AUSTRIAN JOURNAL of EARTH SCIENCES Volume 98 2005

Total Page:16

File Type:pdf, Size:1020Kb

AUSTRIAN JOURNAL of EARTH SCIENCES Volume 98 2005 AUSTRIAN JOURNAL of EARTH SCIENCES [MITTEILUNGEN der ÖSTERREICHISCHEN GEOLOGISCHEN GESELLSCHAFT] an INTERNATIONAL JOURNAL of the AUSTRIAN GEOLOGICAL SOCIETY volume 98 2005 Gerd RANTITSCH & Barbara RUSSEGGER: Organic maturation within the Central Northern Calcareous Alps (Eastern Alps)________________________________ www.univie.ac.at/ajes EDITING: Grasemann Bernhard, Wagreich Michael PUBLISCHER: Österreichische Geologische Gesellschaft Rasumofskygasse 23, A-1031 Wien TYPESETTER: Irnberger Norbert, www.irnberger.net Copy-Shop Urban, Bahnstraße 26a, 2130 Mistelbach PRINTER: Holzhausen Druck & Medien GmbH Holzhausenplatz 1, 1140 Wien ISSN 0251-7493 Austrian Journal of Earth Sciences Volume 98 Vienna 2005 Organic maturation within the Central Northern Calca- reous Alps (Eastern Alps) Gerd RANTITSCH1) & Barbara RUSSEGGER2) KEYWORDS very low-grade metamorphism Northern Calcareous Alps 1) Department of Applied Geosciences and Geophysics, Montanuniversität Leoben, vitrinite reflectance Austria, A-8700 Leoben, Austria, Email: [email protected] thermal modeling Jurassic orogeny 2) Library of the University of Graz, A-8010 Graz, Austria Eastern Alps Abstract Organic maturation within the central Northern Calcareous Alps (Eastern Alps) has been investigated using vitrinite reflectance data from Upper Permian to Upper Cretaceous strata of the Stauffen-Höllengebirge Nappe, Dachstein Nappe, Tennengebirge Block and Lammer Unit. Within the Lammer Unit a metamorphic break is observed between the Strubberg Formation and the tectonically overlying Schwarzenberg Complex and Losegg-Hofpürgl slice. Vitrinite reflectance within the Dachstein Nappe and the Stauffen-Höllengebirge Nappe resembles the values within the Schwarzenberg Complex. The thermal overprint of the Tennengebirge Block and the Strubberg Formation is explained by metamorphism due to Late Jurassic imbrication of fault-bounded blocks. A numerical heat flow model explains the thermal overprint of the Dachstein Nappe by sedimentary burial during Mesozoic to Cenozoic times._________________________ Im Zentralteil der Nördlichen Kalkalpen wurde der Grad der organischen Metamorphose durch die Messung der Vitrinitreflexion in oberpermischen bis oberkretazischen Sedimenten der Stauffen-Höllengebirge Decke, der Dachstein Decke, des Tennengebirge Blocks und der Lammer Einheit erfasst. Der tektonische Kontakt zwischen der Lammer Einheit und den tektonisch aufliegenden Komplexen des Schwarzenbergs und der Losegg-Hofpürgl Schuppe ist durch einen Metamorphosesprung gekennzeichnet. Die Vitrinitreflexion innerhalb der Dachstein- und Stauffen-Höllengebirge Decke entspricht den Werten innerhalb des Schwarzenberg Komplexes. Die thermische Überprägung des Tennengebirge Blocks und der Strubberg Formation wird durch die metamorphe Überprägung während der spätjuras- sischen Imbrikation von störungsbegrenzten Blöcken erklärt. Ein numerisches Wärmeflussmodell erklärt die thermische Überprägung der Dachstein Decke durch die mesozoische bis känozoische sedimentäre Auflast der Schichtfolge.___________________________ 1. Introduction The Northern Calcareous Alps (NCA) are an elongated fold- closer insight to thermal processes in higher crustal levels. and-thrust-belt (Linzer et al. 1995) within the Eastern Alps (Fig. However, the central segment of the NCA, the key area of the still 1). The classical tectonic subdivision describes a lower Bavaric, ongoing debate about the internal structure of the NCA an intermediate Tirolic and an upper Juvavic nappe group (Tollmann, 1976 vs. Neubauer, 1994 and Schweigl and (Tollmann, 1976; Mandl, 2000). Whereas the Bavaric and the Neubauer, 1997 vs. Frisch and Gawlick, 2003), is only sparsely Tirolic units involve sediments of a Triassic to Jurassic carbonate covered by organic maturity data. In this contribution, we present platform facing the western Tethyan Ocean, the Juvavic units therefore vitrinite reflectance data to complete the pattern of derived from the platform rim and outer shelf area (Hallstatt organic metamorphism and to give an insight in the thermal Zone). Based on stratigraphic, structural, metamorphic and structure of this section. geochronological data from the central NCA, Frisch and Gawlick (2003) proposed an alternative nappe concept in which the Ju- 2. Geological setting vavic Dachstein Nappe is a subunit of the Tirolic nappe group The Late Triassic facial distribution of the NCA describes a and deeper shelf sediments of the former Hallstatt Zone are carbonate platform (Dachstein platform) faced in the south by the parts of a flysch succession (Hallstatt mélange).____________ outer shelf and shelf edge realm of the Hallstatt Zone (Haas et al., Because the thermal structure of fold-and–thrust-belts is us- 1995, Gawlick et al., 1999; Mandl, 2000). This facies belt was ually attributed to thrust-related processes like burial by thrust destroyed during the Late Jurassic closure of the adjacent sheets or shear heating along thrust zones (e.g. Warr et al., Meliata Ocean (Neubauer, 1994; Neubauer et al., 2000; Mandl, 1996), detailed metamorphic studies can contribute significantly 2000; Frisch and Gawlick, 2003). Late Jurassic to Eocene to controversies about opposing nappe concepts. It was de- thrusting (Mandl, 2000; Frisch and Gawlick, 2003) and Early to monstrated in numerous studies that the use of organic meta- Middle Miocene block fragmentation (Linzer et al., 1995; Frisch morphic parameters resulted in the construction of the most et al., 1998; Frisch and Gawlick, 2003) determined the present detailed and meaningful metamorphic maps. Moreover, the tectonic structure of the NCA. sensitive and irreversible response of organic matter to subtle In the traditional model (Tollmann, 1976; Mandl, 2000), Late temperature variations and the well-known kinetics of organic Jurassic to Cretaceous north-directed thrusting displaced the maturation allow the calibration of thermal models which give a deeper shelf and platform sediments of the Hallstatt Zone as a 68 Gerd RANTITSCH & Barbara RUSSEGGER Juvavic Nappe Complex (involving the Dachstein Nappe, Fig. 2) bituminous Carnian (Lunz) coals, implying maximum burial upon the Tirolic Nappe Complex (involving the Stauffen-Höllen- temperatures of c. 170° C (Sachsenhofer, 1987). gebirge Nappe, Fig. 2). Jurassic basins of the Tirolic Nappe According to Frisch and Gawlick (2003) the Late Jurassic Complex containing gravity transported slices (olistoliths) of the imbrication of the accretionary wedge metamorphosed the Hallstatt Zone were overthrusted by the Juvavic Nappe Complex. olistoliths of the Hallstatt Zone. Conodont Alteration Indices The contrary model by Frisch and Gawlick (2003) describes a (ranging from CAI 1.0 to CAI 7.0) within carbonate olistoliths of Callovian to Oxfordian accretionary wedge which was com- the Hallstatt Zone (Gawlick and Königshof, 1993; Gawlick et al., pletely destroyed during the Late Jurassic. The debris of this 1994; Gawlick and Höpfer, 1996) support this model. According wedge was transported towards the north into a radiolaritic flysch to data from the entire NCA, Spötl and Hasenhüttl (1998) basin (Lammer Basin) which subsided on top of the Dachstein concluded that the imbrication is responsible for the variation of carbonate platform. Progressive north-directed thrusting vitrinite reflectance and illite crystallinity in the Upper Permian separated the Dachstein carbonate platform into a lower- and an Haselgebirge. From calcite-dolomite thermometry Gawlick and upper-Tirolic nappe. The Stauffen-Höllengebirge Nappe is Höpfer (1996) supposed maximum burial temperatures of 350° C interpreted as a segment of the lower-Tirolic Nappe whereas the to 490° C at minimum pressures of 6-8 kbar during this event. A Dachstein Nappe is interpreted as a segment of the upper-Tirolic large segment of the wedge (Tennengebirge block of the Ultra- Nappe. During Oxfordian to Tithonian times radiolaritic basins Tirolic nappe sensu Frisch and Gawlick, 2003) was deeply buried developed at the frontal ramp of the upper Tirolic nappe and metamorphosed (Frisch and Gawlick, 2003). Kralik and (Tauglboden Basin) and out-of-sequence upon the Lammer Schramm (1994) explained the lower thermal overprint in the Basin (Sillenkopf Basin). During the Eocene period, out-of- western segment of the Stauffen-Höllengebirge Nappe by a sequence thrusting transported the Dachstein Nappe upon younger metamorphic event which was induced by thrusting sediments of the Hallstatt Zone (Frisch and Gawlick, 2003). combined with fluid circulation. Geochronological data constrain In the western and central part of the NCA there is a general the age of metamorphism between 130 and 140 Ma (Kralik et al., north to south and east to west increase in the metamorphic 1987; Kralik and Schramm, 1994). overprint (Kralik et al., 1987; Krumm et al., 1988; Petschick, 1989; Progressive thrusting was followed by a phase of uplift and Kürmann, 1993; Ferreiro Mählmann, 1994). In this segment, erosion during the Early Cretaceous before the Gosau basins Petschick (1989) and Ferreiro Mählmann and Petschick (1995) (Figs. 1, 2) subsided during Turonian to Eocene times on top of proposed a (pre-tectonic) Permian to Early Cretaceous dias- the nappe stack (Wagreich and Faupl, 1994; Wagreich, 1995, tathermal metamorphism with burial temperatures up to 300° C, 2001; Wagreich and Decker, 2001). a syn-tectonic thermal event during Early Cretaceous to Turonian The Lammer Unit (Tollmann, 1976; Fig. 2) is the key area for the times with burial temperatures of
Recommended publications
  • Thin-Skinned Versus Thick-Skinned Tectonics in the Friuli Alps (NE Italy) in Relation to the Alpine-Dinaridic Orogenic System
    Department of Earth Sciences UNIVERSITEIT UTRECHT Thin-skinned versus thick-skinned tectonics in the Friuli Alps (NE Italy) in relation to the Alpine-Dinaridic orogenic system MSc Thesis Dominique Engelen February 2016 Supervisors 1st Dr. Ernst Willingshofer 2nd Drs. Inge van Gelder 3rd Dr. Liviu Matenco In collaboration with Anissa Smits Abstract The Friuli Alps, located in the easternmost part of the eastern Southern Alps in north-eastern Italy, represent the interference area of the Dinaric and Alpine mountain chains. There is a wide agreement on the general evolution of the eastern Southern Alps, which would consist of a poly-phase compressional evolution involving three main thrust systems. However, the amount and initiation of the total amount of shortening is still poorly constraint. In this study we investigate the kinematic evolution by means of structural fieldwork and by the balancing and reconstruction of a N-S cross-section by use of MOVE software for 2D modeling. Interpretation of the data led to the definition of five deformation phases (D1- D5), in which a clear distinction could be made between thin- and a thick-skinned phases of deformation. Prior to the compressional phases is the D1 NW-SE extensional phase, which is expressed by NNW-SSE oriented normal faults, related to the NE-SW separation of the Friuli platform during the Early-Jurassic. The D2 NE-SW to E-W directed Dinaric shortening started during the Eocene and is expressed by SW to W-vergent thrusting and folding. Dinaric deformation is largely overprinted by three Alpine phases; D3 – N-S thin-skinned Alpine shortening (Middle- to Late-Miocene), characterized by large scale S-vergent thrusting along flat-ramp-flat trajectories, which resulted in great amounts of transport of the Upper-Triassic and Jurassic platform formations along four main décollements (the Bellerophon, Raibl and Biancone Formation, and the Eocene flysch) and ultimately to tripling and folding of the sedimentary cover.
    [Show full text]
  • Scanned Document
    Hugo ORTNER and Franz REITER KINEMATIC HISTORY OF THE TRIASSIC SOUTH OF THE INN VALLEY (NORTHERN CALCAREOUS ALPS, AUSTRIA) - EVIDENCE FOR JURASSIC AND LATE CRETACEOUS LARGE SCALE NORMAL FAULTING 3rd Workshop on Alpine Geological Studies Biella - Oropa, September 29th - October 1st 1997 Guido GOSSO, Flavio JADOUL, Mattia SELLA and Maria Iole SPALLA (Editors) 1999 from Mem. Sci. Geol. v. 51 / 1 pp. 129-140 16 figs Padova 1999 ISSN 0391-8602 Editrice Societa Cooperativa Tipografica PADOVA 1999 Kinematic history of the Triassic South of the Inn Valley (Northern Calcareous Alps, Austria) - Evidence for Jurassic and Late Cretaceous large scale normal faulting Hugo ORTNER and Franz REITER lnstitut for Geologie und Palaontologie, Universitiit Innsbruck, Innrain 52, A-6020 Innsbruck, Osterreich ABSTRACT - The geometry of slices at the southern margin of the Northern Calcareous Alps not only calls for thick­ ening of the nappe stack by compression, but also thinning of the sedimentary column by extension. The deforma­ tional history of the Triassic south of the Inn Valley is characterised by six stages: (1) Thinning by top SE extension during Jurassic continental breakup, (2) stacking of thinned slices by top NW thrusting during the time of peak tem­ perature metamorphism at 140 Ma (Early Cretaceous), (3) postmetamorphic top SE extension (Late Cretaceous) con­ temporaneously with Gosau sedimentation on top of the nappe pile of the Northern Calcareous Alps and (4) a long period of N-S compression (Eocene), resulting in northvergent thrusting and folding with development of a foliation , southvergent thrusting and, finally, overturning of the strata In the western part of the investigated area.
    [Show full text]
  • First Report of Swimming Trace Fossils of Fish from the Upper Permian and Lower Triassic of the Dolomites (Italy)
    Annales Societatis Geologorum Poloniae (2018), vol. 88: ...–... doi: https://doi.org/10.14241/asgp.2018.013 FIRST REPORT OF SWIMMING TRACE FOSSILS OF FISH FROM THE UPPER PERMIAN AND LOWER TRIASSIC OF THE DOLOMITES (ITALY) Ausonio RONCHI1, Giuseppe SANTI1, Lorenzo MARCHETTI 2, Massimo BERNARDI 3 & Piero GIANOLLA4 1 Dipartimento di Scienze della Terra e dell’Ambiente, University of Pavia, Italy; e-mails: [email protected]; [email protected] 2 Urweltmuseum GEOSKOP/Burg Lichtenberg (Pfalz), Thallichtenberg, Germany; e-mail: [email protected] 3 MUSE – Museo delle Scienze, Trento, Italy; e-mail: [email protected] 4 Dipartimento di Fisica e Scienze della Terra, University of Ferrara, Italy; e-mail: [email protected] Ronchi, A., Santi, G., Marchetti, L, Bernardi, M. & Gianolla, R., 2018. First report of swimming trace fossils of fish from the Upper Permian and Lower Triassic of the Dolomites (Italy). Annales Societatis Geologorum Poloniae, 88: xxx-xxx Abstract: In the Upper Permian continental to marginal-marine succession of the Southern Alps (Dolomites, north Italy), the ichnological record consists of diverse vertebrate footprints and non-diverse invertebrate trace fossils, mainly occurring in the “Bletterbach ichnoassociation” of the Val Gardena Sandstone Formation. After the Perm- ian-Triassic Boundary event, vertebrate ichnoassociations are scarce until the Middle Triassic (Anisian), whereas the uppermost Permian–Lower Triassic Werfen Formation preserves a rich invertebrate trace-fossil record. To date, fish body and trace fossils (Undichna) are very rare in the pre- and post-extinction deposits of the Dolomites; only Undichna gosiutensis Gibert, 2001 was identified in the “Voltago Conglomerate” (Middle Anisian), whereas some unidentified fossil fish casts were found in the Permian Val Gardena Sandstone and some fish remains in the overlying Werfen Formation.
    [Show full text]
  • GUIDEBOOK the Mid-Triassic Muschelkalk in Southern Poland: Shallow-Marine Carbonate Sedimentation in a Tectonically Active Basin
    31st IAS Meeting of Sedimentology Kraków 2015 GUIDEBOOK The Mid-Triassic Muschelkalk in southern Poland: shallow-marine carbonate sedimentation in a tectonically active basin Guide to field trip B5 • 26–27 June 2015 Joachim Szulc, Michał Matysik, Hans Hagdorn 31st IAS Meeting of Sedimentology INTERNATIONAL ASSOCIATION Kraków, Poland • June 2015 OF SEDIMENTOLOGISTS 225 Guide to field trip B5 (26–27 June 2015) The Mid-Triassic Muschelkalk in southern Poland: shallow-marine carbonate sedimentation in a tectonically active basin Joachim Szulc1, Michał Matysik2, Hans Hagdorn3 1Institute of Geological Sciences, Jagiellonian University, Kraków, Poland ([email protected]) 2Natural History Museum of Denmark, University of Copenhagen, Denmark ([email protected]) 3Muschelkalk Musem, Ingelfingen, Germany (encrinus@hagdorn-ingelfingen) Route (Fig. 1): From Kraków we take motorway (Żyglin quarry, stop B5.3). From Żyglin we drive by A4 west to Chrzanów; we leave it for road 781 to Płaza road 908 to Tarnowskie Góry then to NW by road 11 to (Kans-Pol quarry, stop B5.1). From Płaza we return to Tworog. From Tworog west by road 907 to Toszek and A4, continue west to Mysłowice and leave for road A1 then west by road 94 to Strzelce Opolskie. From Strzelce to Siewierz (GZD quarry, stop B5.2). From Siewierz Opolskie we take road 409 to Kalinów and then turn we drive A1 south to Podskale cross where we leave south onto a local road to Góra Sw. Anny (accomoda- for S1 westbound to Pyrzowice and then by road 78 to tion). From Góra św. Anny we drive north by a local road Niezdara.
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached
    (This is a sample cover image for this issue. The actual cover is not yet available at this time.) This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Chemical Geology 322–323 (2012) 121–144 Contents lists available at SciVerse ScienceDirect Chemical Geology journal homepage: www.elsevier.com/locate/chemgeo The end‐Permian mass extinction: A rapid volcanic CO2 and CH4‐climatic catastrophe Uwe Brand a,⁎, Renato Posenato b, Rosemarie Came c, Hagit Affek d, Lucia Angiolini e, Karem Azmy f, Enzo Farabegoli g a Department of Earth Sciences, Brock University, St. Catharines, Ontario, Canada, L2S 3A1 b Dipartimento di Scienze della Terra, Università di Ferrara, Polo Scientifico-tecnologico, Via Saragat 1, 44100 Ferrara Italy c Department of Earth Sciences, The University of New Hampshire, Durham, NH 03824 USA d Department of Geology and Geophysics, Yale University, New Haven, CT 06520–8109 USA e Dipartimento di Scienze della Terra, Via Mangiagalli 34, Università di Milano, 20133 Milan Italy f Department of Earth Sciences, Memorial University, St.
    [Show full text]
  • PLANT FOSSILS in the CASSIAN BEDS and OTHER CARNIAN FORMATIONS of the SOUTHERN ALPS (ITALY) Evelyn Kustatscher1, Fabrizio Bizzar
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Geo.Alp Jahr/Year: 2011 Band/Volume: 008 Autor(en)/Author(s): Kustatscher Evelyn, Bizzarini Fabrizio, Roghi Guido Artikel/Article: Plant fossils in the Cassian Beds and other carnian formations of the southern Alps (Italy). 146-155 download unter www.biologiezentrum.at Geo.Alp, Vol. 8, S. 146–155, 2011 PLANT FOSSILS IN THE CASSIAN BEDS AND OTHER CARNIAN FORMATIONS OF THE SOUTHERN ALPS (ITALY) Evelyn Kustatscher1, Fabrizio Bizzarrini2 & Guido Roghi3 Mit 16 Abbildungen und 3 Tabellen 1 Naturmuseum Südtirol, Bindergasse 1, 39100 Bozen, Italy 2 C/o Museo Civico di Rovereto, Borgo S. Caterina 41, I-38068 Rovereto 3 Istituto di Geoscienze e Georisorse-CNR-Sezione di Padova, c/o Dipartimento di Geoscienze, Università degli Studi di Padova, Padova, Italy. Introduction Triassic macrofloras in the Southern Alps are rare, and the majority of literature data is devoted to Ladinian plants. The first plant remain from the Southern Alps, a not better defined “fern fragment”, has been illustrated by Wissmann and Münster (1841). Later, several authors mentioned and figured plant fossils from the so-called “Buchensteiner Schichten”, “Wengener Schichten” and “alpiner Muschelkalk” of the Dolomites (e.g., Mojsisovics, 1879; Ogilvie Gor- don, 1927, 1934; Leonardi, 1953; for an overview see Wachtler & van Konijnenburg-van Cittert, 2000). Only Koken (1913) indicated badly preserved plant remains from the Heiligkreuz Schichten without describing or figuring them. Outside the Dolomites, only two more localities rich in Triassic plant remains were known: the Anisian flora of Re- coaro (e.g., De Zigno, 1862; Schenk, 1868) and the Carnian flora of Raibl/Cave del Predil (e.g., Bronn, 1858; Schenk, 1866-7, Stur, 1868, 1885).
    [Show full text]
  • Permian-Triassic-Boundary and Lower Triassic in the Dolomites, Southern Alps (Italy)
    Journal of Alpine Geology, 54: 379-404, Wien 2012 Permian-Triassic-Boundary and Lower Triassic in the Dolomites, Southern Alps (Italy) By RAINER BRANDNER, MICHA HORACEK & LORENZ KEIM† With 21 figures Field Trip Guide 29th IAS Meeting of Sedimentology Schladming/Austria Addresses of the authors: RAINER BRANDNER Universität Innsbruck Institut für Geologie & Paläontologie Innrain 52 6020 Innsbruck Austria E-mail: [email protected] MICHA HORACEK BLT Wieselburg Lehr-und Forschungszentrum Francisco Josephinum Rottenhauser Straße 1 3250 Wieselburg Austria E-mail address: [email protected] Journal of Alpine Geology 54 S. 379-404 Wien 2012 379 BRANDNER, HORACEK & KEIM: Permian-Triassic boundary and Lower Triassic in the Dolomites, Southern Alps (Italy) LORENZ KEIM Amt für Geologie & Baustoffprüfung/ Ufficio Geologia e prove materiali Autonome Provinz Bozen - Südtirol/Provincia Autonoma di Bolzano-Alto Adige Eggentalerstr. 48/ Via Val d’Ega 48 I-39053 Kardaun/Cardano Italy Lorenz Keim died during a cross country ski tour in a snow avalanche at the Stallersattel (South Tirol, Italy) on February 4, 2012. He just turned 43, was married and had three little boys. In the last years he worked at the Geological Survey as field geologist, as coordinator of geological maps and was involved in reconnaissance studies for the Brenner Base Tunnel on the South Tyrolean side. As excellent geologist he leaves a big hole in the Tyrolean geology. He is painfully missed. Content Abstract........................................................................................................................................................................380
    [Show full text]
  • Role of High-Angle Faults During Heteroaxial Contraction, Inntal Thrust Sheet, Northern Calcareous Alps, Western Austria
    Festschrift zum 60. Geburtstag von Helfried Mostler Geol. Paläont. Mitt. Innsbruck, ISSN 0378-6870, Bd. 20, S. 389^06 ROLE OF HIGH-ANGLE FAULTS DURING HETEROAXIAL CONTRACTION, INNTAL THRUST SHEET, NORTHERN CALCAREOUS ALPS, WESTERN AUSTRIA Gerhard Eisbacher & Rainer Brandner With 7 figures Abstract: During Late Cretaceous/two-stage contraction of sedimentary strata within the Austroalpine accretionary wedge initial fold-thrust detachment and subsequent heteroaxial shortening were controlled by low-strength stratigraphie heterogen- eities and by the propagation of transverse high-angle faults. For the Inntal thrust sheet of the Northern Calcareous Alps (NC A) about 20 km of NW-directed thrust movement was accompanied by internal shortening and by distributed dextral displacement along NW-striking transfer faults by about 15 to 20 km. Thrust sheet segmentation along high- angle transfer faults led to significant relief between stratal panels of variable vergence and accounts for local depositi- on in and patchy preservation of Upper Cretaceous syndeformational clastic basins. One of the authors (R.B.) inter- prets orogen-parallel striking normal faults with Upper Cretaceous scarp breccias as an indication of today's NW-SE extension of the early alpine nappe edifice. Superimposed NNE-SSW-oriented heteroaxial contraction in latest Cretaceous-Paleogene time by about 10 km reac- tivated initial transfer faults as high-angle reverse faults, with a new set of NE-striking high-angle sinistrai faults pro- pagating from the footwall into the frontal Inntal hangingwall. This increased the plunge of pre-existing folds and pro- duced a new set of plunging folds within fault-bounded panels. High-angle faults thus accommodated polyphase shor- tening of the NCA-wedge and superimposed basins that formed along transverse zones with major structural relief.
    [Show full text]
  • Field Trip B2: Triassic to Early Cretaceous Geodynamic History of the Central Northern Calcareous Alps (Northwestern Tethyan Realm)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Berichte der Geologischen Bundesanstalt Jahr/Year: 2013 Band/Volume: 99 Autor(en)/Author(s): Gawlick Hans-Jürgen, Missoni Sigrid Artikel/Article: Field Trip B2: Triassic to Early Cretaceous geodynamic history of the central Northern Calcareous Alps (Northwestern Tethyan realm). 216-270 ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at Berichte Geol. B.-A., 99 11th Workshop on Alpine Geological Studies & 7th IFAA Field Trip B2: Triassic to Early Cretaceous geodynamic history of the central Northern Calcareous Alps (Northwestern Tethyan realm) Hans-Jürgen Gawlick & Sigrid Missoni University of Leoben, Department of Applied Geosciences and Geophysics, Petroleum Geology, Peter-Tunner-Strasse 5, 8700 Leoben, Austria Content Abstract 1 Introduction 2 Overall geodynamic and sedimentary evolution 3 Palaeogeography, sedimentary successions and stratigraphy 3.1 Hauptdolomit facies zone 3.2 Dachstein Limestone facies zone 3.3 Hallstatt facies zone (preserved in the reworked Jurassic Hallstatt Mélange) 4 The Field Trip 4.1 The Late Triassic Dachstein/Hauptdolomit Carbonate Platform 4.1.1 Hauptdolomit (Mörtlbach road) 4.1.2 Lagoonal Dachstein Limestone: The classical Lofer cycle (Pass Lueg) 4.1.3 The Kössen Basin (Pass Lueg and Mörtlbach road) 4.2 Jurassic evolution 4.2.1 Hettangian to Aalenian 4.2.2 Bajocian to Tithonian 4.3 Early Cretaceous References Abstract The topic of this field trip is to get to know and understand the sedimentation of Austria’s Northern Calcareous Alps and its tectonic circumstances from Triassic rifting/drifting to Jurassic collision/accretion, and the Early Cretaceous “post-tectonic” sedimentary history.
    [Show full text]
  • About Cassandra Extavour's Work
    Dr. Cassandra Extavour Developmental Biology, Harvard University About Cassandra Extavour’s work One of the topics that Cassandra Extavour researches is germ cell development. During a process called embryogenesis, where an animal embryo develops from a fertilized egg cell, only a small percentage of the millions of genetically identical cells created will become germ cells. Germ cells are the cells created in an embryo that contribute their specific genomes to the reproduction of new creatures. The rest of the embryo’s cells become soma cells, which form different parts of the body such as organs, muscle, skin, and bones. These cells reproduce via mitosis, but cannot contribute their specific genomes to the reproduction of new creatures, ending the line of germ cells. A problem in the study of the development of multicellular organisms is then: why do cells that start out with identical genomes do different things in different environments? Cassandra Extavour tries to answer this question by dissecting embryos and ovaries of spiders, crickets, and milkweed bugs, using molecular biology and microscopy tools to map the germline of the cells. The way that a cell is assigned to the germline is caused by a few different ways. In some organisms, before there is an embryo, the molecular content of some cells predetermines them to develop as either germ or soma cells. In other organisms, a cell in the embryo receives chemical signals from neighboring cells that activate or repress genes that turn the cell into a germ cell. Cassandra Extavour is also interested in biological cooperation and the division of labor between germ and soma cells.
    [Show full text]
  • Evaporite Geo-Hazard in the Sauris Area (Friuli Venezia Giulia Region - Northeast Italy)
    EVAPORITE GEO-HAZARD IN THE SAURIS AREA (FRIULI VENEZIA GIULIA REGION - NORTHEAST ITALY) Chiara Calligaris Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, Via Weiss, 2, Trieste, 34128, Italy, [email protected] Stefano Devoto Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, Via Weiss, 2, Trieste, 34128, Italy, [email protected] Luca Zini Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, Via Weiss, 2, Trieste, 34128, Italy, [email protected] Franco Cucchi Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, Via Weiss, 2, Trieste, 34128, Italy, [email protected] Abstract Survey of Friuli Venezia Giulia Region. The objective Evaporite sinkholes represent a severe threat to many of this project is to inventory and classify the sinkholes European countries, including Italy. Among the Italian associated to evaporite rocks. regions, of the area most affected is the northern sector of Friuli Venezia Giulia Region (NE Italy). Here chalks Introduction had two main depositional periods first in the Late Subsidence phenomena associated to the presence Permian and then during the Late Carnian (Late Triassic). of evaporite rocks are common in Europe. Evaporite Evaporites outcrop mainly in the Alpine valleys or are sinkholes affect the central and northern part of partially mantled by Quaternary deposits, as occur along England (Cooper, 2008), Lithuania (Taminskas and the Tagliamento River Valley. Furthermore, evaporites Marcinkevicius, 2002), NE Spain (Gutiérrez, 1996; make up some portions of mountains and Alpine slopes, Gutiérrez and Cooper, 2002; Guerrero et al., 2004; generating hundreds of karst depressions. Gutiérrez et al., 2008) and Albania (Parise et al., 2004; Parise et al., 2008).
    [Show full text]
  • Field Trip 2 Late Paleozoic and Mesozoic Terrestrial Environments in the Dolomites and Surrounding Areas 71-116 Geo.Alp, Vol
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Geo.Alp Jahr/Year: 2016 Band/Volume: 013 Autor(en)/Author(s): Kustatscher Evelyn, Bernardi Massimo, Petti Fabio Massimo, Avanzini Marco, Tomasoni Riccardo Artikel/Article: Field trip 2 Late Paleozoic and Mesozoic terrestrial environments in the Dolomites and surrounding areas 71-116 Geo.Alp, Vol. 13 2016 71 - 116 Field trip 2 Late Paleozoic and Mesozoic terrestrial environments in the Dolomites and surrounding areas Evelyn Kustatscher1,2, Massimo Bernardi3,4, Fabio Massimo Petti3,5, Marco Avanzini3 & Riccardo Tomasoni3 1 Naturmuseum Südtirol, Bindergasse 1, 39100 Bozen/Bolzano, Italy; e-mail: [email protected]; 2 Department für Geo- und Umweltwissenschaften, Paläontologie und Geobiologie, Ludwig-Maximilians- Universität and Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Straße 10, 80333 München, Germany; 3 Museo delle Scienze di Trento, Corso del Lavoro e della Scienza 3, 38123 Trento, Italy; e-mail: [email protected], [email protected], [email protected], [email protected]; 4 School of Earth Sciences, University of Bristol, Bristol BS81RJ, UK; 5 PaleoFactory, Dipartimento di Scienze della Terra, Sapienza Università di Roma, P.le Aldo Moro 5, 00185, Roma, Italy. 1 Topics and highlights of the excursion Mojsisovics, 1879, 1882; Mojsisovics et al., 1895; Bittner, 1892; Brack et al., 2005, Mietto & Man- The Southern Alps represent
    [Show full text]