Swiss J Geosci (2016) 109:285–307 DOI 10.1007/s00015-016-0214-7

A new lithostratigraphic scheme for the Schinznach Formation (upper part of the of northern )

1,2 1 1,2 Johannes S. Pietsch • Andreas Wetzel • Peter Jordan

Received: 19 November 2015 / Accepted: 10 May 2016 / Published online: 12 July 2016 Ó Swiss Geological Society 2016

Abstract The sediments of late and age Keywords Jura mountains Á Schinznach Formation Á in northern Switzerland, which were formerly named Muschelkalk Group Á Middle Á Upper Muschelkalk and Lower , mostly consist of carbonates. They accumulated in a transitional area between central parts of the Central European Epiconti- 1 Introduction nental Basin and its margin towards the Vindelician Swell. Oolitic intervals imply the former presence of shoals or 1.1 Introductive remark ramps in this region. They characterise this transitional region (‘‘Alemannische Fazies’’) together with dolomites in The terms Muschelkalk and Keuper are well established in the upper part of the sedimentary succession. The total international literature (e.g. Aigner 1985; Szulc 2000; thickness usually varies between 50 and 85 m. A general Palermo et al. 2010) and are, therefore, used in translated decrease in thickness towards southeast has been found. form (Upper Muschelkalk), while regional units are noti- The newly named Schinznach Formation is defined as a fied in German. Informal units are set off by quotation mappable unit of the upper part of the Muschelkalk Group. marks. It is precisely introduced for those sedimentary rocks for- merly named Upper Muschelkalk and Lower Keuper in 1.2 History of Upper Muschelkalk northern Switzerland between the Doubs River and the in northern Switzerland Lake Biel in the west and the Lake Constance in the east. Within this formation the informal lithostratigraphic sub- 1.2.1 General overview divisions currently in use should be replaced by new terms in accordance with the rules of lithostratigraphic nomen- The term Muschelkalk was introduced into the geological clature. In the scheme presented here the Schinznach literature by Fu¨chsel (1761), primarily based on observa- Formation comprises 5 members and 5 beds. tions in central . Later the superordinate term Trias was introduced by von Alberti (1834). Von Alberti (1826) described the ‘‘Steinsalz umschliessender Kalk- stein’’ from southern Germany and divided these sediments into five subunits (Fig. 1). Later, Quenstedt (1843) estab- Editorial handling: W. Winkler and A. Morard. lished the term ‘‘Hauptmuschelkalk-Gebirge’’, which was used henceforward for different parts of Upper Muschel- & Johannes S. Pietsch kalk (Figs. 1, 2). [email protected] Roughly at the same time Merian (1821) described the 1 Institut fu¨r Geologie und Pala¨ontologie, Universita¨t Basel, sediments of the Swiss Jura mountains and established the Bernoullistrasse 32, 4056 Basel, Switzerland term ‘‘Rauchgrauer Kalkstein’’ for the whole Muschelkalk. 2 Gruner Bo¨hringer AG, Mu¨hlegasse 10, 4104 Oberwil, Despite the fact that he first grouped these sediments into Switzerland the , he later correlated the ‘‘Rauchgrauer 286 J. S. Pietsch et al.

Fig. 1 Approximate correlation of historic subdivisions and bound- der encrinitenfreien Plattenkalke; O. Plattk. = Obere Plattenkalke; R. aries of Upper Muschelkalk before 1920 compared to lithostratigraphic d. O. = Region der Oolithe oder des Rogensteins; Salzth. u. units defined in the present study; not to scale. H. d. e. P. = Horizont Anh. = Salzthon und Anhydritgruppe (Groupe de l’anhydrite)

Kalkstein’’ with the Muschelkalk of northern Germany accepted and, therefore, not in general usage (e.g. in the (Merian 1831). Geological Atlas of Switzerland). Thus, the Upper In 1867 Moesch established a stratigraphic scheme of Muschelkalk was still divided into ‘‘Trigonodusdolomit’’ the Upper Muschelkalk in the Jura distinguishing and ‘‘Hauptmuschelkalk’’ during the last decades, the latter four members. He divided the lower part into ‘‘Thonkalk- comprising the subunits ‘‘Plattenkalk’’ and ba¨nke’’ and ‘‘Encrinitenkalke’’, introduced the name ‘‘Trochitenkalk’’. ‘‘Plattenkalk’’ for the middle part and called the upper part While in Germany there has been further endeavour on ‘‘Oberer Muschelkalkdolomit mit Hornstein’’. A related sequence stratigraphy of the Upper Muschelkalk and scheme was elaborated by Schalch (1878), who established Lower Keuper (e.g. Aigner 1985; Aigner and Bachmann the term ‘‘Trigonodusdolomit’’ in northern Switzerland 1992; Urlichs and Mundlos 1990; Franz et al. 2013) and following Sandberger (1864), who introduced the term. formal lithostratigraphic units have been established (e.g. Both Moesch and Schalch defined the ‘‘Lettenkohle’’ as an Hagdorn and Simon 2005), there has not been much independent formation between the Muschelkalk and the interest in the stratigraphy of Upper Muschelkalk in overlying Keuper. northern Switzerland during the last decades of the 20th Several decades later, Disler (1914) published strati- century. Today the Upper Muschelkalk is prospected for graphic and tectonic investigations dealing with the geothermal energy production and for storage of gas or

‘‘Rotliegendes’’ and the Triassic of the area. CO2 (Alt-Epping and Diamond 2014). Therefore its He combined the ‘‘Trochitenkalk’’ and the ‘‘Nodosuskalk’’ reservoir properties are currently investigated (e.g. into the ‘‘Hauptmuschelkalk’’ and he subsumed both units Aschwanden et al. 2014; Adams et al. 2014). together with the ‘‘Trigonodusdolomit’’ to the Upper Muschelkalk. This division has been in general use since 1.2.2 Muschelkalk-Keuper boundary then. Based on numerous measured sections, a detailed While refining the Triassic stratigraphy, the boundary stratigraphic scheme of the Upper Muschelkalk in northern between Muschelkalk and Keuper was placed at different Switzerland was worked out by Merki (1961). He sug- levels by different authors (Figs. 1, 2). Von Alberti (1834) gested the usage of the term ‘‘Hautpmuschelkalk’’ for first added the ‘‘Lettenkohle’’ (today’s Asp Member) to the ‘‘Trochitenkalk’’, ‘‘Nodosuskalk’’ as well as for the Keuper. Later he also included the ‘‘Unterer Dolomitischer ‘‘Trigonodusdolomit’’. However, his suggestion was not Kalkstein’’ (today’s Stamberg Member) together with the A new lithostratigraphic scheme for the Schinznach formation (upper part of the Muschelkalk… 287

Fig. 2 Names of the strata related to the Schinznach Formation Fig. 7; 8 Nagra borehole Siblingen; 9 Fu¨tzen—Wutachflu¨h, see previously in use for the Upper Muschelkalk and currently used Fig. 9. Anthrakonitbk. = Anthrakonitbank; Bas. Trochiten- lithostratigraphic units in adjacent SW Germany (Geyer and bank = Basale Trochitenbank; Bo¨hringen-Gipsh. = Bo¨hringen- Gwinner 2011; Etzold and Schweizer 2005; names currently used Gipshorizont; Coenothyris-Lbk. = Coenothyris-Leitbank; Grenzbo- in Baden-Wu¨rttemberg are listed in LGRB 2011); not to scale. neb. = Grenzbonebed; M. Trochitenkalk = Mittlerer Trochitenkalk; Location of sections is shown in Fig. 3; 1 Grenzach-Wyhlen; Ob. Graue Mergel = Obere Graue Mergel; Ob. Plattenkalk = 2 , see Fig. 12; 3 Leutschenberg, see Fig. 8; 4 Bad Sch- Oberer Plattenkalk; O. Trochitenkalk = Oberer Trochitenkalk; Sd. inznach, see Fig. 6; 5 Kaisten and Cha¨siberg, composite section, Pflanzensch. = Sandige Pflanzenschiefer; Unt. Graue Mergel = upper part see Fig. 13; 6 ; 7 Nagra borehole , see Untere Graue Mergel ‘‘Lettenkohle’’ and the ‘‘Oberer Dolomit’’ as ‘‘Gruppe der stratigraphic scheme of the Triassic, the ‘‘Lettenkohle’’ has Lettenkohle’’, which was stated to belong to the Keuper been grouped into the Keuper in general use (e.g. for the (von Alberti 1864). Gressly (1853) placed the boundary Geological Atlas of Switzerland). Merki (1961) empha- between Keuper and Muschelkalk above the ‘‘Oberer sised the many indicators of marine to occur in the Muschelkalkdolomit’’. Moesch (1867) intercalated the ‘‘Lettenkeuper’’ and, therefore, he included the ‘‘Let- ‘‘Lettenkohle’’ as an autonomous formation between the tenkohle’’ in the Upper Muschelkalk. This allocation, Muschelkalk and the Keuper. Schalch (1878) adopted this however, did not become common usage in Switzerland. quartering of the Triassic into , Muschelkalk, ‘‘Lettenkohlegruppe’’ and Keuper. Brombach (1903) again 1.2.3 Need for revision included the ‘‘Lettenkohle’’ into the Keuper as well as Mu¨hlberg (1905, 1908, 1911), who changed his mind later In the context of the HARMOS project of the Swiss on (Mu¨hlberg 1915). Since Disler (1914) published his Geological Survey to harmonise the Swiss stratigraphic 288 J. S. Pietsch et al.

Fig. 3 Geological overview of the study area with localities of sections shown in Fig. 2. Note that due to traditional division of the Triassic units on geologic maps (e.g. Geological Atlas of Switzerland) the Asp Member is not included scheme (Morard et al. 2012, Strasky et al. 2016), the 2 Materials and methods Upper Muschelkalk was redefined as Schinznach Forma- tion (name approved by the Swiss Committee on The new lithostratigraphic subdivision of the Schinznach Stratigraphy on 22nd November 2014). In its definition, Formation is based on (1) already published sections that the Schinznach Formation also includes the former Lower were measured in (their stratigraphic subdivision Keuper (‘‘Lettenkohle’’), formally renamed as is here revised according to the new scheme) and (2) Asp Member. borehole data because the conditions of exposure are poor Before this revision, lithostratigraphy and allostratig- in general. Unfortunately, there are no sections outcropping raphy were mixed (e.g. usage of marker beds like the that expose the whole sedimentary succession of the Sch- ‘‘Mergelhorizont’’(now Du¨nnlenberg Bed) as boundary inznach Formation from base to top. Therefore, the Nagra between ‘‘Trochitenkalk’’ and ‘‘Plattenkalk’’ by Merki borehole Weiach is proposed as boundary stratotype sec- 1961). Furthermore, many synonyms, such as ‘‘Plat- tion of the Schinznach Formation. tenkalk’’, ‘‘Nodosuskalk’’ and ‘‘Tonplattenregion’’ (see Due to the regional character of this study, the coordi- Figs. 1, 2), as well as different levels defined as nates of the sections are stated using the Swiss coordinate boundaries between the subunits were used. For these CH1903?. reasons, a new stratigraphic scheme of the Schinznach Formation complying to the guidelines of the Swiss 2.1 Biostratigraphy Committee on Stratigraphy (Remane et al. 2005) needed to be developed. The lithostratigraphic scheme of the A ceratite biostratigraphy is well established for central and Schinznach Formation presented here was approved by southeastern parts of the Central European Epicontinental the Swiss Committee on Stratigraphy on 28th January Basin (e.g. Wenger 1957; Kozur 1974; Urlichs and 2016. Mundlos 1990; Urlichs 1993a; Ockert and Rein 2000; Rein A new lithostratigraphic scheme for the Schinznach formation (upper part of the Muschelkalk… 289

Fig. 4 Isopach map of the Schinznach Formation in N Switzerland, Reinecker (2013), Herb (1957), Herold (1992), Hofmann (1981), Im- SE and SW Germany. Where many borehole data are Thurn (1840), Ka¨mpfe (1984), Ladner et al. (2008), Ledermann available (Basel Tabular Jura), they show a highly variable thickness (1981), Merki (1961), Mu¨ller et al. (2002), Naef (2008), Nagra of the Schinznach Formation. This variation is interpreted to result (1984), (1985), (1988), (1989), (1990), (1991), (1992a), b,(2001), from drilling of inclined strata that were tilted during the formation of NEFF (1980), Ryf (1984), Schalch (1893), Schmassmann (1977), the Upper Rhinegraben. Therefore thick outliers were not considered. Schmidt et al. (1924), Schreiner (1992), Vollmayr (1971), Zaugg et al. Data from following sources were used for constructing the isopach (2008), Vonderschmitt (1942), unpublished data from Schweizer map: Albert et al. (2012), Arbeitsgruppe Geothermik (1988), Bausch Salinen AG, unpublished geodata from Canton Basel-Landschaft and Schober (1997), Bra¨ndlin (1911), Bru¨derlin (1971), Bu¨chi et al. (kantonales Bohrkataster); unpublished reports from P.R.E.P.A. (1965), Bu¨hl and Bollinger (1999), Diebold et al. (2006), Disler (Societe´ de prospection et exploitations pe´trolie`res en ; (1914), ARGE Geothermie Espace (2010), Fischer and Luter- boreholes Blodelsheim HN1, Illfurth R1, Hartmannswiller, Kno- bacher (1963), Fro¨hlicher and Kehrer (1968), Groschopf et al. (1996), eringue, Schweighouse, Wittenheim) Gsell (1968), Ha¨ring (1997, 2002), Hauber (1991), Heidbach and

2007a, b). However, due to rare occurrence of compressus compressus PHILIPPI det.: Merki 1961 (=Cer- along the basin margins, it is difficult to correlate the atites compressus PHILIPPI according to Urlichs 2006), margins with central parts based on ceratite zonation Ceratites (Acanthoceratites) compressus subnudus STOLLEY (Hagdorn et al. 1993). det.: Paul 1971 (=Ceratites subnudus STOLLEY according to In northern Switzerland ceratites were only found in the Urlichs 2006), Ceratites (Acanthoceratites) evolutus PHI- Du¨nnlenberg Bed and the overlying marls of the Lie- LIPPI det.: Merki 1961 (=Ceratites evolutus PHILIPPI dertswil Member. The following ceratites probably were according to Urlichs 2006), Ceratites (Acanthoceratites) found in the Du¨nnlenberg Bed: Ceratites mu¨nsteri E. PHIL. evolutus evolutus PHILIPPI det.: Merki 1961 (=Ceratites det.: Celliers 1907 (belongs to Ceratites spinosus PHILIPPI evolutus PHILIPPI according to Urlichs 2006), Ceratites according to Urlichs 2006), Ceratites compressus SANDB. (Acanthoceratites) evolutus tenuis RIEDEL det.: Paul 1971 det.: Celliers 1907 (=Ceratites compressus PHILIPPI (=Ceratites evolutus PHILIPPI according to Urlichs 2006) according to Urlichs 2006), Ceratites (Acanthoceratites) and Ceratites (Acanthoceratites) evolutus praecursor 290 J. S. Pietsch et al.

Fig. 5 Legend to the sections shown in Figs. 6, 7, 8, 9, 10, 11, 12, 13, 14

RIEDEL det.: Paul 1971 (=Ceratites obesus WENGER or exposing a minimum thickness of 30 m and of the geologic Ceratites praecursor RIEDEL according to Urlichs 2006, record of the Belchen tunnel (Fro¨hlicher and Kehrer 1968). because of the co-occurrence of ceratites evolutus and Wherever dipping- or well-path-deviation-data were ceratites compressus probably the latter). The allocation of available, they were considered to identify the true thick- Ceratites mu¨nsteri (now Ceratites spinosus) is question- ness. In the Folded Jura, dipping information was taken able. All other described ceratites can be assigned to the from the Geological Atlas of Switzerland. Compressus or Evolutus zones (Urlichs and Mundlos 1988; In the Basel Tabular Jura many borehole data of the Urlichs and Mundlos 1990; Urlichs 1993). Therefore, the Schweizer Salinen AG were available. Locally they show a Du¨nnlenberg Bed seems to lie within the boundary interval highly variable thickness of the Schinznach Formation. between the Compressus and Evolutus zones. This variation is interpreted to result from drilling differ- While the Spiriferinabank (which is not developed as ently inclined strata that were tilted during the formation of such in northern Switzerland) somewhat above the the Upper Rhinegraben (e.g. Gu¨rler et al. 1987). Therefore Du¨nnlenberg Bed (Paul 1971) corresponds to the boundary thickness outliers were not considered. between the Compressus zone and the Evolutus zone (Kozur 1974; Ockert 1988; Urlichs 1993; Ockert and Rein 2000), the Du¨nnlenberg Bed obviously lies in the late 3 Schinznach Formation Compressus zone and, therefore, has a late Anisian age (Illyrian; Brack et al. 1999; Kozur 1999; Brack et al. 2005). Names previously in use and synonyms: ‘‘Oberer Nevertheless the number of found ceratite specimens is Muschelkalk’’ and ‘‘Lettenkohle’’ among others (see low and it does not permit a precise and unequivocal age Figs. 1, 2). assignment. The taxonomic determination is not repro- Type locality: Bad Schinznach (Canton Aargau; coor- ducible due to missing reference samples and, hence, it is dinates: 2655.000/1256.725); Merki (1961); well still a matter of discussion (compare Wenger 1957 in Merki exposed, but hardly accessible due to railway traffic; 1961 and Rein 2007b, in this study, the zonation suggested Fig. 6. by Urlichs 1993 is used). Further biostratigraphic dating Type region: Eastern Folded Jura and northern Tabular based on the conodont zonation (Kozur 1974) is therefore Jura. still necessary. Boundary stratotype section: Nagra borehole Weiach (Canton Zurich; coordinates: 2676.745/1268.617); Matter 2.2 Isopach map et al. (1988a), Nagra (1989); Fig. 7. Underlying strata: Zeglingen Formation (Jordan 2016); An isopach map of the Schinznach Formation (Fig. 4) was mainly composed of and in the upper part of constructed using the data of 294 boreholes, of 38 outcrops laminated (stromatolitic) dolomites (‘‘Anhydritdolomit’’). A new lithostratigraphic scheme for the Schinznach formation (upper part of the Muschelkalk… 291

b Fig. 6 Type profile of the Schinznach Formation at Bad Schinznach (Canton Aargau; coordinates: 2655.000/1256.725); redrawn after Merki 1961, Section 45; outcrop hardly accessible due to railway traffic. 1 this volume; 2 sensu Merki 1961; Anhd. = Anhydrit- dolomit; Zegl. = Zeglingen Formation. Legend shown in Fig. 5

Overlying strata: Ba¨nkerjoch Formation (Jordan et al. 2016); mainly composed of evaporites and mudrocks. Upper boundary: Last occurrence of dm- to m-thick continuous dolomite or rauhwacke. (The onset of the Ba¨nkerjoch Formation is marked by marls and/or sulphates). Subdivision (from base to top): Leutschenberg Member, Kienberg Member, Member, Stamberg Mem- ber, Asp Member. Occurrence: Northern Switzerland. Thickness: Usually 50–85 m (Fig. 4). A general decrease in thickness towards southeast can be detected. Local maxima and minima seem to be associated to pre- existent tectonic structures. Chronostratigraphic age: (Anisian to Ladinian). Description: The Schinznach Formation consists of often dolomitic greyish and—especially within the upper part—beige dolomites, comprising (from base to top) macrofossil-poor limestones, bioclastic limestones, limestones with interbedded marls and locally macrofossil- rich dolomites. Oolites are intercalated in the lower and the upper third. At the top, above the dolomites, there are marls or clays and finally dolomites. The upper third of the Schinznach Formation locally contains anhydrite (e.g. Matter et al. 1988a).

4 Lithostratigraphic subunits of the Schinznach Formation

4.1 Leutschenberg Member

Names previously in use and synonyms: ‘‘Unterer Tro- chitenkalk’’ among others (see Figs. 1 and 2). Type locality: Western hillside of the Leutschenberg near Zeglingen (Canton Aargau; coordinates: 2636.950/ 1251.250); Merki (1961); Fig. 8. Underlying strata: Zeglingen Formation (Jordan 2016). Overlying strata: Kienberg Member. Subdivision: Fu¨tzen Bed. Occurrence: Northern Switzerland. Thickness: Between approximately 4 m and 10 m (Merki 1961). Lower boundary: Medium- to thick-bedded, sometimes Description and boundaries: The Leutschenberg Mem- dolomitic limestones and dolomites overlie thin bedded and ber represents the lowermost part of the Schinznach For- laminated, stromatolitic dolomites of the Zeglingen Formation. mation. It mainly consists of bioturbated mud- and 292 J. S. Pietsch et al. A new lithostratigraphic scheme for the Schinznach formation (upper part of the Muschelkalk… 293 b Fig. 7 Reference profile of the Schinznach Formation in the Nagra Member they cannot be defined as a single bed. The Basale borehole Weiach (Canton Zurich; coordinates: 2676.745/1268.617); Trochitenbank rather comprises different crinoid-detritus-rich redrawn after Matter et al. (1988a) and Nagra (1989); 1 this study; 2 sensu Matter et al. 1988 and Nagra 1989; Anhd. = Anhydrit- strata. Where these strata occur at the base of the dolomit; Lied. = Liedertswil Member; Zegl. = Zeglingen Formation. Leutschenberg Member, they often contain dolomite clasts Legend shown in Fig. 5 originating from the underlying ‘‘Anhydritdolomit’’ repre- wackestones. Bedding planes and burrows are often senting the top of the Zeglingen Formation (Merki 1961). dolomitised. The basal strata are locally dolomitic (Disler The top of the Leutschenberg Member is defined by the 1914; Merki 1961) and overlie stromatolitic dolomites of first occurrence of successional float- to rudstones rich in the Zeglingen Formation (Fig. 8). crinoid and shell detritus above bioturbated mud- and At some localities strata rich in crinoid and shell detritus wackestones (see below; Figs. 8, 10). Thus, the ‘‘Basale occur near the base of the Leutschenberg Member (Figs. 8, Trochitenbank’’ of Merki (1961) is defined to form part of 10). They are between 5 cm (Fig. 10; see Merki 1961;Gsell the Leutschenberg Member. 1968) and about 2 m thick (Merki 1961). Merki (1961) called 4.1.1 Fu¨tzen Bed these strata ‘‘Basale Trochitenbank’’. They often represent the lowermost part of the Leutschenberg Member, but similar Names previously in use and synonyms: ‘‘Liegend-Oolith’’ lithology may occur in middle part as well (Disler 1914; or ‘‘Basaloolith’’ among others (see Fig. 2). Merki 1961). Due to their multiple occurrence at different Type locality: Wutachflu¨h(WFu¨tzen, Germany; coor- stratigraphic levels within the lower part of the Leutschenberg dinates: 2680.650/1296.300); Paul (1971); Fig. 9.

Fig. 7 continued 294 J. S. Pietsch et al.

Underlying strata: Zeglingen Formation or lowermost parts of the Leutschenberg Member. Overlying strata: The Fu¨tzen Bed often represents the basal strata of the Leutschenberg Member. Occurrence: Westernmost Tabular Jura and adjacent Dinkelberg (Merki 1961; Rieser 1964; Bru¨derlin 1969, 1971), easternmost Tabular Jura (Merki 1961; Peters et al. 1989; Nagra 1984), area and region (Paul 1936, 1971; Bru¨derlin 1971; Nagra 1992b), and in the Folded Jura near Eptingen (unpublished borehole data Eptingen 85.R.305, Bohrkataster Basel-Landschaft) and Lostorf (Schmassmann 1977). Whether the oolites in the easternmost Tabular Jura and the Klettgau area form a continuous lithosome cannot be ascertained. Due to the drilling of oolites belonging to the Fu¨tzen Bed in the borehole Weiach (Matter et al. 1988a) it seems to be possible. Thickness: Up to approximately 5 m (e.g. Paul 1971; Matter et al. 1988a; Peters et al. 1989). Description: The Fu¨tzen Bed represents the lowest oolitic interval of the Schinznach Formation. It consists of a thick-bedded, calcareous oolite (Paul 1971). The basal strata may contain chert nodules (Paul 1971; Hofmann et al. 2000). Macrofossils are rare in the Fu¨tzen Bed (Merki 1961; Rieser 1964; Paul 1971). Most of the ooids are recrystallised (Merki 1961) or dolomitised (Merki 1961; Rieser 1964). For discussion of the lithostratigraphic defi- nition of the oolitic intervals see below.

4.2 Kienberg Member

Names previously in use and synonyms: ‘‘Oberer Tro- chitenkalk’’ among others (see Figs. 1 and 2). Type locality: Saalhof (SW Kienberg, Canton Solothurn; coordinates: 2640.710/1253.860) compare Gsell (1968), Merki (1961); abandoned quarry, lowermost part not outcropping anymore; Fig. 10. Underlying strata: Leutschenberg Member. Overlying strata: Liedertswil Member. Subdivision: Saalhof Bed and Du¨nnlenberg Bed (mul- tiple subordination). Fig. 8 Profile of the Schinznach Formation at the western hillside of Occurrence: Northern Switzerland. the Leutschenberg near Zeglingen (type profile of the Leutschenberg Thickness: Between some 14 m and 22 m. Member; Canton Aargau; coordinates: 2636.950/1251.250); redrawn after Merki 1961, Section 25. 1 this volume; 2 sensu Merki 1961; Li. Description and boundaries: The Kienberg Member Mb. = Liedertswil Member; U Trochitenkalk = Unterer Tro- consists of strata rich in crinoid fragments and shell debris chitenkalk. Legend shown in Fig. 5 (‘‘Trochitenba¨nke’’ or ‘‘Schillba¨nke’’). They typically form coarsening-upward cycles. Some marl may be interbedded. Traditionally, the subcommission on –Triassic Many of the strata rich in crinoid and shell detritus possess Stratigraphy (SKPT) of the German Commission on subbeds (Aigner 1985) that are micritic layers diageneti- Stratigraphy (DSK) defines the Wutachflu¨h as type locality cally attached along their erosive base. Like for the of the Liegendoolith Subformation, which together with the Leutschenberg Member, bedding planes and burrows are Marbach-Oolith corresponds to the Fu¨tzen Bed. often dolomitised. A new lithostratigraphic scheme for the Schinznach formation (upper part of the Muschelkalk… 295

Fig. 9 Profile of the Schinznach Formation at the Wutachflu¨h (type M = Mittlerer Muschelkalk; Stam. Mb. = Stamberg Member; profile of the Fu¨tzen Bed; W Fu¨tzen, Germany; coordinates: Z = Zeglingen Formation; black filled triangles show beds defined 2680.650/1296.300); redrawn after Paul (1971); 1 this volume; by this study; not filled triangles show German beds or informal 2 sensu Paul (1971); A = Asp Member; K = Kohlenkeuper; horizons used by Paul (1971). Legend shown in Fig. 5 The base of the member is defined by the first contin- Trochitenbank’’ of Merki (1961) and similar relatively thin uous occurrence of float- or rudstones rich in crinoid and strata rich in crinoid fragments in the lowermost part of the shell detritus above the bioturbated mud- and wackestones Schinznach Formation still belong to the Leutschenberg of the Leutschenberg Member. This boundary is often Member (see above). marked by a bed rich in Coenothyris vulgaris (newly Deviating from Merki (1961) who placed the top of the defined as Saalhof Bed, see below). Of course, mud- to ‘‘Oberer Trochitenkalk’’ at the base of the Du¨nnlenberg wackestones also occur in the Kienberg Member, in which Bed, the top of the Kienberg Member is now defined with they represent the lower part of the coarsening-upward the last occurrence of float- to rudstones rich in crinoid cycles. It is a classifier that the crinoid- and shell-detritus- detritus with a minimal bed thickness of 10 cm. This means rich float- or rudstones exceed 5 m in thickness to form that at least ten percent of the has to be built up by part of the Kienberg Member. Conversely, the ‘‘Basale crinoid debris. Of course, the subbeds of the strata rich in 296 J. S. Pietsch et al.

Fig. 10 Profile of the Schinznach Formation at Saalhof (type profile after Merki (1961), Gsell (1968); 1 this volume; 2 sensu Merki of the Kienberg Member and of the Saalhof Bed; SW Kienberg, (1961); 3 sensu Gsell (1968); A = Anhydritdolomit; Z = Zeglingen Canton Solothurn; coord.: 2 640 710/1 253 860); partially redrawn Formation. Legend shown in Fig. 5 crinoid detritus should not be taken into account in this Fig. 11 Profile of the Schinznach Formation at the Du¨nnlenbergc threshold value. Some crinoid debris may occur in over- (type profile of the Du¨nnlenberg Bed and of the Liedertswil Member; lying strata, but mostly they are limited to the top of the S Liedertswil, Canton Basel-Landschaft; coordinates: 2620.930/ 1248.530); partially redrawn after Herold (1992); 1 this study; strata, whereas the strata themselves are built up mainly by 2 sensu Herold (1992); UT = Unterer Trochitenkalk. Legend shown bivalve shells. in Fig. 5 The stratigraphic level up to which these crinoid-rich strata are present varies (Merki 1961). In Germany the compare Fig. 9). The last occurrence of lili- Spiriferinabank is seen as the last bed rich in crinoid iformis, which is the ubiquitous crinoid in the Kienberg detritus and is set as top of the Trochitenkalk Formation Member, is coupled with the Spiriferinabank (Hagdorn and (Geyer and Gwinner 2011; Paul 1971; Hagdorn and Simon Simon 1993; Hagdorn 1999) and, therefore, with the 2005). It lies little above the Du¨nnlenberg Bed (Paul 1971; boundary between the Compressus zone and the Evolutus A new lithostratigraphic scheme for the Schinznach formation (upper part of the Muschelkalk… 297 298 J. S. Pietsch et al.

Fig. 11 continued zone as well (see above). Because of the varying strati- Occurrence: Basel and Aargau Tabular Jura, Folded graphic level reached by the strata rich in crinoid detritus, Jura west of Schinznach (Merki 1961), Wutach region the Du¨nnlenberg Bed may belong to either the Kienberg (Paul 1936, Paul 1971); traceable across northern Member or the Liedertswil Member (see below). Switzerland using gamma-ray logs (Fig. 15). Thickness: 10 to 40 cm. 4.2.1 Saalhof Bed Chronostratigraphic age: Late Anisian (Illyrian; com- pare discussion above). Names previously in use and synonyms: ‘‘Coenothyris- Description: The Du¨nnlenberg Bed consists of grey or bank’’ among others (e.g. ‘‘Terebratellage’’ (Brombach brownish marl, which can be dolomitic or calcareous. It 1903); compare Fig. 2). lies within the upper part of the strata rich in crinoid and Type locality: Saalhof (SW Kienberg, Canton Solothurn; shell detritus, where macrofossil-poor mud- and wacke- coordinates: 2640.710/1253.860); compare Merki (1961), stones and intervals only rich in shell detritus gradually and Gsell (1968); abandoned quarry; Fig. 10. diachronously replace this facies. Therefore, it may belong Occurrence: Northern Switzerland, locally missing. to either the Kienberg Member or the Liedertswil Member. Thickness: 5 cm up to 70 cm (Merki 1961). Although many outcrops show several marly horizons, Description: The lowermost macrofossil-rich stratum of only the lowermost horizon, which is thicker than about the Kienberg Member is often rich in Coenothyris vulgaris 5 cm is defined as Du¨nnlenberg Bed (Figs. 10, 11). In and is here newly named Saalhof Bed. These brachiopod northern Switzerland ceratites were only found in the shells are usually dolomitised. At the type locality it con- Du¨nnlenberg Bed and in the overlying marl of the upper- sists of two strata, of which the lower one contains bra- most part of the Kienberg Member (see biostratigraphic chiopod shells only in its middle part (Fig. 10). discussion). The Saalhof Bed does not occur in whole northern In gamma-logs the Du¨nnlenberg Bed is characterised by Switzerland. Whether it was eroded briefly after deposition a positive peak (Figs. 10, 11). While the Leutschenberg as supposed by Merki (1961) or it was not deposited area- Member and the Kienberg Member are characterised by wide remains unclear. decreasing content (Figs. 10, 15) the Du¨nnlenberg Bed often represents the first significant peak. Locally mostly 4.2.2 Du¨nnlenberg Bed less pronounced peaks may occur further up (e.g. Scha- fisheim; Fig. 15), which may correspond to the marl- and Names previously in use and synonyms: ‘‘Mergelhorizont’’ glauconite-bearing strata overlying the Du¨nnlenberg Bed. or ‘‘Mergelhorizont III’’ (compare Fig. 2). Discussion: The maximum flooding of the Upper Type locality: Du¨nnlenberg (S Liedertswil, Canton Muschelkalk Sea was supposed to have occurred at dif- Basel-Landschaft; coordinates: 2620.930/1248.530); com- ferent levels by different authors (Kozur 1974; Aigner pare Merki (1961), Herold (1992); Fig. 11. 1985; Aigner and Bachmann 1992;Ro¨hl 1990). Franz et al. A new lithostratigraphic scheme for the Schinznach formation (upper part of the Muschelkalk… 299

of the Du¨nnlenberg Bed to the interval from the Com- pressus to the Evolutus zone (compare discussion above) it seems plausible to link the Du¨nnlenberg Bed to this first regression as well.

4.3 Liedertswil Member

Names previously in use and synonyms: ‘‘Plattenkalk’’ among others (see Figs. 1, 2). Type locality: Du¨nnlenberg (S Liedertswil, Canton Basel-Landschaft; coordinates: 2620.930/1248.530); com- pare Merki (1961), Herold (1992); Fig. 11. Underlying strata: Kienberg Member. Overlying strata: Stamberg Member. Subdivision: Du¨nnlenberg Bed (multiple subordination, compare above), Eptingen Bed (multiple subordination). Occurrence: Northern Switzerland. Thickness: 1.5 m (Weiach borehole, Fig. 7)upto approximately 25 m; due to the diagenetic nature of the upper boundary of the Liedertswil Member it is possible that the member is missing at some localities (compare with description below). Description and boundaries: The Liedertswil Member consists of limestones rich in shell detritus in the lower part and macrofossil-poor mud- and wackestones in the upper part. As discussed above, crinoid detritus may occur in some strata of the lower part. In most sections the Du¨nnlenberg Bed lies little above the base of the Lie- dertswil Member. Above the Du¨nnlenberg Bed other marl layers may occur. Locally ceratites can be found in these layers (see above; Braun 1920; Merki 1961). Strata above and below the marl layers may contain glauconite (Merki 1961; Herold 1992; Bru¨derlin 1969). Especially the upper part of the Liedertswil Member is often dolomitised. In some regions the dolomitised Lie- dertswil Member contains chert nodules (e.g. Braun 1920; Merki 1961). Within the lower parts often bedding planes Fig. 12 Profile of the Schinznach Formation at Eptingen (type profile and burrows are dolomitised similar to underlying members. of the Eptingen Bed and of the Stamberg Member; Canton Basel- The top of the Liedertswil Member is defined by the Landschaft, coordinates: 2628.625/1248.025); redrawn after Merki change from (dolomitic) with single dolomitic 1961, Section 16; not completely outcropping anymore. 1 this strata to a both laterally continuous and pure dolomite. Due volume; 2 sensu Merki 1961. Legend shown in Fig. 5 to the diagenetic nature of the upper boundary of the Lie- dertswil Member, the level of the boundary varies within (2013) prefer a comparatively early maximum flooding the Schinznach Formation. It is therefore possible that the similar to Kozur (1974) because of the transgression of normally overlying Stamberg Member directly rests on the coastal plain-fluvial sediments of the Formation Kienberg Member, if dolomitisation is used as classifica- (largely equivalent to the Asp Member) since the late tion criterion and if dolomitisation affected the uppermost Anisian. Franz et al. (2015) located the initial regression of strata rich in crinoid detritus. In that case the Liedertswil the Upper Muschelkalk Sea in the interval of the Com- Member is not developed as such. pressus to Evolutus zone. In southwestern Germany they The oolitic interval around the boundary interval ascribe the increasing abundance of clastics in the so-called between the Liedertswil Member and the Stamberg Mem- ‘‘Tonhorizonte’’, which occur above the Spiriferinabank, to ber is defined as Eptingen Bed. Depending on dolomitisa- this first regression. Due to the biostratigraphic assignment tion-depth it lies either in one or in both of these members. 300 J. S. Pietsch et al.

4.3.1 Eptingen Bed

Names previously in use and synonyms: ‘‘Eptinger Oolith’’ and ‘‘Giebenacher Oolith’’ among others (see Fig. 2). Type locality: Stamberg (S Eptingen, Canton Basel- Landschaft; coordinates: 2628.625/1248.025); Merki (1961); not completely outcropping anymore; Fig. 12. Occurrence: Folded Jura between and Ba¨nkerjoch (Merki 1961; Schmassmann 1977); Tabular Jura west of Rheinfelden and adjacent Dinkelberg (Merki 1961; Rieser 1964; Bru¨derlin 1969, 1971); Wutach region (Bru¨derlin 1969, 1971; Paul 1971); drilled in Weiach (Matter et al. 1988a), Benken (Nagra 2001) and Schlat- tingen (Albert et al. 2012). Thickness: Up to 8 m (Merki 1961). Description: The Eptingen Bed represents the middle oolitic interval of the Schinznach Formation. The ooids are mostly dolomitised (Merki 1961; Rieser 1964) and, therefore, lost their internal structure. If the dolomitisation also concerns the matrix, the ooid shapes often can be recognised under microscope only. In the region of Eptingen chert nodules occur in the oolitic interval. They enclose silicified ooids (Merki 1961). For discussion of the lithostratigraphic definition of the oolitic intervals see below.

4.4 Stamberg Member

Names previously in use and synonyms: ‘‘Trigonodus- dolomit’’ among others (see Figs. 1 and 2). Type locality: Stamberg (S Eptingen, Canton Basel- Landschaft; coordinates: 2628.625/1248.025); Merki (1961); not completely outcropping anymore; Fig. 12. Underlying strata: Liedertswil Member or Kienberg Member when the dolomitisation reached down to the strata rich in crinoid detritus. Overlying strata: Asp Member. Subdivision: Eptingen Bed (multiple subordination) and Kaisten Bed. Occurrence: Northern Switzerland. Thickness: Locally highly variable due to the diagenetic character of the lower boundary. Common values between approximately 20 m and 30 m; higher values for example in the Schinznach region (about 35 m; Ha¨ring 1997; Arbeitsgruppe Geothermik 1988) and in Benken (37 m; Nagra 2001). Description and boundaries: The lower boundary is Fig. 13 Profile of the Schinznach Formation at Kaisten (type profile defined by the change from (dolomitic) limestone with of the Kaisten Bed; Canton Aargau; coordinates: 2646.600/1265.675); single dolomitic strata to a laterally continuous and several redrawn after Merki (1961); 1 this study; 2 sensu Merki (1961); Esth. = Estherienschiefer; Grenzdol. = Grenzdolomit. Legend m-thick pure dolomite. Single calcareous beds may occur shown in Fig. 5 A new lithostratigraphic scheme for the Schinznach formation (upper part of the Muschelkalk… 301

macroscopic observation and a boundary set by the effec- tive dolomite content. Because the lower, less erodible part of the Stamberg Member resembles the limestones of the Liedertswil Member, former investigators divided the dolomite in typical ‘‘Trigonodusdolomit’’ and dolomitic ‘‘Plattenkalk’’ (e.g. Merki 1961; Matter et al. 1988a). Due to the diagenetic nature of the lower boundary of the Stamberg Member, the level of the boundary varies within the Schinznach Formation. It is therefore possible that the Stamberg Member directly rests on the Kienberg Member, if dolomitisation reached down to the uppermost strata rich in crinoid detritus. The dolomites of the Stamberg Member nowadays have a mudstone appear- ance, but they mostly seem to have been mud- and wackestones prior to dolomitisation. Locally bivalve- and gastropod-rich strata occur within the dolomites (Herb 1957; Merki 1961). Especially the uppermost strata, which partly were defined to belong to the Lower Keuper for- merly, are rich in macrofossils. Bonebeds occur in the upper part and contain, for example, fish and teeth (Braun 1920). The Stamberg Member locally contains chert nodules. In Liedertswil (Fig. 11) they occur in stromatolitic dolo- mites, as also known from southwestern Germany, where stromatolitic dolomites are present in the upper part of the Rottweil Formation (Alesi 1984). Locally the Stamberg Member seems to be sandy (Disler 1914; Vonderschmitt 1942) or contains anhydrite (e.g. Vonderschmitt 1942; Matter et al. 1988a). The top of the Stamberg Member is defined by the first decimetre-thick mud or argillaceous marl layer of the Asp Member.

4.4.1 Kaisten Bed

Names previously in use and synonyms: ‘‘Kaistener Schichten’’ among others (Fig. 2). Type locality: Kaisten (Canton Aargau; coordinates: 2646.600/1265.675); Merki (1961); Fig. 13. Occurrence: Wutach region (Paul 1971); Tabular Jura Fig. 14 Profile of the Schinznach Formation at Asp (type profile of the Asp Member; Canton Aargau; coordinates: 2646.375/1255.125); between the (Nagra 1984; Matter et al. 1987; redrawn after Furrer 1977. 1 this volume; 2 sensu Furrer 1977; Bru¨derlin 1971) and Kaisten (Merki 1961). Esth. = Estherienschiefer. Legend shown in Fig. 5 Thickness: up to approximately 5 m (Kaisten, Fig. 13; Merki 1961). within the Stamberg Member (compare mineralogic com- Description: The Kaisten Bed represents the uppermost position of borehole Weiach; Nagra (1989); Fig. 15) but oolitic interval of the Schinznach Formation. It comprises the dolomite content has to exceed 90 percent. Macro- the oolitic intervals described for the Wutach region (e.g. scopically the dolomite varies considerably. Especially the Paul 1971), the lower course of the Aare River (Nagra upper part of the Stamberg Member typically shows a 1984; Matter et al. 1987; Bru¨derlin 1971), and the higher weatherability, which may arise from the texture macrofossil-rich oolitic strata in the Kaisten area (‘‘Kais- prior to dolomitisation. The lower part often cannot be tener Schichten’’; Merki 1961). The ooids in this interval separated sharply from the underlying limestones of the are completely dolomitised (Merki 1961; Rieser 1964) and Liedertswil Member visually. Matter et al. (1988b) recog- often ooid shapes can only be recognised under the nise an offset of 1.75 m between a boundary set by microscope. 302 J. S. Pietsch et al.

Fig. 15 Profiles of the Schinznach Formation in boreholes in central Birmenstorf BT4 data from Arbeitsgruppe Geothermik (1988); northern Switzerland with attendant gamma-logs and possible corre- Weiach data from Matter et al. (1988a) and Nagra (1989); Siblingen lation. Schafisheim data from Matter et al. (1988b) and Nagra data from Nagra (1992b); Benken data from Nagra (2001); ZF = (1992a); data from Matter et al. (1987) and Nagra (1990); Zeglingen Formation. Colours used as shown in Fig. 5

While most occurrences of the uppermost oolitic inter- Occurrence: Northern Switzerland. val were described either from boreholes (Riniken, Matter Thickness: Up to 15 m, but variable. In the Basel Tab- et al. 1987; Beznau, Nagra 1984) or from outcrops in ular Jura and the Upper Graben from reported, but adjacent Germany (Bru¨derlin 1971; Paul 1971), the type very likely too low value of 1 m (Schweizer Salinen AG, locality of the oolitic ‘‘Kaistener Schichten’’ proposed by unpublished) to 15 m (Hauber 1991); in the Aargau Tab- Merki (1961) in the Aargau Tabular Jura was chosen to be ular Jura, in the Schaffhausen area and the Zu¨rcher the type region of the Kaisten Bed as well. Contrary to the Weinland from approximately 4 m (see Nagra ‘‘Kaistener Schichten’’ the Kaisten Bed only comprises the 1984, 1990, 2001; Albert et al. 2012) to 8 m (Arbeits- oolitic strata within the bivalve- and gastropod-rich strata gruppe Geothermik 1988); in the region of Lake Constance described by Herb (1957). For discussion of the lithos- from 7 m (Bu¨chi et al. 1965) to 15 m (Lemcke and Wagner tratigraphic definition of the oolitic intervals see below. 1961). Description and boundaries: The base of the Asp 4.5 Asp Member Member is defined by the first decimetre-thick mud or argillaceous marl layer on top of the dolomites of the Names previously in use and synonyms: ‘‘Lettenkohle’’ Stamberg Member. Traditionally the base was set with a among others (Figs. 1 and 2). millimetre- to centimetre-thick condensation layer called Type locality: Asp (Canton Aargau; coordinates: ‘‘Grenzbonebed’’ (e.g. Merki 1961). In this case the 2646.375/1255.125); Furrer (1977); Fig. 14. boundary is located within the dolomite and is therefore not Boundary stratotype section: Nagra borehole Weiach always recognisable, particularly in drillings. (Canton Zurich; coordinates: 2676.745/1268.617); Matter Within the mud or argillaceous marl intervals, one (e.g. et al. (1988a), Nagra (1989); Fig. 7. Asp, Fig. 14) or more (e.g. Eptingen, Fig. 12) thin dolo- Underlying strata: Stamberg Member. mite beds can occur. They may be equivalent to the Overlying strata: Ba¨nkerjoch Formation (Jordan et al. dolomite beds of the ‘‘Alberti-Schichten’’, especially the 2016). Alberti-Bank, which has been distinguished in A new lithostratigraphic scheme for the Schinznach formation (upper part of the Muschelkalk… 303 southwestern Germany (Essigmann 1979; Nitsch 2015), defined by a millimetre- to centimetre-thick condensed where the thickness increases (up to 33 m in the Kraichgau layer called ‘‘Grenzbonebed’’ (Essigmann 1979; Etzold and Trough; Etzold and Schweizer 2005). Formerly this Schweizer 2005). The ‘‘Grenzbonebed’’ separates the argillaceous succession was called ‘‘Estherienschiefer’’ lowest subunit of the (Basisschichten) (Fig. 2) after Euestheria minuta (Zieten 1833), which from the Rottweil Formation underneath, which is largely locally occurs in some layers (e.g. Disler 1914; Merki equivalent to the Stamberg Member. A similar criterion 1961; Gsell 1968). In addition to conchostraca and other was used in northern Switzerland to define the base of the invertebrates, plant remains (Bra¨ndlin 1911; Braun 1920) ‘‘Lettenkohle’’ (e.g. Merki 1961). However, as the equiv- and vertebrate components were found. Among the alent of the lowest subunit of the German Erfurt Formation latter are remains of fish and teeth (e.g. Schmidt et al. 1924; is a dolomitic interval in northern Switzerland, it cannot be Furrer 1977), bones (e.g. Bra¨ndlin 1911; Disler 1914; separated from the underlying dolomites of the Stamberg Merki 1961) amongst others of Nothosauridae (Frank Member. This dolomitic interval is therefore also inte- 1928; Peyer 1932). Locally sandy layers are interbedded grated to the Stamberg Member (Fig. 2). (e.g. Bra¨ndlin 1911; Merki 1961; Diebold et al. 2006). The Similarly the upper boundary of the Asp Member in dolomites within the mudrock or marl can have a sandy northern Switzerland does not match the upper boundary of appearance (Braun 1920; Diebold et al. 2006). the Erfurt Formation (Lettenkeuper) in southwestern Ger- Dolomites follow above the argillaceous succession. many. Due to the locally sulphate-rich facies of the Gru¨ne Locally anhydrite nodules occur within the Asp Member Mergel and the significant lithologic differences between (e.g. Matter et al. 1988a, b; Jordan et al. 2011). In outcrops the upper dolomites of the Asp Member and the overlying the anhydrite-rich strata are often weathered to rauhwacke. sediments, the top of the Schinznach Formation is placed at Sandy or argillaceous layers often occur as well (Merki the top of the dolomites of the Asp Member. These dolo- 1961; Essigmann 1979). mites may be equivalent to the Linguladolomit of south- The top of the Asp Member is defined by the last western Germany (Essigmann 1979). occurrence of continuous dolomite or rauhwacke strata overlain by marls or sulphates that already belong to the 4.6 Lithostratigraphic rank of oolitic intervals Ba¨nkerjoch Formation. Therefore, the alternating strata and multiple subordination consisting of massive anhydrite and dolomite that locally occur in the lowest part of the Ba¨nkerjoch Formation do Within the Schinznach Formation, oolitic intervals often not belong to the Asp Member. occur as single strata with thicknesses of only a few The Asp Member shows a significant peak in gamma- decimetres, though they may build up oolitic strata of a few logs (Figs. 7, 15), which can be used to localise the top of metres as well. Therefore, they represent units that occupy the Schinznach Formation. In the Nagra boreholes Scha- an intermediate position between a member and a bed with fisheim, Riniken, Weiach and Benken a smaller peak marks respect to lithostratigraphic terminology. Furthermore, it is the top of the Asp Member. In Siblingen this peak lies few not clear because of lacking outcrops, if the oolitic bodies metres deeper. within an interval are laterally genetically linked with each Discussion: Traditionally the Asp Member was defined other. Therefore, they are seen as open shoals, which to form part of the Keuper by many authors (see above). In formed in similar stratigraphic levels. Since these levels adjacent southwestern Germany the ‘‘Lettenkeuper’’ (to- seem to correspond to environmental conditions that day: Erfurt Formation) is classified as Lower Keuper (e.g. favoured ooid formation, they may have some stratigraphic Menning 2000; Etzold and Schweizer 2005). Merki (1961) significance. noticed the prevailing open marine character of the ‘‘Let- The lowermost oolitic interval is completely embedded tenkohle’’. Therefore he allocated these sediments to the within the Leutschenberg Member. The uppermost interval Upper Muschelkalk. This allocation was recently adopted is always completely dolomitised and, therefore, obviously by the Swiss Committee on Stratigraphy (decision of the belongs to the Stamberg Member. Consequently, a defini- 22nd November 2014). tion on a hierarchical rank lower than member is desirable. As the dolomites constituting the top of the Asp Member Therefore, in the present paper each oolitic interval was resemble those of the Stamberg Member underneath, it is classified in the rank of a bed. The oolites are thus divided appropriate to include the Asp Member into the same into a lower, middle and an upper interval, which now are formation, in particular if mappability is considered (Re- defined as Fu¨tzen Bed, Eptingen Bed and Kaisten Bed, mane et al. 2005). respectively. The Asp Member does not exactly correspond to the Depending on the more or less pronounced dolomitisa- Erfurt Formation (Lettenkeuper) in southwestern Germany tion of the oolites of the Eptingen Bed, this unit either (Fig. 2). Traditionally the base of the Erfurt Formation is belongs to the Liedertswil Member (only partly or not 304 J. S. Pietsch et al. affected by dolomitisation) or to the Stamberg Member References (complete dolomitisation). Such multiple subordination, though somewhat problematic for database management, is Adams, A., Aschwanden, L., Ramseyer, K., Diamond, L. W., Bla¨si, allowed by the Swiss guidelines for stratigraphic nomen- H.R. (2014). Facies analysis and correlation of the middle Triassic Swiss carbonate ramp: relation to current aquifer clature (Fig. 1 of Remane et al. 2005). Multiple subordi- properties of the Upper Muschelkalk. Abstract Volume 12th nation is also proposed for the marly Du¨nnlenberg Bed, Swiss Geoscience Meeting, p. 168. though for somewhat different genetic reasons. Aigner, T. (1985). Storm depositional systems dynamic stratigraphy in modern and ancient shallow-marine sequences. Lecture Notes in Earth Sciences, 3, 1–174. Aigner, T., & Bachmann, G. H. (1992). Sequence-stratigraphic 5 Concluding remarks framework of the German Triassic. Sedimentary , 80, 115–135. The Schinznach Formation comprises sediments previously Albert, W., Bla¨si, H.R., Madritsch, H., Vogt, T., Weber, H.P. (2012). Geologie, Stratigraphie, Strukturgeologie, bohrlochgeo- classified as Upper Muschelkalk and Lower Keuper in physikalisches Logging und Wasserproben der Geother- northern Switzerland. These sediments are mainly com- miebohrung Schlattingen SLA-1 (Rohdaten). Nagra posed of often dolomitic limestone and dolomite and usu- Projektbericht, NPB, pp. 12–16. ally have a total thickness of 50 - 85 m. Though the Alesi, E. J. (1984). Der Trigonodus-Dolomit im Oberen Muschel- kalk von SW-Deutschland. Arbeiten aus dem Institut fu¨r thickness would allow for distinguishing more formations, Geologie und Pala¨ontologie an der Universita¨t Stuttgart, the lithologic similarity of the individual subunits is in N.F., 79, 1–53. favour of the definition of only one formation constituting a Alt-Epping, P., Diamond, L. W. (2014). Fluid-rock reactions arising mappable unit. Similarly the Asp Member, which was from CO2 injection into U. Muschelkalk aquifer in N-Switzer- land—insights from coupled numerical simulations. Abstract formerly classified as Lower Keuper, is now defined to Volume 12th Swiss Geoscience Meeting, p. 169. form part to the Schinznach Formation because of litho- ARGE Geothermie Espace Bern (2010). Grundlagenstudie Tiefen- logic similarity with the rest of the Schinznach Formation geothermie Espace Bern, unpublished report, available at: http:// and pronounced differences to the Ba¨nkerjoch Formation. www.ewb.ch/de/uploads/media/GrundlagenstudieTiefengeother mieEspaceBern.pdf. The main characteristics of these sediments are repre- Aschwanden, L., Adams, A., Diamond, L. W., Mazurek, M., sented by five members, two marker beds and three oolitic Ramseyer, K. (2014). Reservoir properties of the Middle- and intervals, which are also defined as beds. This Upper Muschelkalk carbonate aquifer at Schlattingen, NE- scheme widely corresponds to subdivisions previously Switzerland. Abstract Volume 12th Swiss Geoscience Meeting, p. 183. suggested (e.g. Merki 1961). It transfers previously used Bausch, W., & Schober, T. (1997). Erla¨uterungen zum Blatt subdivisions in a mere lithostratigraphic system, whereas 8316/8416 Klettgau/ am Hochrhein. Geologische the former subdivisions mixed lithostratigraphy and Karte von Baden-Wu¨rttemberg, 1, 25000. allostratigraphy. Brack, P., Rieber, H., Nicora, A., & Mundil, R. (2005). The global boundary stratotype section and point (GSSP) of the ladinian The Schinznach Formation outcrops in northern Switzer- (Middle Triassic) at Bagolino (Southern , Northern land between the Doubs River and the Lake Biel in the west Italy) and its implications for the Triassic time scale. Episodes, and the Lake Constance in the east. Towards south a tran- 28(4), 233–244. sition to a facies related to the margin of the Central Euro- Brack, P., Rieber, H., & Urlichs, M. (1999). Pelagic succesions in the Southern Alps and their correlation with the Germanic Middle pean Epicontinental Basin is observed (borehole Entlebuch; Triassic. Zentralblatt fu¨r Geologie und Pala¨ontologie Teil I, Vollmayr and Wendt 1987). Therefore the lithostratigraphic 1998(7–8), 853–876. scheme presented here is not directly applicable to these Bra¨ndlin, E. (1911). Zur Geologie des no¨rdlichen Aargauer Tafeljura transitional sediments of Middle Triassic age. Further zwischen Aare- und Frick-Tal. Verhandlungen der Natur- forschenden Gesellschaft in Basel, 22, 57–148. investigations (detailed logged core drillings) of the marginal Braun, L. (1920). Geologische Beschreibung von Blatt Frick facies are needed to either ascribe it to the Schinznach For- (1:25000) im Aargauer Tafeljura. Verhandlungen der Natur- mation with the definition of new members or to establish a forschenden Gesellschaft in Basel, 31, 189–242. new formation. The same holds true for a potential extension Brombach, F. (1903). Beitrag zur Kenntnis der Trias am su¨dwest- lichen Schwarzwald. Mitteilungen der Grossherzoglichen Badis- of the Schinznach Formation towards the west. chen Geologischen Landesanstalt, 4, 1–56. Bru¨derlin, M. (1969). Beitra¨ge zur Lithostratigraphie und Sediment- Acknowledgments This study was financially supported by the petrographie des Oberen im su¨dwestlichen Baden- Bundesamt fu¨r Landestopografie swisstopo – Bereich Landesgeolo- Wu¨rttemberg (Teil I: Lithostratigraphie). Jahresberichte und gie. W. Neubert and G. Fuchs (Schweizer Salinen AG) gave access to Mitteilungen des Oberrheinischen Geologischen Vereins, N.F. unpublished borehole data. Dr. G. Deplazes and Dr. M. Ruff gave 51, 125–158. access to further information according Nagra boreholes. The Bru¨derlin, M. (1971). Lithostratigraphische Profilserien durch den manuscript benefited much from the thoughtful reviews of Dr. Oberen Muschelkalk im su¨dwestlichen Baden-Wu¨rttemberg. T. Bolliger (Aathal), Dr. H. Hagdorn (Ingelfingen) and Dr. A. Morard Jahresberichte und Mitteilungen des Oberrheinischen Geologis- (Bern). chen Vereins, N.F., 53, 195–199. A new lithostratigraphic scheme for the Schinznach formation (upper part of the Muschelkalk… 305

Bu¨chi, U. P., Lemcke, K., Wiener, G., & Zimdras, J. (1965). Gressly, A. (1853). U¨ bersicht der geologischen Verha¨ltnisse der Geologische Ergebnisse der Erdo¨lexploration auf das Meso- Umgebungen Oltens in Bezug auf den Hauenstein-Tunnel zoikum im Untergrund des schweizerischen Molassebeckens. (1853). Nach einer Kopie des Originals im Escher’schen Bulletin der Vereinigung Schweiz Petroleum-Geologen und - Nachlaß in Zu¨rich, mit einigen stratigraphischen Berichtigungen Ingenieure, 32, 7–38. von Prof. Dr. L. Rollier (1928) versehen. S.-A. Mitteilungen der Bu¨hl, H., & Bollinger, N. (1999). Die Grundwasserbohrung Trasadin- Naturforschenden Gesellschaft des Kantons Solothurn, 8, 1–40. gen. Bulletin fu¨r angewandte Geologie, 4, 129–139. Groschopf, R., Kessler, G., Leiber, J., Maus, H., Ohmert, W., Celliers, I.B. (1907). Geologische Untersuchungen in der Umgebung Schreiner, A., Wimmenauer, W. (1996). Erla¨uterungen zum von Eptingen, Basel-Land. Ph.D. dissertation, Albert-Ludwigs- Blatt i. Br. und Umgebung. Geologische Karte von Universita¨t Freiburg im Breisgau, Freiburg i. Brsg., p. 46. Baden-Wu¨rttemberg 1:50000. Diebold, P., Bitterli-Brunner, P., Naef, H. (2006). Blatt 1069 Frick Gsell, F. (1968). Geologie des Falten- und Tafeljura zwischen Aare mit schweizerischem Anteil von Blatt 1049 Laufenburg. Geol. und Wittnau und Betrachtungen zur Tektonik des Ostjura Atlas Schweiz 1:25 000, Erla¨ut. 110. zwischen dem Unteren Hauenstein im W und der Aare im E. Disler, C. (1914). Stratigraphie und Tektonik des Rotliegenden und Mitteilungen aus dem Geologischen Institut der Eidgeno¨ssischen der Trias beiderseits des Rheines zwischen Rheinfelden und Technischen Hochschule und der Universita¨tZu¨rich, N.F. 91, Augst. Verhandlungen der Naturforschenden Gesellschaft in 1–138. Basel, 25, 1–96. Gu¨rler, B., Hauber, L., & Schwander, M. (1987). Die Geologie der Disler, C. (1931). Geologie des Bezirks Rheinfelden und der Umgebung von Basel mit Hinweisen u¨ber die Nutzungsmo¨- angrenzenden Gebiete. Vom Jura zum Schwarzwald, N.F., 6, glichkeit der Erdwa¨rme. Beitra¨ge zur Geologischen Karte der 1–69. Schweiz, 160, 1–33. Essigmann, J. H. (1979). Stratigraphische und sedimentpetrographis- Hagdorn, H. (1999). Triassic Muschelkalk of Central . In H. che Untersuchungen am Unteren Keuper im su¨dlichen Baden- Hess, W. I. Ausich, C. E. Brett, & M. J. Simms (Eds.), Fossil Wu¨rttemberg. Arbeiten aus dem Institut fu¨r Geologie und Crinoids (pp. 164–176). Cambridge: Cambridge University Pala¨ontologie an der Universita¨t Stuttgart, N.F., 74, 71–139. Press. Etzold, A. & Schweizer, V. (2005). Der Keuper in Baden-Wu¨rttem- Hagdorn, H., Horn, M., & Simon, T. (1993). Vorschla¨ge fu¨r eine berg. In Deutsche Stratigraphische Kommission (Ed.), Stratigra- lithostratigraphische Gliederung und Nomenklatur des Muschel- phie von Deutschland IV, Keuper, Courier Forschungsinstitut kalks in Deutschland. In H. Hagdorn & A. Seilacher (Eds.), Senckenberg, 253. Stuttgart: Schweizerbart’sche Verlagsbuch- Muschelkalk—Scho¨ntaler Symposium 1991 (pp. 39–46). Stutt- handlung, pp. 214–258. gart: Goldschneck-Verlag Werner K. Weidert. Fischer, H., & Luterbacher, H. (1963). Das Mesozoikum der Hagdorn, H., & Simon, T. (1993). O¨ kostratigraphische Leitba¨nke im Bohrungen Courtion 1 und Altishofen 1. Beitra¨ge zur Geologis- Oberen Muschelkalk. In H. Hagdorn & A. Seilacher (Eds.), chen Karte der Schweiz, 115, 1–40. Muschelkalk—Scho¨ntaler Symposium 1991 (pp. 193–208). Frank, M. (1928). Zur Stratigraphie und Bildungsgeschichte der Suttgart: Goldschneck-Verlag Werner K. Weidert. Lettenkohle zwischen Su¨dwu¨rttemberg und dem Kettenjura. Hagdorn, H., & Simon, T. (2005). Der Muschelkalk in der Mitteilungen aus dem Mineralogisch-Geologischen Institut der Stratigraphischen Tabelle von Deutschland 2002. Newsletters Technischen Hochschule in Stuttgart, 5, 456–497. on Stratigraphy, 41, 143–158. Franz, M., Henniger, M., & Barnasch, J. (2013). The strong Ha¨ring, M.O. (1997). Geothermiebohrung Schinznach Bad S3. diachronous Muschelkalk/Keuper facies shift in the Central Ge´othermie.ch: Mitteilungen der Schweizerischen Vereinigung European Basin: implications from the type-section of the Erfurt fu¨r Geothermie (SVG), 2/97, 1–3. Formation (Lower Keuper, Triassic) and basin-wide correlations. Ha¨ring, M. O. (2002). Sondierbohrung Otterbach, Basel. Der erste International Journal of Earth Sciences, 102, 761–780. Schritt zur Entwicklung eines geothermischen Heiz-Kraftwerks Franz, M., Kaiser, S. I., Fischer, J., Heunisch, C., Kustatscher, E., nach dem Hot-Dry-Rock Verfahren. Bulletin fu¨r angewandte Luppold, F. W., et al. (2015). Eustatic and climatic control on the Geologie, 7, 19–30. Upper Muschelkalk Sea (late Anisian/Ladinian) in the Central Hauber, L. (1991). Ergebnisse der Geothermiebohrungen Riehen 1 European Basin. Global and Planetary Change, 135, 1–27. und 2 sowie Reinach 1 im Su¨dosten des Rheingrabens. Franz, M., & Rohn, J. (2004). Erla¨uterungen zum Blatt 8117 Geologisches Jahrbuch. Reihe E, 48, 167–184. Blumberg. Geologische Karte von Baden-Wu¨rttemberg, 1, Heidbach, O. & Reinecker, J. (2013). Analyse des rezenten 25000. Spannungsfeldes der Nordschweiz. Nagra Arbeitsbericht, NAB Fro¨hlicher, H., & Kehrer, L. (1968). O¨ l- und Gasindikatoren in der 12-005. Trias des Belchentunnels. Bulletin der Vereinigung Schweiz. Herb, R. (1957). Zur Fauna des Trigonodusdolomits im no¨rdlichen Petroleum-Geologen und -Ingenieure, 35, 49–53. Kanton Aargau. Eclogae Geologicae Helvetiae, 50, 530–540. Fu¨chsel, G.C. (1761). Historia terrae et maris, ex historia Thuringiae Herold, T. (1992). Die Geologie der ‘‘Eptinger Bucht’’ unter per montium descriptionem. Actorum Academiae electoralis besonderer Beru¨cksichtigung der Sedimentologie des Haupt- Moguntinae, 2, 44–208. muschelkalks Diplomarbeit. Diploma thesis, Universita¨t Basel, Furrer, H. (1977). Lettenkohle-Bonebeds Detailprofil 1:50 an neuem Basel, p. 74. Anschnitt der Strasse von U¨ selmatt nach Asp, unpublished Hofmann, F. (1981). Blatt 1031 Neunkirch. Geol. Atlas Schweiz 1:25 profile section. 000, Erla¨ut. 74. Geothermik, Arbeitsgruppe. (1988). Geothermische Prospektion im Hofmann, F., Schlatter, R., Weh, M. (2000). Blatt 1011 Beggingen Raume Schinznach Bad—Baden. Beitra¨ge zur Geologie der (Su¨dha¨lfte) mit SW-Anteil von Blatt 1012 Singen. Geol. Atlas Schweiz, Geotechnische Serie, 76, 1–73. Schweiz 1:25 000, Erla¨ut. 97. Geyer, O.F. & Gwinner, M.P. (2011). Geologie von Baden-Wu¨rttem- Im-Thurn, E. (1840). Der Kanton Schaffhausen. Historisch-geogra- berg (627 pp.), M. Geyer, E. Nitsch, & T. Simon (Eds.). phisch-statistisches Gema¨lde der Schweiz, 12, 1–172. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung. Jordan, P. (2016). Reorganisation of the triassic stratigraphy in Gressly, A. (1838). Observations ge´ologiques sur le Jura Soleurois. Northern Switzerland: overview and the new Dinkelberg, Neue Denkschriften der allg. schweizerischen Gesellschaft fu¨r Kaiseraugst and Zeglingen formations. Swiss Journal of Geo- die gesamten Naturwissenschaften, 2, 1–112. sciences. doi:10.1007/s00015-016-0209-4 (this volume). 306 J. S. Pietsch et al.

Jordan, P., Graf, H.R., Eberhard, M., Jost, J., Ka¨lin, D., Bitterli- Mu¨hlberg, F. (1911). Der Boden des Aargaus. Mitteilungen der Dreher, P. (2011). Blatt 1089 Aarau. Geol. Atlas Schweiz 1:25 Aargauischen Naturforschenden Gesellschaft, 12, 149–197. 000, Erla¨ut. 135. Mu¨hlberg, F. (1915). Erla¨uterungen zur Geologischen Karte des Jordan, P., Pietsch, J. S., Bla¨si, H. R., Furrer, H., Ku¨ndig, N., Looser, Hauenstein-Gebietes (Waldenburg-Olten) 1: 25,000 (p. 31). N., Wetzel, A., Deplazes, G. (2016). The Middle to Schweiz. geologische Kommission. Ba¨nkerjoch and Klettgau Formations of northern Switzerland. Mu¨ller, W.H., Naef, H., Graf, H.R. (2002). Geologische Entwicklung Swiss Journal of Geosciences. doi:10.1007/s00015-016-0218-3 der Nordschweiz, Neotektonik und Langzeitszenarien Zu¨rcher (this volume). Weinland. Nagra Technischer Bericht, NTB 99-08. Ka¨mpfe, C. (1984). Tiefbohrungen in Baden-Wu¨rttemberg und Naef, H. (2008). Stratigrafie (pp. 06–26). Ma¨chtigkeit und Lithofazies umgebenden La¨ndern. Arbeiten aus dem Institut fu¨r Geologie der mesozoischen Formationen in der NCH: Eine Kompilation und Pala¨ontologie an der Universita¨t Stuttgart, N.F. 80, 1–318. von publizierten Bohrungen, U¨ bersichts- und Aufschlussprofilen. Kozur, H. (1974). Biostratigraphie der germanischen Mitteltrias, Teil Nagra Arbeitsbericht, NAB. I und II mit Anlagen. Freiberger Forschungshefte, C 280, I: Nagra (1984). Die Kernbohrung Beznau. Nagra Technischer Bericht, 1–56, II: 1–71. NTB 84–34. Kozur, H. W. (1999). The correlation of the Germanic Buntsandstein Nagra (1985). Sondierbohrung Bo¨ttstein—Untersuchungsbericht and Muschelkalk with the Tethyan scale. Zentralblatt fu¨r (Textband & Beilagenband). Nagra Technischer Bericht, NTB Geologie und Pala¨ontologie Teil I, 1998(7–8), 701–725. 85–01. Ladner, F., Schanz, U., & Ha¨ring, M. O. (2008). Deep-Heat-Mining- Nagra (1988). Sedimentstudie - Zwischenbericht 1988: Mo¨glichkeiten Projekt Basel - Erste Erkenntnisse bei der Entwicklung eines zur Endlagerung langlebiger radioaktiver Abfalle in den Sedi- Enhanced Geothermal System (EGS). Bulletin fu¨r angewandte menten der Schweiz (Textband & Beilagenband). Nagra Tech- Geologie, 13, 41–54. nischer Bericht, NTB, pp. 88–25. Ledermann, H. (1981). Geologie der Region Solothurn und Fu¨hrer Nagra (1989). Sondierbohrung Weiach - Untersuchungsbericht zum Geologischen Wanderwegs u¨ber die Weissensteinkette. (Textband & Beilagenband). Nagra Technischer Bericht, NTB, Mitteilungen der Naturforschenden Gesellschaft des Kantons pp. 88–08. Solothurn, 30, 1–87. Nagra (1990). Sondierbohrung Riniken - Untersuchungsbericht Lemcke, K., & Wagner, R. (1961). Zur Kenntnis des vortertia¨ren (Textband & Beilagenband). Nagra Technischer Bericht, NTB, Untergrunds im Bodenseegebiet. Bulletin der Vereinigung pp. 88–09. Schweiz Petroleum-Geologen und -Ingenieure, 27, 9–14. Nagra (1991). Sondierbohrung Leuggern—Untersuchungsbericht LGRB (2011). Symbolschlu¨ssel Geologie Baden-Wu¨rttemberg - (Textband & Beilagenband). Nagra Technischer Bericht, NTB, Verzeichnis Geologischer Einheiten, Freiburg i. Br., available pp. 88–10. at: http://www.lgrb-bw.de/download_pool/symbolschl_2011. Nagra (1992a). Sondierbohrung Schafisheim—Untersuchungsbericht pdf. (Textband & Beilagenband). Nagra Technischer Bericht, NTB Matter, A., Peters, T., Bla¨si, H., Meyer, J., Ischi, H., Meyer, C. 88–11. (1988a). Sondierbohrung Weiach—Geologie (Textband & Beila- Nagra (1992b). Sondierbohrung Siblingen: Untersuchungsbericht genband). Nagra Technischer Bericht, NTB 86–01. (Textband & Beilagenband). Nagra Technischer Bericht, NTB Matter, A., Peters, T., Bla¨si, H.R., Schenker, F., Weiss, H.P. (1988b). 90-34. Sondierbohrung Schafisheim—Geologie (Textband & Beilagen- Nagra (2001). Sondierbohrung Benken: Untersuchungsbericht (Text- band). Nagra Technischer Bericht, NTB 86-03. band & Beilagenband). Nagra Technischer Bericht, NTB 00-01. Matter, A., Peters, T., Isenschmid, C., Bla¨si, H.R., Ziegler, H.-J. NEFF (1980). Teilprojekt I: Geothermische Prospektion im Raume (1987). Sondierbohrung Riniken—Geologie (Textband & Beila- Koblenz—Wildegg—Dielsdorf. Schlussbericht Nationaler Ener- genband). Nagra Technischer Bericht, NTB 86-02. gie-Forschungs-Fonds (NEFF). Menning, M. (2000). Stratigraphische Nomenklatur fu¨r die German- Nitsch, E. (2015). Lithostratigraphie des Lettenkeupers. In H. ische Trias (von Albert 1834) und die Dyas (Marcou 1859, Hagdorn, R. Schoch, & G. Schweigert (Eds.), Der Lettenkeuper Geinitz 1861). Zeitschrift fu¨r Geologische Wissenschaften, 28, - ein Fenster in die Zeit vor den Dinosauriern (pp. 27–40). 281–290. Staatliches Museum fu¨r Naturkunde Stuttgart. Merian, P. (1821). Beitra¨ge zur Geognosie, Erster Band: Uebersicht Ockert, W. (1988). Lithostratigraphie und Fossilfu¨hrung des Tro- der Beschaffenheit der Gebirgsbildungen in den Umgebungen chitenkalks (Unterer Hauptmuschelkalk, mo1) im Raum Hohen- von Basel, mit besondrer Hinsicht auf das Juragebirge im lohe. In H. Hagdorn (Ed.), Neue Forschungen zur Erdgeschichte Allgemeinen (156 pp.). Basel: Schweighauser’sche von Crailsheim (pp. 43–69). Stuttgart: Goldschneck-Verlag. Buchhandlung. Ockert, W. & Rein, S. (2000). Biostratigraphische Gliederung des Merian, P. (1831). Beitra¨ge zur Geognosie, Zweiter Band: Geognos- Oberen Muschelkalks in Thu¨ringen. Beitra¨ge zur Geologie von tische Uebersicht des su¨dlichen Schwarzwaldes (270 pp.). Basel: Thu¨ringen, N.F. 7, 195–228. Schweighauser’sche Buchhandlung. Palermo, D., Aigner, T., Nardon, S., & Blendinger, W. (2010). Three- Merki, P. (1961). Der Obere Muschelkalk im o¨stlichen Schweizer dimensional facies modeling of carbonate sand bodies: outcrop Jura. Eclogae Geologicae Helvetiae, 54, 137–219. analog study in an epicontinental basin (Triassic, southwest Moesch, C. (1867). Geologische Beschreibung des Aargauer-Jura. Germany). AAPG Bulletin, 94(4), 475–512. Beitra¨ge zur Geologischen Karte der Schweiz, 4, 1–319. Paul, W. (1936). Der Hauptmuschelkalk am su¨do¨stlichen Sch- Morard, A., Burkhalter, R., Mo¨ri, A., Strasky, S. (2012). Lithos- warzwald. Mitteilungen der Badischen Geologischen Lan- tratigraphy of Switzerland: Options and challenges for a desanstalt, 11(4), 123–146. harmonisation. 10th Swiss Geoscience Meeting abstract volume, Paul, W. (1971). Die Trias. In K. F. J. Sauer & M. Schnetter (Eds.), p. 173. Die Wutach (pp. 37–115). Freiburg i. Br.: Badischer Lan- Mu¨hlberg, F. (1905). Erla¨uterungen zur geologischen Karte des desverein fu¨r Naturkunde und Naturschutz e. V. unteren Aare-, Reuss- und Limmat Tales in 1:25 000 (50 pp.). Peters, T., Matter, A., Bla¨si, H.R., Isenschmid, C., Kleboth, P., Bern. Meyer, C., Meyer, J. (1989). Sondierbohrung Leuggern: Geolo- Mu¨hlberg, F. (1908). Erla¨uterungen zur geologischen Karte der gie (Textband & Beilagenband). Nagra Technischer Bericht, Umgbung von Aarau 1:25,000 (94 pp.). Aarau. NTB 86-05. A new lithostratigraphic scheme for the Schinznach formation (upper part of the Muschelkalk… 307

Peyer, B. (1932). Saurierwirbel aus der Lettenkohle der Schambelen. Szulc, J. (2000). Middle Triassic evolution of the northern Peri- Eclogae Geologicae Helvetiae, 25, 277–282. Tethys as influenced by early opening of the Tethys. Annales Quenstedt, F.A. (1843). Das Flo¨zgebirge Wu¨rtembergs mit beson- Societatis Geologorum Poloniae, 70, 1–48. derer Ru¨cksicht auf den Jura (pp. 558). Tu¨bingen: Verlag der H. Urlichs, M. (1993). Zur Gliederung des Oberen Muschelkalks in Laupp’schen Buchhandlung. Baden-Wu¨rttemberg mit Ceratiten. In H. Hagdorn & A. Rein, S. (2007a). Die Biologie der Ceratiten der flexuosus-, sequens/ Seilacher (Eds.), Muschelkalk—Scho¨ntaler Symposium 1991 pulcher- und semipartitus/meissnerianus-Zone - Entstehung und (pp. 153–156). Suttgart: Goldschneck-Verlag Werner K. Aussterben der Biospezies Ceratites nodosus. Vero¨ffentlichungen Weidert. des Naturkundemuseums Erfurt, 26, 39–67. Urlichs, M. (2006). Dimorphismus bei Ceratites aus dem Germanis- Rein, S. (2007b). Die Evolution der Biospezies ,,Ceratites nodosus‘‘- chen Oberen Muschelkalk (, Mitteltrias) mit Revi- Vom typologischen Art-Konzept zum Biospezies-Konzept. sion einiger Arten. Stuttgarter Beitra¨ge zur Naturkunde, Serie B Beitra¨ge zur Geologie von Thu¨ringen, N.F. 14, 85–112. (Geologie und Pala¨ontologie), 363, 1–85. Remane, J., Adatte, T., Berger, J.-P., Burkhalter, R., Dall’Agnolo, S., Urlichs, M., & Mundlos, R. (1988). Zur Stratigraphie des Oberen Decrouez, D., et al. (2005). Guidelines for stratigraphic nomen- Trochitenkalks (Oberer Muschelkalk, Oberanis) bei Crailsheim. clature. Eclogae Geologicae Helvetiae, 98, 385–405. In H. Hagdorn (Ed.), Neue Forschungen zur Erdgeschichte von Rieser, A. (1964). Stratigraphie und Tektonik des su¨dwestlichen Crailsheim (pp. 70–84). Stuttgart: Gesellschaft fu¨r Naturkunde Dinkelbergs (o¨stlich Basel) auf Grund einer Kartierung. Diploma in Wu¨rttemberg, Goldschneck-Verlag. thesis, Universita¨t Heidelberg, Heidelberg, p. 128. Urlichs, M., & Mundlos, R. (1990). Zur Ceratiten-Stratigraphie im Ro¨hl, U. (1990). Parallelisierung des norddeutschen oberen Muschel- Oberen Muschelkalk (Mitteltrias) Nordwu¨rttembergs. Jahre- kalks mit dem su¨ddeutschen Hauptmuschelkalk anhand von shefte der Gesellschaft fu¨r Naturkunde in Wu¨rttemberg, 145, Sedimentationszyklen. Geologische Rundschau, 79(1), 13–26. 59–74. Ryf, W. (1984). Thermalwasserbohrung 1983 Engerfeld, Rheinfelden. Vollmayr, T. (1971). Zur Geologie des Feldes -. Rheinfelder Neujahrsbla¨tter, 1984, 43–52. Bulletin der Vereinigung Schweiz Petroleum-Geologen und - Sandberger, F. (1864). Beobachtungen in der Wu¨rzburger Trias—Ein Ingenieure, 37, 1–20. Vortrag (in der mineralogischen Section der deutschen Natur- Vollmayr, T., & Wendt, A. (1987). Die Erdgasbohrung Entlebuch 1, forscher-Versammlung zu Giessen 1864). Zeitschr: Wu¨rzburger ein Tiefenaufschluss am Alpennordrand. Bulletin der Vereini- naturw. 5. gung Schweiz Petroleum-Geologen und -Ingenieure, 53, 67–79. Schalch, F. (1878). Beitra¨ge zur Kenntniss der Trias am su¨do¨stlichen von Alberti, F.A. (1826). Die Gebirge des Ko¨nigreichs Wu¨rtemberg, Schwarzwalde, Ph.D. dissertation, Universita¨tWu¨rzburg, in besonderer Beziehung auf Halurgie (326 pp.). Stuttgart: Schaffhausen, p. 109. Verlag der J. G. COTTA’schen Buchhandlung. Schalch, F. (1893). Die geologischen Verha¨ltnisse der Bahnstrecke von Alberti, F.A. (1834). Beitrag zu einer Monographie des Bunten Weizen-Immendingen mit besonderer BEru¨cksichtigung der Sandsteins, Muschelkalks und , und die Verbindung zwischen Fu¨tzen und Zollhaus entstandenen Braunjura-Auf- dieser Gebilde zu einer Formation (366 pp.). Stuttgart und schlu¨sse. Mitteilungen der Grossherzoglichen Badischen Geol- Tu¨bingen: Verlag der J. G. COTTA’schen Buchhandlung. ogischen Landesanstalt, 2, 139–230. von Alberti, F.A. (1864). Ueberblick u¨ber die Trias, mit Beru¨cksich- Schmassmann, H. (1977). Die Mineral- und Thermalwa¨sser von Bad tigung ihres Vorkommens in den Alpen (353 pp.). Stuttgart: Lostorf. Mitteilungen der Naturforschenden Gesellschaft des Verlag der J. G. Cotta’schen Buchhandlung. Kantons Solothurn, 27, 149–290. Vonderschmitt, L. (1942). Die geologischen Ergebnisse der Bohrun- Schmidt, C., Braun, L., Paltzer, G., Mu¨hlberg, M., Christ, P., & Jacob, gen von Hirtzbach bei Altkirch (Ober-Elsass). Eclogae Geolog- F. (1924). Die Bohrungen von Buix bei Pruntrut und Allschwil icae Helvetiae, 35, 67–99. bei Basel. Beitra¨ge zur Geologie der Schweiz, Geotechnische Wenger, R. (1957). Die Germanischen Ceratiten. Palaeontographica Serie, 10, 1–74. Abt. A, 108, 57–129. Schreiner, A. (1992). Erla¨uterungen zu Blatt Hegau und westlicher Zaugg, A., Geyer, M., Rahn, M., Wessels, M., Schlichtherle, H., Bodensee. Geologische Karte von Baden-Wu¨rttemberg, 1, Hasenfratz, A., Burkhalter, R. (2008). Blatt 1033 Steckborn 50000. (Su¨dteil) mit SW-Anteil von Blatt 1034 Kreuzlingen. Geol. Atlas Strasky, S., Morard, A., Mo¨ri, A. (2016). Harmonising the lithos- Schweiz 1:25 000, Erla¨ut. 112. tratigraphic nomenclature: towards a uniform geological dataset of Switzerland. Swiss Journal of Geosciences (this volume).