the tween metals and the dissolved organic C (DOC) in the SS (Minnich physical and chemical characteristics necessary for plant growth et al., 1987; McBride, 1989; Ahumada et al., 2001; Parker et al., and these conditions must be overcome in order to establish veg- 2001; Inaba and Takenaka, 2005; Schwab et al., 2006; Ashworth and Alloway, 2007). * Corresponding author. Tel.: +46 18 671264; fax: +46 18 672795. The affinity for metals of both the solid and soluble phase of SS E-mail address: [email protected] (L.S. Forsberg). is known to depend on pH and the presence of other ions, which 0883-2927/$ - see front matter Ó 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.apgeochem.2008.12.030 476 L.S. Forsberg et al. / Applied Geochemistry 24 (2009) 475–482 may change the competition for reactive sites on the organic mol- posit, about one year after being pumped out onto the tailings ecules and/or adjust their effective charge (Temminghoff et al., deposit. Type A and Type B (later divided into B1 and B2) were 1994; Jordan et al., 1997; Impelliterri et al., 2002; Ashworth and homogenised separately and analysed with respect to total con- Alloway, 2007). This is of particular importance when using sew- tents of Cu, Fe and S to determine any differences in contents of age sludge on deposits with sulphide mine tailings, as great differ- metal sulphides between those two types. The analyses showed ences in pH and sulphide oxidation exist between different sites on that the A-tailings contained lower levels of those elements, which the same deposit due to variations in O2 and water conditions and suggested lower total sulphide content (Table 1). in sulphide content of the tailings (Peterson and Nielson, 1978; The SS used was collected at the Henriksdal treatment plant in Swedish Environmental Protection Agency, 1998). However, there Stockholm, where it had been treated with FeSO4 (to precipitate P), is a lack of information concerning the influence of such variations dewatered to a water content of around 70% and digested at a tem- on the effects of SS on metals in plants and tailings. perature of 33–37 °C (Stockholm Vatten, 2002). The sludge con- The present paper deals with the effects of SS on Cu in tailings tained about 25% C, 4% P and 4% N and the content of metals did with different degrees of sulphide weathering. The tailings derived not exceed the permissible limits on total metal content in SS for from the Aitik Cu mine in the north of Sweden. Establishment of use on agricultural land (Swedish Environmental Protection vegetation on the Aitik mine tailings deposit is planned at closure Agency, 1996; Stockholm Vatten, 2002) (data not shown). The total of the mine, using sewage sludge as fertiliser. Red fescue (Festuca levels of Cu and S in the SS were similar to those found in the B- rubra) has been shown to adapt well to the cold climate in the area tailings, but Fe levels were higher in the SS than in both types of and is planned to be used in the reclamation of the tailings. Copper tailings, probably due to the FeSO4 used in the treatment process occurs in high amounts in both Cu mine tailings and sewage (Table 1). The SS was stored at 2 °C for 4 months before use. sludge, is easily released when the sulphides oxidise and is consid- ered toxic to plants and animals at high concentrations (Bowen, 2.2. Preparation and properties of A, B1 and B2 tailings 1979; Sohlenius and Öborn, 2004; Forsberg and Ledin, 2006). Many studies emphasise the importance of analysing the soil solution for For 3 months before the climate chamber experiment, the A- evaluation of plant uptake of metals from contaminated soils (Min- tailings and part of the B-tailings (B1) were kept frozen (À18 °C) nich et al., 1987; Sauvé et al., 1996; Göttlein et al., 1996; Datta and to avoid further oxidation. However, the remaining part of the B- Young, 2005). Rhizon lysimeters have been shown to be effective in tailings (B2) was kept unfrozen. One half of B2 was then mixed sampling soil pore solution for metal speciation and dissolved or- with SS (20% SS by volume) while the other half remained un- ganic C analysis, due to their simplicity and in situ extraction with treated. Both untreated and SS-treated B2-tailings were put into minimal disturbance (Datta and Young, 2005; Rais et al., 2006). pots (1 kg of substrate/pot, four replicates) and exposed to 12 Accordingly, the specific objectives of the present study were for- leaching and drying cycles in a greenhouse (25 °C) for 3 months mulated as follows: (1) determine the effects of SS on DOC, free to promote sulphide oxidation in the tailings. The leaching was Cu and total dissolved Cu in tailings solutions sampled by Rhizon performed by adding 0.25 L deionized water to each pot every lysimeters; (2) determine the effects of SS on growth and Cu con- week. Drainage water (about 0.05 L per pot) was not recycled back tent of roots and shoots of red fescue; and (3) explore possible rela- into the pots. tionships between Cu concentrations in soil solutions and plant In June 2006, A- and B1-tailings were thawed and moistened to uptake of Cu.
Recommended publications
  • Legislation for the Reuse of Biosolids on Agricultural Land in Europe: Overview
    sustainability Review Legislation for the Reuse of Biosolids on Agricultural Land in Europe: Overview Maria Cristina Collivignarelli 1 , Alessandro Abbà 2, Andrea Frattarola 1, Marco Carnevale Miino 1 , Sergio Padovani 3, Ioannis Katsoyiannis 4,* and Vincenzo Torretta 5 1 Department of Civil and Architectural Engineering, University of Pavia, via Ferrata 1, 27100 Pavia, Italy; [email protected] (M.C.C.); [email protected] (A.F.); [email protected] (M.C.M.) 2 Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, via Branze 43, 25123 Brescia, Italy; [email protected] 3 ARPA Lombardia, Pavia Department, via Nino Bixio 13, 27100 Pavia, Italy; [email protected] 4 Department of Chemistry, Laboratory of Chemical and Environmental Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece 5 Department of Theoretical and Applied Sciences, University of Insubria, via G.B. Vico 46, 21100 Varese, Italy; [email protected] * Correspondence: [email protected] Received: 17 September 2019; Accepted: 25 October 2019; Published: 29 October 2019 Abstract: The issues concerning the management of sewage sludge produced in wastewater treatment plants are becoming more important in Europe due to: (i) the modification of sludge quality (biological and chemical sludge are often mixed with negative impacts on sludge management, especially for land application); (ii) the evolution of legislation (landfill disposal is banned in many European countries); and (iii) the technologies for energy and material recovery from sludge not being fully applied in all European Member States. Furthermore, Directive 2018/851/EC introduced the waste hierarchy that involved a new strategy with the prevention in waste production and the minimization of landfill disposal.
    [Show full text]
  • Safe Use of Wastewater in Agriculture: Good Practice Examples
    SAFE USE OF WASTEWATER IN AGRICULTURE: GOOD PRACTICE EXAMPLES Hiroshan Hettiarachchi Reza Ardakanian, Editors SAFE USE OF WASTEWATER IN AGRICULTURE: GOOD PRACTICE EXAMPLES Hiroshan Hettiarachchi Reza Ardakanian, Editors PREFACE Population growth, rapid urbanisation, more water intense consumption patterns and climate change are intensifying the pressure on freshwater resources. The increasing scarcity of water, combined with other factors such as energy and fertilizers, is driving millions of farmers and other entrepreneurs to make use of wastewater. Wastewater reuse is an excellent example that naturally explains the importance of integrated management of water, soil and waste, which we define as the Nexus While the information in this book are generally believed to be true and accurate at the approach. The process begins in the waste sector, but the selection of date of publication, the editors and the publisher cannot accept any legal responsibility for the correct management model can make it relevant and important to any errors or omissions that may be made. The publisher makes no warranty, expressed or the water and soil as well. Over 20 million hectares of land are currently implied, with respect to the material contained herein. known to be irrigated with wastewater. This is interesting, but the The opinions expressed in this book are those of the Case Authors. Their inclusion in this alarming fact is that a greater percentage of this practice is not based book does not imply endorsement by the United Nations University. on any scientific criterion that ensures the “safe use” of wastewater. In order to address the technical, institutional, and policy challenges of safe water reuse, developing countries and countries in transition need clear institutional arrangements and more skilled human resources, United Nations University Institute for Integrated with a sound understanding of the opportunities and potential risks of Management of Material Fluxes and of Resources wastewater use.
    [Show full text]
  • 2.2 Sewage Sludge Incineration
    2.2 Sewage Sludge Incineration There are approximately 170 sewage sludge incineration (SSI) plants in operation in the United States. Three main types of incinerators are used: multiple hearth, fluidized bed, and electric infrared. Some sludge is co-fired with municipal solid waste in combustors based on refuse combustion technology (see Section 2.1). Refuse co-fired with sludge in combustors based on sludge incinerating technology is limited to multiple hearth incinerators only. Over 80 percent of the identified operating sludge incinerators are of the multiple hearth design. About 15 percent are fluidized bed combustors and 3 percent are electric. The remaining combustors co-fire refuse with sludge. Most sludge incinerators are located in the Eastern United States, though there are a significant number on the West Coast. New York has the largest number of facilities with 33. Pennsylvania and Michigan have the next-largest numbers of facilities with 21 and 19 sites, respectively. Sewage sludge incinerator emissions are currently regulated under 40 CFR Part 60, Subpart O and 40 CFR Part 61, Subparts C and E. Subpart O in Part 60 establishes a New Source Performance Standard for particulate matter. Subparts C and E of Part 61--National Emission Standards for Hazardous Air Pollutants (NESHAP)--establish emission limits for beryllium and mercury, respectively. In 1989, technical standards for the use and disposal of sewage sludge were proposed as 40 CFR Part 503, under authority of Section 405 of the Clean Water Act. Subpart G of this proposed Part 503 proposes to establish national emission limits for arsenic, beryllium, cadmium, chromium, lead, mercury, nickel, and total hydrocarbons from sewage sludge incinerators.
    [Show full text]
  • Energy Recovery from Sewage Sludge: the Case Study of Croatia
    energies Article Energy Recovery from Sewage Sludge: The Case Study of Croatia Dinko Đurđevi´c 1,* , Paolo Blecich 2 and Željko Juri´c 1 1 Energy Institute Hrvoje Požar, 10000 Zagreb, Croatia; [email protected] 2 Faculty of Engineering, University of Rijeka, 51000 Rijeka, Croatia; [email protected] * Correspondence: [email protected] Received: 26 April 2019; Accepted: 16 May 2019; Published: 20 May 2019 Abstract: Croatia produced 21,366 tonnes of dry matter (DM) sewage sludge (SS) in 2016, a quantity expected to surpass 100,000 tonnes DM by 2024. Annual production rates for future wastewater treatment plants (WWTP) in Croatia are estimated at 5.8–7.3 Nm3/people equivalent (PE) for biogas and 20–25 kgDM/PE of sewage sludge. Biogas can be converted into 12–16 kWhel/PE of electricity and 19–24 kWhth/PE of heat, which is sufficient for 30–40% of electrical and 80–100% of thermal autonomy. The WWTP autonomy can be increased using energy recovery from sewage sludge incineration by 60% for electricity and 100% of thermal energy (10–13 kWhel/PE and 30–38 kWhth/PE). However, energy for sewage sludge drying exceeds energy recovery, unless solar drying is performed. 2 The annual solar drying potential is estimated between 450–750 kgDM/m of solar drying surface. The lower heating value of dried sewage sludge is 2–3 kWh/kgDM and this energy can be used for assisting sludge drying or for energy generation and supply to WWTPs. Sewage sludge can be considered a renewable energy source and its incineration generates substantially lower greenhouse gases emissions than energy generation from fossil fuels.
    [Show full text]
  • Safe Use of Wastewater in Agriculture Safe Use of Safe Wastewater in Agriculture Proceedings No
    A UN-Water project with the following members and partners: UNU-INWEH Proceedings of the UN-Water project on the Safe Use of Wastewater in Agriculture Safe Use of Wastewater in Agriculture Wastewater Safe of Use Proceedings No. 11 No. Proceedings | UNW-DPC Publication SeriesUNW-DPC Coordinated by the UN-Water Decade Programme on Capacity Development (UNW-DPC) Editors: Jens Liebe, Reza Ardakanian Editors: Jens Liebe, Reza Ardakanian (UNW-DPC) Compiling Assistant: Henrik Bours (UNW-DPC) Graphic Design: Katja Cloud (UNW-DPC) Copy Editor: Lis Mullin Bernhardt (UNW-DPC) Cover Photo: Untited Nations University/UNW-DPC UN-Water Decade Programme on Capacity Development (UNW-DPC) United Nations University UN Campus Platz der Vereinten Nationen 1 53113 Bonn Germany Tel +49-228-815-0652 Fax +49-228-815-0655 www.unwater.unu.edu [email protected] All rights reserved. Publication does not imply endorsement. This publication was printed and bound in Germany on FSC certified paper. Proceedings Series No. 11 Published by UNW-DPC, Bonn, Germany August 2013 © UNW-DPC, 2013 Disclaimer The views expressed in this publication are not necessarily those of the agencies cooperating in this project. The designations employed and the presentation of material throughout this publication do not imply the expression of any opinion whatsoever on the part of the UN, UNW-DPC or UNU concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Unless otherwise indicated, the ideas and opinions expressed by the authors do not necessarily represent the views of their employers.
    [Show full text]
  • Sewage (Wastewater) Treatment*
    Sewage (Wastewater) Treatment* Sewage, or wastewater, includes all the water Primary Sewage Treatment from a household that is used for washing and toilet The usual first step in sewage treatment is called wastes. Rainwater flowing into street drains and primary sewage treatment (Figure 2). In this proc- some industrial wastes enter the sewage system in ess, large floating materials in incoming wastewater many cities. Sewage is mostly water and contains are screened out, the sewage is allowed to flow little particulate matter, perhaps only 0.03%. Even so, through settling chambers to remove sand and similar in large cities the solid portion of sewage can total gritty material, skimmers remove floating oil and more than 1000 tons of solid material per day. grease, and floating debris is shredded and ground. Until environmental awareness intensified, a After this step, the sewage passes through sedimenta- surprising number of large American cities had only tion tanks, where more solid matter settles out. Sew- a rudimentary sewage treatment system or no system age solids collecting on the bottom are called at all. Raw sewage, untreated or nearly so, was sim- sludge—at this stage, primary sludge. About 40– ply discharged into rivers or oceans. A flowing, well- 60% of suspended solids are removed from sewage aerated stream is capable of considerable self- by this settling treatment, and flocculating chemicals purification. Therefore, until expanding populations that increase the removal of solids are sometimes and their wastes exceeded this capability, this casual added at this stage. Biological activity is not particu- treatment of municipal wastes did not cause prob- larly important in primary treatment, although some lems.
    [Show full text]
  • The Causes of Urban Stormwater Pollution
    THE CAUSES OF URBAN STORMWATER POLLUTION Some Things To Think About Runoff pollution occurs every time rain or snowmelt flows across the ground and picks up contaminants. It occurs on farms or other agricultural sites, where the water carries away fertilizers, pesticides, and sediment from cropland or pastureland. It occurs during forestry operations (particularly along timber roads), where the water carries away sediment, and the nutrients and other materials associated with that sediment, from land which no longer has enough living vegetation to hold soil in place. This information, however, focuses on runoff pollution from developed areas, which occurs when stormwater carries away a wide variety of contaminants as it runs across rooftops, roads, parking lots, baseball diamonds, construction sites, golf courses, lawns, and other surfaces in our City. The oily sheen on rainwater in roadside gutters is but one common example of urban runoff pollution. The United States Environmental Protection Agency (EPA) now considers pollution from all diffuse sources, including urban stormwater pollution, to be the most important source of contamination in our nation's waters. 1 While polluted runoff from agricultural sources may be an even more important source of water pollution than urban runoff, urban runoff is still a critical source of contamination, particularly for waters near cities -- and thus near most people. EPA ranks urban runoff and storm-sewer discharges as the second most prevalent source of water quality impairment in our nation's estuaries, and the fourth most prevalent source of impairment of our lakes. Most of the U.S. population lives in urban and coastal areas where the water resources are highly vulnerable to and are often severely degraded by urban runoff.
    [Show full text]
  • Overview of Anaerobic Digestion for Municipal Solid Waste
    Global Methane Initiative Overview of Anaerobic Digestion for Municipal Solid Waste Updated: October 2016 1 About This Presentation . Introduces the process of anaerobic digestion (AD) for municipal solid waste (MSW) . Provides an overview of anaerobic digestion microbiology . Helps you understand how you might benefit from AD . Guides you through the key areas to consider when developing an AD project . Reviews the status of AD globally and provides selected case studies Using Bookmarks to Navigate This presentation contains bookmarks to help you navigate. Using the panel on the left, click the bookmark to jump to the slide. For Chrome users, the bookmarks can be viewed by clicking on the bookmark icon ( ) at the top right of the screen. 2 Global Methane Initiative GMI is a voluntary, multilateral partnership that aims to reduce global methane emissions and to advance the abatement, recovery and use of methane as a valuable clean energy source. OBJECTIVES BENEFITS . Reduce anthropogenic methane . Decline in methane concentrations emissions and advance the and methane utilization will result recovery and use of methane in: while: – Sustainability – Enhancing economic growth – Energy security – Promoting energy security – Health and safety – Improving local air quality – Profitability and public health. 3 GMI Partners . Grew from 14 to 42 Partner governments, plus the European Commission . Accounts for nearly 70% of global anthropogenic methane emissions 4 Main Menu 1. Introduction – what is AD and why should it interest me? Click here for an introduction to AD 2. Is AD suitable for me? Click here for more info about the potential for AD 3. Step-by-step guide Click here for detailed information about the key issues to consider when developing an AD project 4.
    [Show full text]
  • REVIEW of TURBIDITY: Information for Regulators and Water Suppliers
    WHO/FWC/WSH/17.01 WATER QUALITY AND HEALTH - TECHNICAL BRIEF TECHNICAL REVIEW OF TURBIDITY: Information for regulators and water suppliers 1. Summary This technical brief provides information on the uses and significance of turbidity in drinking-water and is intended for regulators and operators of drinking-water supplies. Turbidity is an extremely useful indicator that can yield valuable information quickly, relatively cheaply and on an ongoing basis. Measurement of turbidity is applicable in a variety of settings, from low-resource small systems all the way through to large and sophisticated water treatment plants. Turbidity, which is caused by suspended chemical and biological particles, can have both water safety and aesthetic implications for drinking-water supplies. Turbidity itself does not always represent a direct risk to public health; however, it can indicate the presence of pathogenic microorganisms and be an effective indicator of hazardous events throughout the water supply system, from catchment to point of use. For example, high turbidity in source waters can harbour microbial pathogens, which can be attached to particles and impair disinfection; high turbidity in filtered water can indicate poor removal of pathogens; and an increase in turbidity in distribution systems can indicate sloughing of biofilms and oxide scales or ingress of contaminants through faults such as mains breaks. Turbidity can be easily, accurately and rapidly measured, and is commonly used for operational monitoring of control measures included in water safety plans (WSPs), the recommended approach to managing drinking-water quality in the WHO Guidelines for Drinking-water Quality (WHO, 2017). It can be used as a basis for choosing between alternative source waters and for assessing the performance of a number of control measures, including coagulation and clarification, filtration, disinfection and management of distribution systems.
    [Show full text]
  • Synergistic Passivation of Fly Ash and TMT on Heavy Metals in Sewage Sludge
    sustainability Article Synergistic Passivation of Fly Ash and TMT on Heavy Metals in Sewage Sludge Dong-Fang Wang, Shi-He Li, Xian-Qing Wang, Ling-Xu Li and Xuan Zhang * College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji’nan 250353, China; [email protected] (D.-F.W.); [email protected] (S.-H.L.); [email protected] (X.-Q.W.); [email protected] (L.-X.L.) * Correspondence: [email protected]; Tel.: +86-531-89631680 Received: 11 November 2018; Accepted: 10 December 2018; Published: 12 December 2018 Abstract: Large amounts of fly ash and sewage sludge are produced annually in China. The treatment and disposal of such byproducts have become urgent problems that need to be solved. In order to achieve the possibility of realizing land applications for sewage sludge, fly ash and trimercapto-s- triazine trisodium salt (TMT) were used as immobilizing agents, and their passivation effects on four kinds of heavy metals (Cu, Ni, Pb, and Zn) were evaluated. The results showed that the resulting sewage sludge met Chinese standard GB/T23486-2009. When the addition was 10–20% fly ash or 0.4–0.6% TMT, the optimum immobilization effect was obtained. The synergistic passivation of 20% fly ash +0.5% TMT was superior to that of either fly ash or TMT alone. The addition of sewage sludge during the ryegrass growth process significantly increased the plant height, the number of tillers, the chlorophyll content, and the biomass of the ryegrass over the brown soil. The adverse effect of the heavy metals on the ryegrass growth could be alleviated by the passivation effect of fly ash and TMT.
    [Show full text]
  • Global Atlas of Excreta, Wastewater Sludge, and Biosolids Management: Moving Forward the Sustainable and Welcome Uses of a Global Resource
    GLOBAL ATLAS OF EXCRETA, WASTEWATER SLUDGE, AND BIOSOLIDS MANAGEMENT: MOVING FORWARD THE SUSTAINABLE AND WELCOME USES OF A GLOBAL RESOURCE GLOBAL ATLAS OF EXCRETA, WASTEWATER SLUDGE, AND BIOSOLIDS MANAGEMENT: MOVING FORWARD THE SUSTAINABLE AND WELCOME USES OF A GLOBAL RESOURCE For further information please contact: Graham P. Alabaster Chief, Section I, Water, Sanitation and Infrastructure Branch Human Settlements Financing Division UN-HABITAT P.O. Box 30030, Nairobi 00100, Kenya Tel: +254 20 762 3054 Fax: +254 20 762 3588 [email protected] www.unhabitat.org Ronald J. LeBlanc Chairman – Greater Moncton Sewerage Commission Président – Commission d’épuration des eaux usées du Grand Moncton 355 chemin Hillsborough Road Riverview, New Brunswick (Nouveau-Brunswick) CANADA E1B 1S5 Tel: +1 506-387-7977 Fax: +1 506-387-7389 [email protected] www.gmsc.nb.ca Edited by: Ronald J. LeBlanc, Peter Matthews, Roland P. Richard Graphic design and layout: Daniel Vilnersson Cover pho to © Metrogro/Nikki Stefonick World map on chapter title pages is based on UN map no. 4136 rev. 5, September 2006. © United Nations Printed by HS/1030/08E ISBN: 978-92-1-132009-1 DISCLAIMER The designations employed and the presentation of the material in this atlas do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations, the Greater Moncton Sewerage Com- mission and the Editors concerning the legal status of any country, territory, city or area, or of its authorities, or concerning delimitation of its frontiers or boundaries, or regarding its economic system or degree of development. The analysis and conclusions of this report do not necessarily reflect the views of the United Nations or its Member States, the Greater Moncton Sewerage Commission and the Editors.
    [Show full text]
  • Sludge Treatment and Disposal Biological Wastewater Treatment Series
    Sludge Treatment and Disposal Biological Wastewater Treatment Series The Biological Wastewater Treatment series is based on the book Biological Wastewater Treatment in Warm Climate Regions and on a highly acclaimed set of best selling textbooks. This international version is comprised by six textbooks giving a state-of-the-art presentation of the science and technology of biological wastewater treatment. Titles in the Biological Wastewater Treatment series are: Volume 1: Wastewater Characteristics, Treatment and Disposal Volume 2: Basic Principles of Wastewater Treatment Volume 3: Waste Stabilisation Ponds Volume 4: Anaerobic Reactors Volume 5: Activated Sludge and Aerobic Biofilm Reactors Volume 6: Sludge Treatment and Disposal Biological Wastewater Treatment Series VOLUME SIX Sludge Treatment and Disposal Cleverson Vitorio Andreoli, Marcos von Sperling and Fernando Fernandes (Editors) Published by IWA Publishing, Alliance House, 12 Caxton Street, London SW1H 0QS, UK Telephone: +44 (0) 20 7654 5500; Fax: +44 (0) 20 7654 5555; Email: [email protected] Website: www.iwapublishing.com First published 2007 C 2007 IWA Publishing Copy-edited and typeset by Aptara Inc., New Delhi, India Printed by Lightning Source Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright, Designs and Patents Act (1998), no part of this publication may be reproduced, stored or transmitted in any form or by any means, without the prior permission in writing of the publisher, or, in the case of photographic reproduction, in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licenses issued by the appropriate reproduction rights organization outside the UK.
    [Show full text]