GUIDEBOOK the Mid-Triassic Muschelkalk in Southern Poland: Shallow-Marine Carbonate Sedimentation in a Tectonically Active Basin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biochronology of the Triassic Tetrapod Footprints
Geological Society, London, Special Publications Tetrapod footprints - their use in biostratigraphy and biochronology of the Triassic Hendrik Klein and Spencer G. Lucas Geological Society, London, Special Publications 2010; v. 334; p. 419-446 doi:10.1144/SP334.14 Email alerting click here to receive free email alerts when new articles cite this service article Permission click here to seek permission to re-use all or part of this article request Subscribe click here to subscribe to Geological Society, London, Special Publications or the Lyell Collection Notes Downloaded by on 15 June 2010 © 2010 Geological Society of London Tetrapod footprints – their use in biostratigraphy and biochronology of the Triassic HENDRIK KLEIN1,* & SPENCER G. LUCAS2 1Ru¨bezahlstraße 1, D-92318 Neumarkt, Germany 2New Mexico Museum of Natural History, 1801 Mountain Road NW, Albuquerque, NM 87104-1375 USA *Corresponding author (e-mail: [email protected]) Abstract: Triassic tetrapod footprints have a Pangaea-wide distribution; they are known from North America, South America, Europe, North Africa, China, Australia, Antarctica and South Africa. They often occur in sequences that lack well-preserved body fossils. Therefore, the question arises, how well can tetrapod footprints be used in age determination and correlation of stratigraphic units? The single largest problem with Triassic footprint biostratigraphy and biochronology is the non- uniform ichnotaxonomy and evaluation of footprints that show extreme variation in shape due to extramorphological (substrate-related) phenomena. Here, we exclude most of the countless ichnos- pecies of Triassic footprints, and instead we consider ichnogenera and form groups that show distinctive, anatomically-controlled features. Several characteristic footprint assemblages and ichnotaxa have a restricted stratigraphic range and obviously occur in distinct time intervals. -
A New Species of the Sauropsid Reptile Nothosaurus from the Lower Muschelkalk of the Western Germanic Basin, Winterswijk, the Netherlands
A new species of the sauropsid reptile Nothosaurus from the Lower Muschelkalk of the western Germanic Basin, Winterswijk, The Netherlands NICOLE KLEIN and PAUL C.H. ALBERS Klein, N. and Albers, P.C.H. 2009. A new species of the sauropsid reptile Nothosaurus from the Lower Muschelkalk of the western Germanic Basin, Winterswijk, The Netherlands. Acta Palaeontologica Polonica 54 (4): 589–598. doi:10.4202/ app.2008.0083 A nothosaur skull recently discovered from the Lower Muschelkalk (early Anisian) locality of Winterswijk, The Nether− lands, represents at only 46 mm in length the smallest nothosaur skull known today. It resembles largely the skull mor− phology of Nothosaurus marchicus. Differences concern beside the size, the straight rectangular and relative broad parietals, the short posterior extent of the maxilla, the skull proportions, and the overall low number of maxillary teeth. In spite of its small size, the skull can not unequivocally be interpreted as juvenile. It shows fused premaxillae, nasals, frontals, and parietals, a nearly co−ossified jugal, and fully developed braincase elements, such as a basisphenoid and mas− sive epipterygoids. Adding the specimen to an existing phylogenetic analysis shows that it should be assigned to a new species, Nothosaurus winkelhorsti sp. nov., at least until its juvenile status can be unequivocally verified. Nothosaurus winkelhorsti sp. nov. represents, together with Nothosaurus juvenilis, the most basal nothosaur, so far. Key words: Sauropterygia, Nothosaurus, ontogeny, Anisian, The Netherlands. Nicole Klein [nklein@uni−bonn.de], Steinmann−Institut für Geologie, Mineralogie und Paläontologie, Universtät Bonn, Nußallee 8, 53115 Bonn, Germany; Paul C.H. Albers [[email protected]], Naturalis, Nationaal Natuurhistorisch Museum, Darwinweg 2, 2333 CR Leiden, The Netherlands. -
32-38 Oldham Road, Ancoats, Manchester, Greater Manchester
32-38 Oldham Road, Ancoats, Manchester, Greater Manchester Archaeological Building Investigation Final Report Oxford Archaeology North November 2007 CgMs Consulting Issue No: 2007-08/741 OA North Job No: L9887 NGR: SJ 8475 9876 32-38 Oldham Road, Ancoats, Manchester: Archaeological Building Investigation Final Report 1 CONTENTS SUMMARY .....................................................................................................................2 ACKNOWLEDGEMENTS.................................................................................................3 1. INTRODUCTION.........................................................................................................4 1.1 Circumstances of the Project.............................................................................4 1.2 Site Location and Geology................................................................................4 2. METHODOLOGY........................................................................................................5 2.1 Methodology .....................................................................................................5 2.2 Archive..............................................................................................................5 3. HISTORICAL BACKGROUND .....................................................................................6 3.1 Background .......................................................................................................6 3.2 Development of Ancoats...................................................................................7 -
Silicification and Organic Matter Preservation In
Central European Geology, Vol. 60/1, 35–52 (2017) DOI: 10.1556/24.60.2017.002 First published online February 28, 2017 Silicification and organic matter preservation in the Anisian Muschelkalk: Implications for the basin dynamics of the central European Muschelkalk Sea Annette E. Götz1*, Michael Montenari1, Gelu Costin2 1School of Physical and Geographical Sciences, Keele University, Staffordshire, United Kingdom 2Department of Earth Science, Rice University, Houston, TX, USA Received: July 19, 2016; accepted: October 3, 2016 Anisian Muschelkalk carbonates of the southern Germanic Basin containing silicified ooidal grainstone are interpreted as evidence of changing pH conditions triggered by increased bioproductivity (marine phytoplankton) and terrestrial input of plant debris during maximum flooding. Three distinct stages of calcite ooid replacement by silica were detected. Stage 1 reflects authigenic quartz development during the growth of the ooids, suggesting a change in the pH–temperature regime of the depositional environment. Stages 2 and 3 are found in silica-rich domains. The composition of silica-rich ooids shows significant Al2O3 and SrO but no FeO and MnO, indicating that late diagenetic alteration was minor. Silicified interparticle pore space is characterized by excellent preservation of marine prasinophytes; palynological slides show high abundance of terrestrial phytoclasts. The implications of our findings for basin dynamics reach from paleogeography to cyclostratigraphy and sequence stratigraphy, since changes in the seawater chemistry and sedimentary organic matter distribution reflect both the marine conditions as well as the hinterland. Basin interior changes might overprint the influence of the Tethys Ocean through the eastern and western gate areas. Stratigraphically, such changes might enhance marine flooding signals. -
First Report of Swimming Trace Fossils of Fish from the Upper Permian and Lower Triassic of the Dolomites (Italy)
Annales Societatis Geologorum Poloniae (2018), vol. 88: ...–... doi: https://doi.org/10.14241/asgp.2018.013 FIRST REPORT OF SWIMMING TRACE FOSSILS OF FISH FROM THE UPPER PERMIAN AND LOWER TRIASSIC OF THE DOLOMITES (ITALY) Ausonio RONCHI1, Giuseppe SANTI1, Lorenzo MARCHETTI 2, Massimo BERNARDI 3 & Piero GIANOLLA4 1 Dipartimento di Scienze della Terra e dell’Ambiente, University of Pavia, Italy; e-mails: [email protected]; [email protected] 2 Urweltmuseum GEOSKOP/Burg Lichtenberg (Pfalz), Thallichtenberg, Germany; e-mail: [email protected] 3 MUSE – Museo delle Scienze, Trento, Italy; e-mail: [email protected] 4 Dipartimento di Fisica e Scienze della Terra, University of Ferrara, Italy; e-mail: [email protected] Ronchi, A., Santi, G., Marchetti, L, Bernardi, M. & Gianolla, R., 2018. First report of swimming trace fossils of fish from the Upper Permian and Lower Triassic of the Dolomites (Italy). Annales Societatis Geologorum Poloniae, 88: xxx-xxx Abstract: In the Upper Permian continental to marginal-marine succession of the Southern Alps (Dolomites, north Italy), the ichnological record consists of diverse vertebrate footprints and non-diverse invertebrate trace fossils, mainly occurring in the “Bletterbach ichnoassociation” of the Val Gardena Sandstone Formation. After the Perm- ian-Triassic Boundary event, vertebrate ichnoassociations are scarce until the Middle Triassic (Anisian), whereas the uppermost Permian–Lower Triassic Werfen Formation preserves a rich invertebrate trace-fossil record. To date, fish body and trace fossils (Undichna) are very rare in the pre- and post-extinction deposits of the Dolomites; only Undichna gosiutensis Gibert, 2001 was identified in the “Voltago Conglomerate” (Middle Anisian), whereas some unidentified fossil fish casts were found in the Permian Val Gardena Sandstone and some fish remains in the overlying Werfen Formation. -
An Introduction to the Triassic: Current Insights Into the Regional Setting and Energy Resource Potential of NW Europe
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/322739556 An introduction to the Triassic: Current insights into the regional setting and energy resource potential of NW Europe Article in Geological Society London Special Publications · January 2018 DOI: 10.1144/SP469.1 CITATIONS READS 3 92 3 authors, including: Tom Mckie Ben Kilhams Shell U.K. Limited Shell Global 37 PUBLICATIONS 431 CITATIONS 11 PUBLICATIONS 61 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Reconstructing the Norwegian volcanic margin View project Paleocene of the Central North Sea: regional mapping from dense hydrocarbon industry datasets. View project All content following this page was uploaded by Ben Kilhams on 22 November 2019. The user has requested enhancement of the downloaded file. Downloaded from http://sp.lyellcollection.org/ by guest on January 26, 2018 An introduction to the Triassic: current insights into the regional setting and energy resource potential of NW Europe MARK GELUK1*, TOM MCKIE2 & BEN KILHAMS3 1Gerbrandylaan 18, 2314 EZ Leiden, The Netherlands 2Shell UK Exploration & Production, 1 Altens Farm Road, Nigg, Aberdeen AB12 3FY, UK 3Nederlandse Aardolie Maatschappij (NAM), PO Box 28000, 9400 HH Assen, The Netherlands *Correspondence: [email protected] Abstract: A review of recent Triassic research across the Southern Permian Basin area demon- strates the role that high-resolution stratigraphic correlation has in identifying the main controls on sedimentary facies and, subsequently, the distribution of hydrocarbon reservoirs. The depositio- nal and structural evolution of these sedimentary successions was the product of polyphase rifting controlled by antecedent structuration and halokinesis, fluctuating climate, and repeated marine flooding, leading to a wide range of reservoir types in a variety of structural configurations. -
Beiträge Zur Kenntniss Der Obertriadischen Cephalopoden-Faunen
562 Retiews—Himalayan Triassic Fossils. Maryland. It is strange that the British Survey has always laboured under difficulties, and that its staff and equipment have been inadequate to deal with many matters of economic interest which other countries find it wise to thoroughly investigate. III.— (1) BEITRAGE ZUR KKNNTNISS DER OBERTRIADISCHEN CEPHALO- PODEN-FAUNEN DES HIMALAYA. By Dr. EDMUND MOJSISOVICS EDLBR VON MOJSVAE. Denkschr. d. k. Akad. d. Wissenschaften, Wien, math.-naturw. Classe, Bd. lxiii, pp. 575-701, pis. i-xxii, 1896. (2) HIMALAYAN FOSSILS. THE CEPHALOPODA OF THE MHSOHELKALK. By CARL DIENER. Mem. Geol. Surv. India. Palseontologia Indica, ser. xv, vol. ii, part 2, 118 pp., xxxi pis., 1895. HEN the older collections from the Himalayan Trias were W described, species were regarded in a much wider sense than obtains nowadays ; hence, before the correlation of the Indian Trias with the Triassic rocks of other countries could be attempted, it was necessary for these collections to be re-examined and fully described. Accordingly, at the suggestion of Mr. Griesbach (now Director), the Geological Survey of India consented to send all their collections of Himalayan fossils to Professor Suess in Vienna, in order that they might be worked out by Austrian specialists. (1) The Cephalopoda were entrusted to Dr. E. Mojsisovics, who has done so much work on the Cephalopoda of the Austrian Trias; and he at once saw that by far the larger number of the specimens came from the lower portion of the Trias, and that the upper beds were represented by only a few specimens. Kecognizing the scientific interest which a more detailed knowledge of the Himalayan Trias would have, in some " Preliminary Eemarks on the Cephalopoda of the Himalayan Trias," which Dr. -
Stratigraphy and Palaeogeography of Lower Triassic in Poland on the Bassis of Megaspores
acta ,,_01011108 polonloa Vol. 30, No ... Wa.ruawa 1980 RYSZARD FUGLEWICZ Stratigraphy and palaeogeography of Lower Triassic in Poland on the bassis of megaspores ABSTRACT: The study deals with stratigraphy and correlation of Buntsandstein in the Polish Lowland and in the Tatra Mts on the basis of megaspores. Three key (for Buntsandstein) assemblage megaspore zones were diatingulshed: Otynisporites eotriassicus, Ttileites poloni1!us - PusuIosporites populosus and Trileites validus. Two new species (EchitTtZetes vaIidispinus sp. n. and Nathor8tt spontes cornutus sp. n.) were described. An influence of tectonic movements of Pfiilzic and Harc:legsen phases on sedimentation of Buntsandstein was discussed. INTRODUCTION In the paper a lithostratigraphy, a biostratigraphy and a palaeogeo graphy of Lower Triassic in the Polish Lowland and in the Tatra Mts are presented. The material for the analyses came from cores of 18 boreholes of Geological Institute, Warsaw and of petroleum · exploration firms at WoIomin and Pila(Fig. 1); among them 11 boreholes were cored in full. Besides, the random samples of nine other boreholes of petroleum exploration firms were used. In the Tatra Mts the samples were taken from exposures of High-tatric Triassic by Z6ua: Tumia and in the valley of Stare Szalasiska as well as from Sub-tatric Triassic in the Jaworzynka valley. During the analysis of these profiles and the confrontation of lite rature data the author concluded that within a sequence of Bunt sandstein there were almost in the whole area of the Polish Lowlands two oolitic horizons that had originated in result of marine ingressions. Therefore, a previously prepared lithostratigraphical scheme of Poland (Fuglewicz 1973) could be used. -
Fossil Middle Triassic “Sea Cows” – Placodont Reptiles As Macroalgae Feeders Along the North-Western Tethys Coastline with Pangaea and in the Germanic Basin
Vol.3, No.1, 9-27 (2011) Natural Science http://dx.doi.org/10.4236/ns.2011.31002 Fossil middle triassic “sea cows” – placodont reptiles as macroalgae feeders along the north-western Tethys coastline with Pangaea and in the Germanic basin Cajus G. Diedrich Paleologic, Nansenstr, Germany; [email protected] Received 19 October 2010; revised 22 November 2010; accepted 27 November 2010. ABSTRACT this plant-feeding adaptation and may even ex- plain the origin or at least close relationship of The descriptions of fossil Triassic marine pla- the earliest Upper Triassic turtles as toothless codonts as durophagous reptiles are revised algae and jellyfish feeders, in terms of the through comparisons with the sirenia and basal long-term convergent development with the si- proboscidean mammal and palaeoenvironment rens. analyses. The jaws of placodonts are conver- gent with those of Halitherium/Dugong or Mo- Keywords: Placodont Reptiles; Triassic; eritherium in their general function. Whereas Convergent Evolutionary Ecological Adaptation; Halitherium possessed a horny oral pad and Sirenia; Macroalgae Feeders; NW Tethys Shelf; counterpart and a special rasp-like tongue to Palaeoecology grind seagrass, as does the modern Dugong, placodonts had large teeth that covered their 1. INTRODUCTION jaws to form a similar grinding pad. The sirenia also lost their anterior teeth during many Mil- The extinct reptile group of the placodonts found in lions of years and built a horny pad instead and Germany and other European sites (Figure 1), a group specialized tongue to fed mainly on seagrass, of diverse marine diving reptiles, had large teeth cover- whereas placodonts had only macroalgae availa- ing the lower and complete upper jaws (Figsure 2-5) ble. -
Burrows of Enteropneusta in Muschelkalk (Middle Triassic) of the Holycross Mountains, Poland
ACT A PAL A EON T 0 LOG I CAP 0 LON ICA Vol. XIV 1969 No.2 JOZEF KAZMIERCZAK & ANDRZEJ PSZCZOLKOWSKI BURROWS OF ENTEROPNEUSTA IN MUSCHELKALK (MIDDLE TRIASSIC) OF THE HOLYCROSS MOUNTAINS, POLAND Abstract. - Traces of burrowing organisms from Lower Muschelkalk carbonate sediments of the Holy Cross Mountains (Gory SWi~tokrzyskie) interpreted as burrow systems of enteropneusts, have been described. Morphological and palaeoecological analysis of Triassic forms based on the comparison with the burrows of Recent enteropneusts is given. The presence of many horizons with burrows of entero pneusts in the profiles of the Lower Muschelkalk deposits (Lukowa beds) and the lithological characters of these deposits seem to indicate that the sedimentation took place in a zone of the basin affected by the activity of tidal current~. INTRODUCTION During field studies on biofacies of the Mesozoic border of the Holy Cross Mountains (Gory Swi~tokrzyskie) many traces of burrowing orga nisms were found by the present writers in the Lower Muschelkalk sedi ments. After a close examination, it turned out that these structures might be almost unequivocally identified with burrow systems of Recent entero pneusts. The field observations covered the environs of Wincentow and Polichno in the western part of the Holy Cross region and outcrops of the Lower Muschelkalk in the southwestern limb of Zbrza anticline (Text-fig. 1). According to a lithostratigraphical division of the Lower Muschel kalk in the Holy Cross Mountains (Senkowiczowa, 1957, 1959, 1961), the burrows observed occur primarily in Lukowa beds (Text-fig. 1). The most important aim of this work was to describe and interpret the burrows of enteropneusts, but the present writers have also given their observations concerning lithological characters of Lukowa beds. -
Steam-Water Relative Permeability
Hydrochemical properties of deep carbonate aquifers, SW-German Molasse Basin Ingrid Stober Karlsruhe Institute of Technology KIT, Institute of Applied Geosciences, Adenauerring 20b, D-76131 Karlsruhe, Germany [email protected] Keywords: Karstified limestone aquifer, deep seated fluids, hydrochemistry, geothermal energy ABSTRACT The Upper Jurassic (Malm) limestone and the middle Triassic Muschelkalk limestone are the major thermal aquifers in the southwest German alpine foreland. The aquifers are of interest for production of geothermal energy and for balneological purposes. The hydrochemical properties of the two aquifers differ in several aspects. The total amounts of dissolved solids (TDS) are much higher within the Upper Muschelkalk aquifer than within the Upper Jurassic. Water composition data reflect the origin and hydrochemical evolution of deep water. Rocks and their minerals control the chemical signature of the water. With increasing depth, the total of dissolved solids increases. In both aquifers, the water evolve to a NaCl-dominated fluid regardless of the aquifer rock. The salinity of the aquifers has different sources. In the case of the Upper Muschelkalk it is linked to deep circulation-systems, while the hydrochemical properties in the Upper Jurassic developed due to changing overburden and hydraulic potential. 1. INTRODUCTION The deep Upper Jurassic carbonates are the most important reservoir rocks for hydrothermal energy use in Southern Germany. Especially in the Munich area of Bavaria (Germany), several geothermal power plants and district heating systems were installed since 2007. In Baden-Württemberg (SW-Germany), the Upper Jurassic thermal aquifer is of shallower depth (Fig.1), therefore colder and the thermal water is rather used for balneological purposes including heating of nearby buildings. -
This Article Appeared in a Journal Published by Elsevier. the Attached
(This is a sample cover image for this issue. The actual cover is not yet available at this time.) This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Chemical Geology 322–323 (2012) 121–144 Contents lists available at SciVerse ScienceDirect Chemical Geology journal homepage: www.elsevier.com/locate/chemgeo The end‐Permian mass extinction: A rapid volcanic CO2 and CH4‐climatic catastrophe Uwe Brand a,⁎, Renato Posenato b, Rosemarie Came c, Hagit Affek d, Lucia Angiolini e, Karem Azmy f, Enzo Farabegoli g a Department of Earth Sciences, Brock University, St. Catharines, Ontario, Canada, L2S 3A1 b Dipartimento di Scienze della Terra, Università di Ferrara, Polo Scientifico-tecnologico, Via Saragat 1, 44100 Ferrara Italy c Department of Earth Sciences, The University of New Hampshire, Durham, NH 03824 USA d Department of Geology and Geophysics, Yale University, New Haven, CT 06520–8109 USA e Dipartimento di Scienze della Terra, Via Mangiagalli 34, Università di Milano, 20133 Milan Italy f Department of Earth Sciences, Memorial University, St.