Muttoni Et Al 2013
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Long-Term Rotational Effects on the Shape of the Earth and Its Oceans
LONG-TERM ROTATIONAL EFFECTS ON THE SHAPE OF THE EARTH AND ITS OCEANS Jonathan Edwin Mound A thesis submitted in cooforrnity with the reqnhents for the degree of Doctor of Philosophy Gradiiate Depart ment of P hysics University of Toront O @ Copyright by Jonathan E. Mound 2001 . .. ilbitionsand et 9-Bib iogrephic SeMces -Iiographiques 395 WeIlington Street 395, ni6 Wellington ûttawa ON K1AOW OtEaweON KtAW Canada Canada The author has granted a non- L'auteur a accorde une licence ncm exdusive licence allouing the exclusive permettant à la National Library of Cana& to Bibliotheque natiode du Canada de reproduce, Ioan, distriibute or seli reproduire, prêter, distniuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/film, de reprociucbon sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. ttiesis nor substantial extracts &om it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. LONG-TERM RQTATLONAL E-FFECTS ON THE SHAPE OF THE EARTH AND ITS OCEANS Doctor of Philosophy, 2001. Jonathan E. Mound Department of Physics, University of Toronto Abstract The centrifuga1 potent ial associated with the Eart h's rotation influences the shape of both the solid Earth and the oceaos. Changes in rotation t hus deform both the ocean and solid surfaces. -
First Report of Swimming Trace Fossils of Fish from the Upper Permian and Lower Triassic of the Dolomites (Italy)
Annales Societatis Geologorum Poloniae (2018), vol. 88: ...–... doi: https://doi.org/10.14241/asgp.2018.013 FIRST REPORT OF SWIMMING TRACE FOSSILS OF FISH FROM THE UPPER PERMIAN AND LOWER TRIASSIC OF THE DOLOMITES (ITALY) Ausonio RONCHI1, Giuseppe SANTI1, Lorenzo MARCHETTI 2, Massimo BERNARDI 3 & Piero GIANOLLA4 1 Dipartimento di Scienze della Terra e dell’Ambiente, University of Pavia, Italy; e-mails: [email protected]; [email protected] 2 Urweltmuseum GEOSKOP/Burg Lichtenberg (Pfalz), Thallichtenberg, Germany; e-mail: [email protected] 3 MUSE – Museo delle Scienze, Trento, Italy; e-mail: [email protected] 4 Dipartimento di Fisica e Scienze della Terra, University of Ferrara, Italy; e-mail: [email protected] Ronchi, A., Santi, G., Marchetti, L, Bernardi, M. & Gianolla, R., 2018. First report of swimming trace fossils of fish from the Upper Permian and Lower Triassic of the Dolomites (Italy). Annales Societatis Geologorum Poloniae, 88: xxx-xxx Abstract: In the Upper Permian continental to marginal-marine succession of the Southern Alps (Dolomites, north Italy), the ichnological record consists of diverse vertebrate footprints and non-diverse invertebrate trace fossils, mainly occurring in the “Bletterbach ichnoassociation” of the Val Gardena Sandstone Formation. After the Perm- ian-Triassic Boundary event, vertebrate ichnoassociations are scarce until the Middle Triassic (Anisian), whereas the uppermost Permian–Lower Triassic Werfen Formation preserves a rich invertebrate trace-fossil record. To date, fish body and trace fossils (Undichna) are very rare in the pre- and post-extinction deposits of the Dolomites; only Undichna gosiutensis Gibert, 2001 was identified in the “Voltago Conglomerate” (Middle Anisian), whereas some unidentified fossil fish casts were found in the Permian Val Gardena Sandstone and some fish remains in the overlying Werfen Formation. -
GUIDEBOOK the Mid-Triassic Muschelkalk in Southern Poland: Shallow-Marine Carbonate Sedimentation in a Tectonically Active Basin
31st IAS Meeting of Sedimentology Kraków 2015 GUIDEBOOK The Mid-Triassic Muschelkalk in southern Poland: shallow-marine carbonate sedimentation in a tectonically active basin Guide to field trip B5 • 26–27 June 2015 Joachim Szulc, Michał Matysik, Hans Hagdorn 31st IAS Meeting of Sedimentology INTERNATIONAL ASSOCIATION Kraków, Poland • June 2015 OF SEDIMENTOLOGISTS 225 Guide to field trip B5 (26–27 June 2015) The Mid-Triassic Muschelkalk in southern Poland: shallow-marine carbonate sedimentation in a tectonically active basin Joachim Szulc1, Michał Matysik2, Hans Hagdorn3 1Institute of Geological Sciences, Jagiellonian University, Kraków, Poland ([email protected]) 2Natural History Museum of Denmark, University of Copenhagen, Denmark ([email protected]) 3Muschelkalk Musem, Ingelfingen, Germany (encrinus@hagdorn-ingelfingen) Route (Fig. 1): From Kraków we take motorway (Żyglin quarry, stop B5.3). From Żyglin we drive by A4 west to Chrzanów; we leave it for road 781 to Płaza road 908 to Tarnowskie Góry then to NW by road 11 to (Kans-Pol quarry, stop B5.1). From Płaza we return to Tworog. From Tworog west by road 907 to Toszek and A4, continue west to Mysłowice and leave for road A1 then west by road 94 to Strzelce Opolskie. From Strzelce to Siewierz (GZD quarry, stop B5.2). From Siewierz Opolskie we take road 409 to Kalinów and then turn we drive A1 south to Podskale cross where we leave south onto a local road to Góra Sw. Anny (accomoda- for S1 westbound to Pyrzowice and then by road 78 to tion). From Góra św. Anny we drive north by a local road Niezdara. -
Testing the Axial Dipole Hypothesis for the Moon by Modeling the Direction of Crustal Magnetization J
Testing the axial dipole hypothesis for the Moon by modeling the direction of crustal magnetization J. Oliveira, M. Wieczorek To cite this version: J. Oliveira, M. Wieczorek. Testing the axial dipole hypothesis for the Moon by modeling the direction of crustal magnetization. Journal of Geophysical Research. Planets, Wiley-Blackwell, 2017, 122 (2), pp.383-399. 10.1002/2016JE005199. hal-02105528 HAL Id: hal-02105528 https://hal.archives-ouvertes.fr/hal-02105528 Submitted on 21 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Geophysical Research: Planets RESEARCH ARTICLE Testing the axial dipole hypothesis for the Moon by modeling 10.1002/2016JE005199 the direction of crustal magnetization Key Points: • The direction of magnetization within J. S. Oliveira1 and M. A. Wieczorek1,2 the lunar crust was inverted using a unidirectional magnetization model 1Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS, Paris, France, 2Université Côte • The paleomagnetic poles of several d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Nice, France isolated anomalies are not randomly distributed, and some have equatorial latitudes • The distribution of paleopoles may Abstract Orbital magnetic field data show that portions of the Moon’s crust are strongly magnetized, be explained by a dipolar magnetic and paleomagnetic data of lunar samples suggest that Earth strength magnetic fields could have existed field that was not aligned with the during the first several hundred million years of lunar history. -
This Article Appeared in a Journal Published by Elsevier. the Attached
(This is a sample cover image for this issue. The actual cover is not yet available at this time.) This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Chemical Geology 322–323 (2012) 121–144 Contents lists available at SciVerse ScienceDirect Chemical Geology journal homepage: www.elsevier.com/locate/chemgeo The end‐Permian mass extinction: A rapid volcanic CO2 and CH4‐climatic catastrophe Uwe Brand a,⁎, Renato Posenato b, Rosemarie Came c, Hagit Affek d, Lucia Angiolini e, Karem Azmy f, Enzo Farabegoli g a Department of Earth Sciences, Brock University, St. Catharines, Ontario, Canada, L2S 3A1 b Dipartimento di Scienze della Terra, Università di Ferrara, Polo Scientifico-tecnologico, Via Saragat 1, 44100 Ferrara Italy c Department of Earth Sciences, The University of New Hampshire, Durham, NH 03824 USA d Department of Geology and Geophysics, Yale University, New Haven, CT 06520–8109 USA e Dipartimento di Scienze della Terra, Via Mangiagalli 34, Università di Milano, 20133 Milan Italy f Department of Earth Sciences, Memorial University, St. -
True Polar Wander of Mercury
Mercury: Current and Future Science 2018 (LPI Contrib. No. 2047) 6098.pdf TRUE POLAR WANDER OF MERCURY. J. T. Keane1 and I. Matsuyama2; 1California Institute of Technology, Pasadena, CA 91125, USA ([email protected]); 2Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA. Introduction: The spin of a planet is not constant to the Sun and subject to stronger tidal and rotational with time. Planetary spins evolve on a variety of time- forces. However, even with this corrected dynamical scales due to a variety of internal and external forces. oblateness, the required orbital configuration appears One process for changing the spin of a planet is true po- unreasonable−requiring semimajor axes <0.1 AU [5]. lar wander (TPW). TPW is the reorientation of the bulk An alternative explanation may be that a large fraction planet with respect to inertial space due to the redistri- of Mercury’s figure is a “thermal” figure, set Mercury’s bution of mass on or within the planet. The redistribu- close proximity to the Sun and its unique spin-orbit res- tion of mass alters the planet’s moments of inertia onance [7-8] (which are related to the planet’s spherical harmonic de- True Polar Wander of Mercury: While Mercury’s gree/order-2 gravity field). This process has been meas- impact basins and volcanic provinces cannot explain ured on the Earth, and inferred for a variety of solar sys- Mercury’s anomalous figure, they still have an im- tem bodies [1]. TPW can have significant consequences portant effect on planet’s moments of inertia and orien- for the climate, tectonics, and geophysics of a planet. -
True Polar Wander: Linking Deep and Shallow Geodynamics to Hydro- and Bio-Spheric Hypotheses T
True Polar Wander: linking Deep and Shallow Geodynamics to Hydro- and Bio-Spheric Hypotheses T. D. Raub, Yale University, New Haven, CT, USA J. L. Kirschvink, California Institute of Technology, Pasadena, CA, USA D. A. D. Evans, Yale University, New Haven, CT, USA © 2007 Elsevier SV. All rights reserved. 5.14.1 Planetary Moment of Inertia and the Spin-Axis 565 5.14.2 Apparent Polar Wander (APW) = Plate motion +TPW 566 5.14.2.1 Different Information in Different Reference Frames 566 5.14.2.2 Type 0' TPW: Mass Redistribution at Clock to Millenial Timescales, of Inconsistent Sense 567 5.14.2.3 Type I TPW: Slow/Prolonged TPW 567 5.14.2.4 Type II TPW: Fast/Multiple/Oscillatory TPW: A Distinct Flavor of Inertial Interchange 569 5.14.2.5 Hypothesized Rapid or Prolonged TPW: Late Paleozoic-Mesozoic 569 5.14.2.6 Hypothesized Rapid or Prolonged TPW: 'Cryogenian'-Ediacaran-Cambrian-Early Paleozoic 571 5.14.2.7 Hypothesized Rapid or Prolonged TPW: Archean to Mesoproterozoic 572 5.14.3 Geodynamic and Geologic Effects and Inferences 572 5.14.3.1 Precision of TPW Magnitude and Rate Estimation 572 5.14.3.2 Physical Oceanographic Effects: Sea Level and Circulation 574 5.14.3.3 Chemical Oceanographic Effects: Carbon Oxidation and Burial 576 5..14.4 Critical Testing of Cryogenian-Cambrian TPW 579 5.14A1 Ediacaran-Cambrian TPW: 'Spinner Diagrams' in the TPW Reference Frame 579 5.14.4.2 Proof of Concept: Independent Reconstruction of Gondwanaland Using Spinner Diagrams 581 5.14.5 Summary: Major Unresolved Issues and Future Work 585 References 586 5.14.1 Planetary Moment of Inertia location ofEarth's daily rotation axis and/or by fluc and the Spin-Axis tuations in the spin rate ('length of day' anomalies). -
AUSTRIAN JOURNAL of EARTH SCIENCES Volume 98 2005
AUSTRIAN JOURNAL of EARTH SCIENCES [MITTEILUNGEN der ÖSTERREICHISCHEN GEOLOGISCHEN GESELLSCHAFT] an INTERNATIONAL JOURNAL of the AUSTRIAN GEOLOGICAL SOCIETY volume 98 2005 Gerd RANTITSCH & Barbara RUSSEGGER: Organic maturation within the Central Northern Calcareous Alps (Eastern Alps)________________________________ www.univie.ac.at/ajes EDITING: Grasemann Bernhard, Wagreich Michael PUBLISCHER: Österreichische Geologische Gesellschaft Rasumofskygasse 23, A-1031 Wien TYPESETTER: Irnberger Norbert, www.irnberger.net Copy-Shop Urban, Bahnstraße 26a, 2130 Mistelbach PRINTER: Holzhausen Druck & Medien GmbH Holzhausenplatz 1, 1140 Wien ISSN 0251-7493 Austrian Journal of Earth Sciences Volume 98 Vienna 2005 Organic maturation within the Central Northern Calca- reous Alps (Eastern Alps) Gerd RANTITSCH1) & Barbara RUSSEGGER2) KEYWORDS very low-grade metamorphism Northern Calcareous Alps 1) Department of Applied Geosciences and Geophysics, Montanuniversität Leoben, vitrinite reflectance Austria, A-8700 Leoben, Austria, Email: [email protected] thermal modeling Jurassic orogeny 2) Library of the University of Graz, A-8010 Graz, Austria Eastern Alps Abstract Organic maturation within the central Northern Calcareous Alps (Eastern Alps) has been investigated using vitrinite reflectance data from Upper Permian to Upper Cretaceous strata of the Stauffen-Höllengebirge Nappe, Dachstein Nappe, Tennengebirge Block and Lammer Unit. Within the Lammer Unit a metamorphic break is observed between the Strubberg Formation and the tectonically overlying -
Permian-Triassic-Boundary and Lower Triassic in the Dolomites, Southern Alps (Italy)
Journal of Alpine Geology, 54: 379-404, Wien 2012 Permian-Triassic-Boundary and Lower Triassic in the Dolomites, Southern Alps (Italy) By RAINER BRANDNER, MICHA HORACEK & LORENZ KEIM† With 21 figures Field Trip Guide 29th IAS Meeting of Sedimentology Schladming/Austria Addresses of the authors: RAINER BRANDNER Universität Innsbruck Institut für Geologie & Paläontologie Innrain 52 6020 Innsbruck Austria E-mail: [email protected] MICHA HORACEK BLT Wieselburg Lehr-und Forschungszentrum Francisco Josephinum Rottenhauser Straße 1 3250 Wieselburg Austria E-mail address: [email protected] Journal of Alpine Geology 54 S. 379-404 Wien 2012 379 BRANDNER, HORACEK & KEIM: Permian-Triassic boundary and Lower Triassic in the Dolomites, Southern Alps (Italy) LORENZ KEIM Amt für Geologie & Baustoffprüfung/ Ufficio Geologia e prove materiali Autonome Provinz Bozen - Südtirol/Provincia Autonoma di Bolzano-Alto Adige Eggentalerstr. 48/ Via Val d’Ega 48 I-39053 Kardaun/Cardano Italy Lorenz Keim died during a cross country ski tour in a snow avalanche at the Stallersattel (South Tirol, Italy) on February 4, 2012. He just turned 43, was married and had three little boys. In the last years he worked at the Geological Survey as field geologist, as coordinator of geological maps and was involved in reconnaissance studies for the Brenner Base Tunnel on the South Tyrolean side. As excellent geologist he leaves a big hole in the Tyrolean geology. He is painfully missed. Content Abstract........................................................................................................................................................................380 -
A Novel Plate Tectonic Scenario for the Genesis and Sealing of Some Major Mesozoic Oil Fields
It’s Time—Renew Your GSA Membership and Save 15% DECEMBER | VOL. 26, 2016 12 NO. A PUBLICATION OF THE GEOLOGICAL SOCIETY OF AMERICA® IRAQ A Novel Plate Tectonic Scenario for the Genesis KUWAIT and Sealing of Some Major PERSIAN GULF Mesozoic Oil Fields IRAN BAHRAIN Ghawar Field QATAR SAUDI ARABIA OMAN U.A.E. DECEMBER 2016 | VOLUME 26, NUMBER 12 GSA TODAY (ISSN 1052-5173 USPS 0456-530) prints news Featured Articles and information for more than 26,000 GSA member readers and subscribing libraries, with 11 monthly issues (March/ April is a combined issue). GSA TODAY is published by The Geological Society of America® Inc. (GSA) with offices at SCIENCE 3300 Penrose Place, Boulder, Colorado, USA, and a mail- ing address of P.O. Box 9140, Boulder, CO 80301-9140, USA. 4 A Novel Plate Tectonic Scenario for the Genesis GSA provides this and other forums for the presentation and Sealing of Some Major Mesozoic Oil Fields of diverse opinions and positions by scientists worldwide, Giovanni Muttoni and Dennis V. Kent regardless of race, citizenship, gender, sexual orientation, religion, or political viewpoint. Opinions presented in this Cover: NASA satellite photo of the Persian Gulf area publication do not reflect official positions of the Society. with the Ghawar Oil Field in the lower left of the picture. © 2016 The Geological Society of America Inc. All rights See related article, p. 4–10. reserved. Copyright not claimed on content prepared wholly by U.S. government employees within the scope of their employment. Individual scientists are hereby granted permission, without fees or request to GSA, to use a single GROUNDWORK figure, table, and/or brief paragraph of text in subsequent work and to make/print unlimited copies of items in GSA 36 Physical Experiments of Tectonic Deformation TODAY for noncommercial use in classrooms to further and Processes: Building a Strong Community education and science. -
Download File
Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Pangea B and the Late Paleozoic Ice Age ⁎ D.V. Kenta,b, ,G.Muttonic a Earth and Planetary Sciences, Rutgers University, Piscataway, NJ 08854, USA b Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA c Dipartimento di Scienze della Terra 'Ardito Desio', Università degli Studi di Milano, via Mangiagalli 34, I-20133 Milan, Italy ARTICLE INFO ABSTRACT Editor: Thomas Algeo The Late Paleozoic Ice Age (LPIA) was the penultimate major glaciation of the Phanerozoic. Published compi- Keywords: lations indicate it occurred in two main phases, one centered in the Late Carboniferous (~315 Ma) and the other Late Paleozoic Ice Age in the Early Permian (~295 Ma), before waning over the rest of the Early Permian and into the Middle Permian Pangea A (~290 Ma to 275 Ma), and culminating with the final demise of Alpine-style ice sheets in eastern Australia in the Pangea B Late Permian (~260 to 255 Ma). Recent global climate modeling has drawn attention to silicate weathering CO2 Greater Variscan orogen consumption of an initially high Greater Variscan edifice residing within a static Pangea A configuration as the Equatorial humid belt leading cause of reduction of atmospheric CO2 concentrations below glaciation thresholds. Here we show that Silicate weathering CO2 consumption the best available and least-biased paleomagnetic reference poles place the collision between Laurasia and Organic carbon burial Gondwana that produced the Greater Variscan orogen in a more dynamic position within a Pangea B config- uration that had about 30% more continental area in the prime equatorial humid belt for weathering and which drifted northward into the tropical arid belt as it transformed to Pangea A by the Late Permian. -
Apparent and True Polar Wander and the Geometry of the Geomagnetic
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. B11, 2300, doi:10.1029/2000JB000050, 2002 Correction published 10 October 2003 Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr Jean Besse and Vincent Courtillot Laboratoire de Pale´omagne´tisme, UMR 7577, Institut de Physique du Globe de Paris, Paris, France Received 8 November 2000; revised 15 January 2002; accepted 20 January 2002; published 15 November 2002. [1] We have constructed new apparent polar wander paths (APWPs) for major plates over the last 200 Myr. Updated kinematic models and selected paleomagnetic data allowed us to construct a master APWP. A persistent quadrupole moment on the order of 3% of the dipole over the last 200 Myr is suggested. Paleomagnetic and hot spot APW are compared, and a new determination of ‘‘true polar wander’’ (TPW) is derived. Under the hypothesis of fixed Atlantic and Indian hot spots, we confirm that TPW is episodic, with periods of (quasi) standstill alternating with periods of faster TPW (in the Cretaceous). The typical duration of these periods is on the order of a few tens of millions of years with wander rates during fast tracks on the order of 30 to 50 km/Myr. A total TPW of some 30° is suggested for the last 200 Myr. We find no convincing evidence for episodes of superfast TPW such as proposed recently by a number of authors. Comparison over the last 130 Myr of TPW deduced from hot spot tracks and paleomagnetic data in the Indo-Atlantic hemisphere with an independent determination for the Pacific plate supports the idea that, to first order, TPW is a truly global feature of Earth dynamics.