Sewage Sludge.01.Qxd

Total Page:16

File Type:pdf, Size:1020Kb

Sewage Sludge.01.Qxd ash-handling systems and then disposed at landfills. Sludge Incineration Multiple Hearth Furnace Ash from fluidized-bed units is very fine and can be Cost and Technical Feasibility removed with periodic sand changes and continuous Cooling ncineration is a sludge disposal option that Air Discharge scrubbing of the exhaust. Ash disposal is regulated hen considering whether or not to incinerate I involves the firing of sewage sludge at high under solid waste disposal regulations. Beneficial use Wsludge, or which incineration technology to temperatures in an enclosed structure. This process of this ash is actively being investigated. use, cost is always a major consideration. A sludge reduces the sludge to a mass of ash that is less than incinerator is a very mechanized and capital-intensive 20 percent of its original volume. EPA and the states Air Pollution Control Equipment investment that must be managed with a high level of generally support the beneficial use of sludge. Many Sewage expertise and attention to maintenance. Sludge urban sewage treatment facilities produce large Gas Inlet The incineration option is a long-term commitment volumes of sludge and have limited available space Exhaust n general, air pollution control devices are used to for sludge management. They are likely to see I either remove small particles and metals in the that is most cost-effective for large volume wastewater incineration as their most viable option. exhaust gas or to further decompose organics. Devices treatment systems or as a regional solution. In such as wet scrubbers and dry and wet electrostatic evaluating this option, communities must consider Sludge incineration eliminates some environmental precipitators are used to remove metals. Afterburners ash disposal, economies of scale, and air quality. and health problems by destroying pathogens and are used to more completely burn organics in exhaust How much will it cost to build and operate an toxic organic chemicals. Anyone who fires sludge in gases. More recently, regenerative thermal oxidizers an incinerator must meet the sludge incineration incinerator or upgrade and refurbish an existing (RTOs) are being utilized as part of the air pollution incinerator? The answer to that question depends on requirements in Subpart E of the Part 503 rule, which control system in incinerators. address pollutant limits for seven metals, limits for the site, how much sludge the wastewater treatment total hydrocarbons, general requirements and facility produces, and what other technically feasible options exist. Most sites within approximately a half management practices, frequency of monitoring Fluidized Bed Reactor requirements, and recordkeeping and reporting mile of a residential neighborhood are not good candidates for incineration facilities. requirements. In addition, states have their own air Exhaust quality requirements for incineration. and Ash While questions of technical feasibility and cost can Ash Discharge be examined through extensive site-specific Cooling Air Intake engineering studies, a general rule of thumb is that most incinerators should handle a sludge input rate Incineration Systems between 0.25 and 3 dry tons per hour. Anything less Fluidized-Bed Reactors, thought by many in the that 0.25 dry tons would most likely be too expensive ncineration systems generally consist of an industry to be the cleanest, are one of the newest for this technology; over 3 dry tons per hour tends to I incinerator (furnace) and one or more air incineration technologies and one of the least expensive exceed the limit of the technology and may require pollution control devices. In New England, the two for large-scale operations. These systems employ a layer multiple incinerators. of sand, which is “fluidized” by a constant, high- most commonly used incineration systems are Burner multiple hearth furnaces and fluidized-bed reactors. pressure stream of air. The air, essentially, “fans the Beneficial Use/Production of Energy There are also other types of incinerators. fire,” which results in a much more intense and complete burn and less ash than in an MHF. Multiple-Hearth Furnaces (MHFs), which have been nergy recovered from the incineration of sludge Fluidized-bed incinerators are also less mechanically utilized since the mid-1900s, employ a series of may be used to support some of the energy complex than MHF incinerators—making these units Sewage E vertically-stacked chambers, or hearths. Air is fed Sludge needs of the Wastewater Treatment Plant. Heat from substantially easier to operate. With less mechanical from the bottom, and sludge is fed from the top. The Inlet Fluidized the incinerator may be used to pre-dry the sludge. upkeep, equipment, staffing, and repair costs, fluidized sludge in each chamber is plowed to “drop holes,” Sand Bed Incinerators may also be utilized to assist in odor beds tend to be less expensive to operate and maintain where it falls into successive hearths below. The bulk control at a facility. Ash by-products may be used as a than MHFs. Most of the region’s newer incinerators use of the burning takes place in the center hearths; the substitute raw matter in the manufacturing of cement the fluidized-bed technology. ash cools at the bottom levels. and brick and as a landfill cover. All sludge incinerators use auxiliary fuel (e.g., oil or natural gas) to initiate and occasionally maintain Fluidized Air Intake burning. Ash is removed from MHF incinerators by For more information... A Residual of Worth CT: Bob Norwood CT DEP – Water Compliance Unit ludge is an organic solid, semi-solid, or liquid 79 Elm Street, Hartford, CT 06106 by-product of the wastewater treatment process. (860) 424-3746 S [email protected] Sludge characteristics vary depending on each Sewage treatment facility’s wastestream and the processes that ME: David Wright ME DEP – Sludge Residuals Unit are used. Sludges that meet EPA standards for land 17 State House Station application, which include reduction or elimination of Augusta, ME 04333-0017 Sludge pathogens and very low limits for heavy metals, are (207) 287-2651 referred to as Biosolids. [email protected] MA: Larry Polese Although there has been significant research on the MA DEP Training Center, Residuals Section beneficial use of biosolids, and history has demon- 50 Route 20, Millbury, MA 01527 Incineration strated, in the U.S. and other regions of the world, that (508) 368-5606 [email protected] high quality biosolids can be beneficial soil additives and plant nutrients when applied properly, concerns NH: Richard Flanders NH DES still exist. These concerns relate primarily to the quality P.O. Box 95 of the biosolid material and its impact on soil 6 Hazen Drive, Concord, NH 03302 productivity, water resources, and adjacent land uses. (603) 271-3571 [email protected] To ensure that sludges that are used as biosolids are NJ: Mary Jo Aiello treated and managed in a manner that protects both NJ DEP – Bureau of Pretreatment and Residuals human health and the environment, Congress directed P.O. Box 029, Trenton, NJ 08625 EPA to develop a comprehensive national Sewage (609) 633-3823 [email protected] Sludge Program aimed at reducing risks and maximizing the beneficial uses of sludge. In February NY: Sally Rowland NYS DEC – Division of Solid & Hazardous of 1993, EPA issued its sewage sludge use or disposal Materials regulation, 40 CFR Part 503, commonly referred to as 625 Broadway, Albany, NY 12233 the “503s.” The 503s set minimum quality standards (518) 402-8704 and dictate proper management practices for all [email protected] sewage sludge that is used or disposed of through land RI: Alexandre Pinto P.E. application, surface disposal, and incineration. Many RI DEM – Office of Water Resources 235 Promenade St, Providence, RI 02908 states have more stringent rules. (401) 222-4700 [email protected] The Northeast States, NEIWPCC, and the EPA believe that, when managed and applied properly, biosolids VT: Cathy Jamieson VT DEC – Residuals Management Section can be valuable resources. With the phaseout of 103 So. Main St, Sewing Building Biosolids are a Natural Resource! unlined landfills, the federal ban on ocean dumping, Waterbury, VT 05671 and growing public awareness of environmental issues, (802) 241-3831 communities have begun to recognize that biosolids [email protected] can be a resource and not a waste. Many communities EPA: Thelma Murphy have discovered viable, safe, and environmentally US EPA – New England This fact sheet was funded through a grant 1 Congress Street, Suite 1100 (CMU) from EPA-New England to the sound options for the beneficial use of their biosolids. Boston, MA 02114 New England Interstate Water Pollution Some communities have implemented a single (617) 918-1615 Control Commission (NEIWPCC). beneficial use method, some employ a combination [email protected] The fact sheet was prepared by NEIWPCC’s of different sludge use and/or disposal methods, others Residuals Workgroup, which is comprised of NEIWPCC: the state sludge coordinators from have entered into regional solutions or contracted with Boott Mills South – 100 Foot of John Street the Northeast States. privately-owned facilities. In choosing an option, Lowell, MA 01852 (978) 323-7929 communities must consider cost, odor control, and [email protected] ollution Control Commission siting issues. New England Interstate Water Water England Interstate New P October 2001 Boott Mills South 100 Foot of John Street Lowell, MA 01852-1124 Printed on recycled paper.
Recommended publications
  • Use of a Water Treatment Sludge in a Sewage Sludge Dewatering Process
    E3S Web of Conferences 30, 02006 (2018) https://doi.org/10.1051/e3sconf/20183002006 Water, Wastewater and Energy in Smart Cities Use of a water treatment sludge in a sewage sludge dewatering process Justyna Górka1,*, Małgorzata Cimochowicz-Rybicka1 , and Małgorzata Kryłów1 1 University of Technology, Department of Environmental Engineering, 24 Warszawska, Cracow 31- 155, Poland Abstract. The objective of the research study was to determine whether a sewage sludge conditioning had any impact on sludge dewaterability. As a conditioning agent a water treatment sludge was used, which was mixed with a sewage sludge before a digestion process. The capillary suction time (CST) and the specific filtration resistance (SRF) were the measures used to determine the effects of a water sludge addition on a dewatering process. Based on the CST curves the water sludge dose of 0.3 g total volatile solids (TVS) per 1.0 g TVS of a sewage sludge was selected. Once the water treatment sludge dose was accepted, disintegration of the water treatment sludge was performed and its dewaterability was determined. The studies have shown that sludge dewaterability was much better after its conditioning with a water sludge as well as after disintegration and conditioning, if comparing to sludge with no conditioning. Nevertheless, these findings are of preliminary nature and future studies will be needed to investigate this topic. 1 Introduction Dewatering of sludge is a very important stage of the sludge processing. It reduces both sludge mass and volume, which consequently reduces costs of a further sludge processing, facilitates its transport and allows for its thermal processing.
    [Show full text]
  • A Novel Waste Water Treatment Plant for the Disposal of Organic Waste from Mobile Toilets
    A Novel Waste Water Treatment Plant for The Disposal of Organic Waste from Mobile Toilets A Novel Waste Water Treatment Plant for The Disposal of Organic Waste from Mobile Toilets G. BONIFAZI, R. GASBARRONE, R. PALMIERI, G. CAPOBIANCO, S. SERRANTI Departments of Medical Sciences and Biotechnologies and of Chemical Eng. Materials, Environment- Sapienza University of Rome, Abstract The EU wastewater management industry is continuously looking for innovative technological solutions that can enter the market with a reduced environmental impact. This paper focuses on the problems associated to the disposal of human waste and on the specific market of the so-called mobile toilets. These are independent portable units equipped with sanitary tools that use chemical agents to disinfect the vessel and not connected to the sewer network. With growing awareness towards effective sanitation, mobile toilets have gained immense popularity in recent years and are now widely used at construction sites, event venues, public places, and in several other application like temporary refugee housing, migrants’ camps, military missions, cases of natural disasters, airplanes, trains, campers, caravans and campsites. This paper illustrates a new process for the disposal of organic waste from mobile toilets. Keywords: Waste Water Treatment Plants, Chemical Portable Toilets, Use of sludges in agriculture. 1. Introduction into surface and ground water and to avoid toxic effects on soil, plants, animals and humans. In The use of sludge in agriculture within the EU is most cases, national authorities have currently regulated only by the limits of heavy implemented policies supporting the use of metals (Cd, Cu, Hg, Ni, Pb and Zn) listed in sludge in agriculture, as it is considered to be the Council Directive 86/278/EEC.
    [Show full text]
  • Safe Use of Wastewater in Agriculture: Good Practice Examples
    SAFE USE OF WASTEWATER IN AGRICULTURE: GOOD PRACTICE EXAMPLES Hiroshan Hettiarachchi Reza Ardakanian, Editors SAFE USE OF WASTEWATER IN AGRICULTURE: GOOD PRACTICE EXAMPLES Hiroshan Hettiarachchi Reza Ardakanian, Editors PREFACE Population growth, rapid urbanisation, more water intense consumption patterns and climate change are intensifying the pressure on freshwater resources. The increasing scarcity of water, combined with other factors such as energy and fertilizers, is driving millions of farmers and other entrepreneurs to make use of wastewater. Wastewater reuse is an excellent example that naturally explains the importance of integrated management of water, soil and waste, which we define as the Nexus While the information in this book are generally believed to be true and accurate at the approach. The process begins in the waste sector, but the selection of date of publication, the editors and the publisher cannot accept any legal responsibility for the correct management model can make it relevant and important to any errors or omissions that may be made. The publisher makes no warranty, expressed or the water and soil as well. Over 20 million hectares of land are currently implied, with respect to the material contained herein. known to be irrigated with wastewater. This is interesting, but the The opinions expressed in this book are those of the Case Authors. Their inclusion in this alarming fact is that a greater percentage of this practice is not based book does not imply endorsement by the United Nations University. on any scientific criterion that ensures the “safe use” of wastewater. In order to address the technical, institutional, and policy challenges of safe water reuse, developing countries and countries in transition need clear institutional arrangements and more skilled human resources, United Nations University Institute for Integrated with a sound understanding of the opportunities and potential risks of Management of Material Fluxes and of Resources wastewater use.
    [Show full text]
  • Five Facts About Incineration Five Facts About Incineration
    Five facts about incineration Five facts about incineration Across the globe, cities are looking for ways to improve their municipal solid waste systems. In the search for services that are affordable, green and easy to implement, many cities are encouraged to turn to waste-to-energy (WtE) technologies, such as incineration.1 But, as found in WIEGO’s Technical Brief 11 (Waste Incineration and Informal Livelihoods: A Technical Guide on Waste-to-Energy Initiatives by Jeroen IJgosse), incineration is far from the perfect solution and, particularly in the Global South, can be less cost-effective, more complicated and can negatively impact the environment and informal waste workers’ livelihoods. Below, we have collected the top five issues highlighted in the study that show why this technology is a risky choice: 1. Incineration costs more than recycling. How incineration may be promoted: Incineration is a good economic decision because it reduces the costs associated with landfill operations while also creating energy that can be used by the community. The reality: • In 2016, the World Energy Council reported that, “energy generation from waste is a costly option, in comparison with other established power generation sources.” • Setting up an incineration project requires steep investment costs from the municipality. • For incineration projects to remain financially stable long-term, high fees are required, which place a burden on municipal finances and lead to sharp increases in user fees. • If incinerators are not able to collect enough burnable waste, they will burn other fuels (gas) instead. Contract obligations can force a municipality to make up the difference if an incinerator doesn’t burn enough to create the needed amount of energy.
    [Show full text]
  • 2.2 Sewage Sludge Incineration
    2.2 Sewage Sludge Incineration There are approximately 170 sewage sludge incineration (SSI) plants in operation in the United States. Three main types of incinerators are used: multiple hearth, fluidized bed, and electric infrared. Some sludge is co-fired with municipal solid waste in combustors based on refuse combustion technology (see Section 2.1). Refuse co-fired with sludge in combustors based on sludge incinerating technology is limited to multiple hearth incinerators only. Over 80 percent of the identified operating sludge incinerators are of the multiple hearth design. About 15 percent are fluidized bed combustors and 3 percent are electric. The remaining combustors co-fire refuse with sludge. Most sludge incinerators are located in the Eastern United States, though there are a significant number on the West Coast. New York has the largest number of facilities with 33. Pennsylvania and Michigan have the next-largest numbers of facilities with 21 and 19 sites, respectively. Sewage sludge incinerator emissions are currently regulated under 40 CFR Part 60, Subpart O and 40 CFR Part 61, Subparts C and E. Subpart O in Part 60 establishes a New Source Performance Standard for particulate matter. Subparts C and E of Part 61--National Emission Standards for Hazardous Air Pollutants (NESHAP)--establish emission limits for beryllium and mercury, respectively. In 1989, technical standards for the use and disposal of sewage sludge were proposed as 40 CFR Part 503, under authority of Section 405 of the Clean Water Act. Subpart G of this proposed Part 503 proposes to establish national emission limits for arsenic, beryllium, cadmium, chromium, lead, mercury, nickel, and total hydrocarbons from sewage sludge incinerators.
    [Show full text]
  • Energy Recovery from Sewage Sludge: the Case Study of Croatia
    energies Article Energy Recovery from Sewage Sludge: The Case Study of Croatia Dinko Đurđevi´c 1,* , Paolo Blecich 2 and Željko Juri´c 1 1 Energy Institute Hrvoje Požar, 10000 Zagreb, Croatia; [email protected] 2 Faculty of Engineering, University of Rijeka, 51000 Rijeka, Croatia; [email protected] * Correspondence: [email protected] Received: 26 April 2019; Accepted: 16 May 2019; Published: 20 May 2019 Abstract: Croatia produced 21,366 tonnes of dry matter (DM) sewage sludge (SS) in 2016, a quantity expected to surpass 100,000 tonnes DM by 2024. Annual production rates for future wastewater treatment plants (WWTP) in Croatia are estimated at 5.8–7.3 Nm3/people equivalent (PE) for biogas and 20–25 kgDM/PE of sewage sludge. Biogas can be converted into 12–16 kWhel/PE of electricity and 19–24 kWhth/PE of heat, which is sufficient for 30–40% of electrical and 80–100% of thermal autonomy. The WWTP autonomy can be increased using energy recovery from sewage sludge incineration by 60% for electricity and 100% of thermal energy (10–13 kWhel/PE and 30–38 kWhth/PE). However, energy for sewage sludge drying exceeds energy recovery, unless solar drying is performed. 2 The annual solar drying potential is estimated between 450–750 kgDM/m of solar drying surface. The lower heating value of dried sewage sludge is 2–3 kWh/kgDM and this energy can be used for assisting sludge drying or for energy generation and supply to WWTPs. Sewage sludge can be considered a renewable energy source and its incineration generates substantially lower greenhouse gases emissions than energy generation from fossil fuels.
    [Show full text]
  • Mobility of Heavy Metals in Municipal Sewage Sludge from Different Throughput Sewage Treatment Plants
    Pol. J. Environ. Stud. Vol. 21, No. 6 (2012), 1603-1611 Original Research Mobility of Heavy Metals in Municipal Sewage Sludge from Different Throughput Sewage Treatment Plants Jarosław Gawdzik1*, Barbara Gawdzik2** 1Faculty of Civil and Environmental Engineering, Kielce University of Technology, Division of Waste Management, Al. 1000-lecia Państwa Polskiego 7, 25-314 Kielce, Poland 2Institute of Chemistry, Faculty of Mathematics and Science, Jan Kochanowski University of Humanities and Sciences, Świętokrzyska 15, 25-406 Kielce, Poland Received: 27 June 2011 Accepted: 11 May 2012 Abstract Sewage sludge heavy metals can be dissolved, precipitated, co-precipitated with metal oxides, and adsorbed or associated on the particles in biological debris. Heavy metals are found in the form of oxides, hydroxides, sulphides, sulphates, phosphates, silicates, organic bindings forming complexes with humic com- pounds, and complex sugars. Polish regulations specifying the maximum levels of heavy metals in municipal sewage sludge used for agricultural purposes refer to the total content of lead, cadmium, mercury, nickel, zinc, copper, and chromium. The aim of our study was to evaluate the mobility of heavy metals in sewage sludge from wastewater treatment plants in Świętokrzyskie Province. Stabilized sewage sludge from wastewater treatment was ana- lyzed in accordance with the extraction method proposed by the Community Bureau of Reference (BCR). Zinc, cadmium, lead, and nickel were determined by means of the standard addition with the use of a Perkin-Elmer 3100-BG FAAS atomic absorption spectrophotometer. Chromium and copper were tested using the FAAS technique. The sequence analysis revealed the presence of heavy metals in all fractions (F-I, F-II, F-III, F-IV).
    [Show full text]
  • Safe Use of Wastewater in Agriculture Safe Use of Safe Wastewater in Agriculture Proceedings No
    A UN-Water project with the following members and partners: UNU-INWEH Proceedings of the UN-Water project on the Safe Use of Wastewater in Agriculture Safe Use of Wastewater in Agriculture Wastewater Safe of Use Proceedings No. 11 No. Proceedings | UNW-DPC Publication SeriesUNW-DPC Coordinated by the UN-Water Decade Programme on Capacity Development (UNW-DPC) Editors: Jens Liebe, Reza Ardakanian Editors: Jens Liebe, Reza Ardakanian (UNW-DPC) Compiling Assistant: Henrik Bours (UNW-DPC) Graphic Design: Katja Cloud (UNW-DPC) Copy Editor: Lis Mullin Bernhardt (UNW-DPC) Cover Photo: Untited Nations University/UNW-DPC UN-Water Decade Programme on Capacity Development (UNW-DPC) United Nations University UN Campus Platz der Vereinten Nationen 1 53113 Bonn Germany Tel +49-228-815-0652 Fax +49-228-815-0655 www.unwater.unu.edu [email protected] All rights reserved. Publication does not imply endorsement. This publication was printed and bound in Germany on FSC certified paper. Proceedings Series No. 11 Published by UNW-DPC, Bonn, Germany August 2013 © UNW-DPC, 2013 Disclaimer The views expressed in this publication are not necessarily those of the agencies cooperating in this project. The designations employed and the presentation of material throughout this publication do not imply the expression of any opinion whatsoever on the part of the UN, UNW-DPC or UNU concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Unless otherwise indicated, the ideas and opinions expressed by the authors do not necessarily represent the views of their employers.
    [Show full text]
  • The Global E-Waste Monitor 2020 Quantities, Flows, and the Circular Economy Potential
    The Global E-waste Monitor 2020 Quantities, flows, and the circular economy potential Authors: Vanessa Forti, Cornelis Peter Baldé, Ruediger Kuehr, Garam Bel Contributions by: S. Adrian, M. Brune Drisse, Y. Cheng, L. Devia, O. Deubzer, F. Goldizen, J. Gorman, S. Herat, S. Honda, G. Iattoni, W. Jingwei, L. Jinhui, D.S. Khetriwal, J. Linnell, F. Magalini, I.C. Nnororm, P. Onianwa, D. Ott, A. Ramola, U. Silva, R. Stillhart, D. Tillekeratne, V. Van Straalen, M. Wagner, T. Yamamoto, X. Zeng Supporting Contributors: 2 The Global E-waste Monitor 2020 Quantities, flows, and the circular economy potential Authors: Vanessa Forti, Cornelis Peter Baldé, Ruediger Kuehr, Garam Bel Contributions by: S. Adrian, M. Brune Drisse, Y. Cheng, L. Devia, O. Deubzer, F. Goldizen, J. Gorman, S. Herat, S. Honda, G. Iattoni, W. Jingwei, L. Jinhui, D.S. Khetriwal, J. Linnell, F. Magalini, I.C. Nnororm, P. Onianwa, D. Ott, A. Ramola, U. Silva, R. Stillhart, D. Tillekeratne, V. Van Straalen, M. Wagner, T. Yamamoto, X. Zeng 3 Copyright and publication information 4 Contact information: Established in 1865, ITU is the intergovernmental body responsible for coordinating the For enquiries, please contact the corresponding author C.P. Baldé via [email protected]. shared global use of the radio spectrum, promoting international cooperation in assigning satellite orbits, improving communication infrastructure in the developing world, and Please cite this publication as: establishing the worldwide standards that foster seamless interconnection of a vast range of Forti V., Baldé C.P., Kuehr R., Bel G. The Global E-waste Monitor 2020: Quantities, communications systems. From broadband networks to cutting-edge wireless technologies, flows and the circular economy potential.
    [Show full text]
  • Circular Economy in Wastewater Treatment Plant– Challenges and Barriers †
    Proceedings Circular Economy in Wastewater Treatment Plant– Challenges and Barriers † Ewa Neczaj * and Anna Grosser Faculty of Infrastructure and Environment, Czestochowa University of Technology, 42-201 Czestochowa, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-343-250-917 † Presented at the 3rd EWaS International Conference on “Insights on the Water-Energy-Food Nexus”, Lefkada Island, Greece, 27–30 June 2018. Published: 31 July 2018 Abstract: The urban wastewater treatment plants can be an important part of circular sustainability due to integration of energy production and resource recovery during clean water production. Currently the main drivers for developing wastewater industry are global nutrient needs and water and energy recovery from wastewater. The article presents current trends in wastewater treatment plants development based on Circular Economy assumptions, challenges and barriers which prevent the implementation of the CE and Smart Cities concept with WWTPs as an important player. WWTPs in the near future are to become “ecologically sustainable” technological systems and a very important nexus in SMART cities. Keywords: circular economy; wastewater treatment plant; resource recovery 1. Introduction The circular economy (CE) is the concept in which products, materials (and raw materials) should remain in the economy for as long as possible, and waste should be treated as secondary raw materials that can be recycled to process and re-use [1]. This distinguishes it from a linear economy based on the, ‘take-make-use-dispose’ system, in which waste is usually the last stage of the product life cycle. CE is a concept promotes sustainable management of materials and energy by minimalizing the amount of waste generation and their reuse as a secondary material.
    [Show full text]
  • Waste Management
    10 Waste Management Coordinating Lead Authors: Jean Bogner (USA) Lead Authors: Mohammed Abdelrafie Ahmed (Sudan), Cristobal Diaz (Cuba), Andre Faaij (The Netherlands), Qingxian Gao (China), Seiji Hashimoto (Japan), Katarina Mareckova (Slovakia), Riitta Pipatti (Finland), Tianzhu Zhang (China) Contributing Authors: Luis Diaz (USA), Peter Kjeldsen (Denmark), Suvi Monni (Finland) Review Editors: Robert Gregory (UK), R.T.M. Sutamihardja (Indonesia) This chapter should be cited as: Bogner, J., M. Abdelrafie Ahmed, C. Diaz, A. Faaij, Q. Gao, S. Hashimoto, K. Mareckova, R. Pipatti, T. Zhang, Waste Management, In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Waste Management Chapter 10 Table of Contents Executive Summary ................................................. 587 10.5 Policies and measures: waste management and climate ....................................................... 607 10.1 Introduction .................................................... 588 10.5.1 Reducing landfill CH4 emissions .......................607 10.2 Status of the waste management sector ..... 591 10.5.2 Incineration and other thermal processes for waste-to-energy ...............................................608 10.2.1 Waste generation ............................................591 10.5.3 Waste minimization, re-use and
    [Show full text]
  • Chapter 9 Agricultural Waste Management Systems
    Part 651 Agricultural Waste Management Field Handbook Chapter 9 Agricultural Waste Management Systems (210–VI–AWMFH, Amend. 47, December 2011) Chapter 9 Agricultural Waste Management Systems Part 651 Agricultural Waste Management Field Handbook Issued December 2011 The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all pro- grams.) Persons with disabilities who require alternative means for commu- nication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW., Washington, DC 20250–9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. (210–VI–AWMFH, Amend. 47, December 2011) Acknowledgments Chapter 9 was originally prepared and printed in 1992 under the direction of James N. Krider (retired), national environmental engineer, Soil Conser- vation Service (SCS), now Natural Resources Conservation Service (NRCS). James D. Rickman (retired), environmental engineer, NRCS, Fort Worth, Texas, provided day-to-day coordination in the development of the hand- book. Authors for chapter 9 included L.M. “Mac” Safley, North Carolina State University, Raleigh, NC; William H. Boyd, environmental engineer, Lincoln, Nebraska; A.
    [Show full text]