Scientific and Technical Staff of the Geological Survey

Total Page:16

File Type:pdf, Size:1020Kb

Scientific and Technical Staff of the Geological Survey SCIENTIFIC AND TECHNICAL STAFF OF THE - GEOLOGICAL SURVEY JOHN B. PATrON, State Geologist MAURICE E. BIGGS, Assistant State Geologist MARY BETH FOX. Mineral Statistician COAL AND INDUSTRIAL MINERALS SECTION GEOLOGY SECTION DONALD D. CARR, Geologist and Head ROBERT H. SHAVER, Paleontologist and Head CURTIS H. AULT, Geologist and Associate Head HENRY H. GRAY, Head Stratigrapher DONALD L. EGGERT, Geologist N. K. BLEUER, Glacial Geologist GORDON S. FRASER, Geologist EDWIN J. HARTKE, Environmental Geologist DENVER HARPER, Geologist JOHN R. HILL, Glacial Geologist NANCY R. HASENMUELLER, Geologist CARL B. REXROAD, Paleontologist WALTER A. HASENMUELLER, Geologist NELSON R. SHAFFER, Geologist GEOPHYSICS SECTION PAUL IRWIN, Geological Assistant MAURICE E. BIGGS, Geophysicist and Head ROBERT F. BLAKELY, Geophysicist JOSEPH F. WHALEY, Geophysicist DRAFTING AND PHOTOGRAPHY SECTION SAMUEL L. RIDDLE, Driller WILLIAM H. MORAN, Chief Draftsman and Head THOMAS CHITWOOD, Geophysical Assistant RICHARD T. HILL, Geological Draftsman ROOER L. PURCELL, Senior Geological Draftsman PETROLEUM SECTION GEORGE R. RINGER, Photographer G. L. CARPENTER, Geologist and Head WILBUR E. STALIONS, Artist·Draftsman ANDREW J. HREHA, Geologist BRIAN D. KEITH, Geologist EDUCATIONAL SERVICES SECTION STANLEY J. KELLER, Geologist R. DEE RARICK, Geologist and Head DAN M. SULLIVAN, Geologist JAMES T. CAZEE, Geological Assistant GEOCHEMISTRY SECTION SHERRY CAZEE, Geological Assistant R. K. LEININGER, Geochemist and Head DONALD R. WILDS, Geological Assistant LOUIS V. MILLER, Coal Chemist MARGARET V. GOLDE, Instrumental Analyst PUBLICATIONS SECTION JOSEPH G. HAILER, Geochemist/Analyst GERALD S. WOODARD, Editor and Head JESSE A. HARDIN, Electronics Technician PAT GERTH, Sales and Records Clerk Some Environmental Geologic Factors - as Aids to Planning in Cass County, Indiana By JOHN R. HILL ENVIRONMENTAL STUDY 16 DEPARTMENT OF NATURAL RESOURCES GEOLOGICAL SURVEY SPECIAL REPORT 22 PRINTED BY AUTHORITY OF THE STATE OF INDIANA BLOOMINGTON, INDIANA: 1981 STATE OF INDIANA - Robert D. Orr, Governor DEPARTMENT OF NATURAL RESOURCES James M. Ridenour, Director GEOLOGICAL SURVEY John B. Patton, State Geologist For sale by Geological Survey, Bloomington, Ind. 47405 Price $2.50 Contents Page Introduction . .1 Bedrock geology .1 Stratigraphy . 1 Structure .5 Bedrock topography .6 Surficial geology . 7 Distribution of glacial deposits .7 Drift thickness . .9 Physical properties of glacial tills 11 Geologic resources . 22 Limestone and dolomite resources 22 Oil and gas resources ...... 24 Sand and gravel resources .. 25 Suitability of land for sanitary landfills 25 Ground-water resources 27 Literature cited 30 Illustra tions Page Figure 1 Map showing distribution of bedrock formations on outcrop and beneath glacial drift in Cass County . 2 2 Generalized bedrock stratigraphic column for Cass County . 3 3 Well log of bedrock units from the Wabash Formation down to the Mount Simon Sandstone . 4 4 Map of Indiana showing major bedrock structural features . 5 5 Map showing the Teays Valley in Indiana . .6 6 Map showing bedrock topography of Cass County . 7 7 Map showing distribution of unconsolidated deposits in Cass County . 8 8 Map showing drift thickness in Cass County ............. 10 9 Map showing locations of auger-boring sites in Cass County ..... 11 10 Ternary diagrams illustrating textural variation in the upper tills of Cass County 21 11 Map showing quarries and limestone and dolomite production in Cass County 23 12 Map showing locations of gas storage and abandoned oil wells in Cass County 24 13 Map showing active and abandoned sand and gravel operations and pro­ duction potential in Cass County .................. 26 14 Map showing suitability of land for sanitary landfills in Cass County . 28 15 Map showing potential for ground-water contamination in Cass County 29 Tables - Page Table 1 Geologic data for auger-boring samples .12-20 2 Rock formations and their thicknesses at three active limestone quarries in Cass County .............................. 22 --------------~..-----.. ------~ Some Environmental Geologic Factors as Aids to Planning - in Cass County, Indiana By JOHN R. HILL Introduction Bedrock Geology Named for General Lewis Cass in 1828, Cass STRATIGRAPHY County has a rich heritage, having grown from Lying beneath the cover of glacial drift and its frontier days when the Miami Indians cropping out at various localities along the roamed the forested hills and valleys to its Wabash. River is a layered sequence consisting contemporary role as a predominantly agricul­ mostly of limestones and dolomites that range tural area. The county embraces 265,600 in age from Middle Devonian to Late Silurian. acres, of which 213,216 are croplands; the The youngest bedrock in Cass County consists remaining 52,384 acres are urban, forested, of limestones of the Traverse Formation, small water, and other kinds of areas (1967 which are assigned to the middle part of the figures). Devonian System. Best exposed at the Most of the county is blanketed by glacial abandoned France Stone Co. quarry, east of sediments that form the gently rolling upland Logansport, the Traverse consists of light­ and that were deposited during the Ice Age medium-gray to tan finely crystalline dolo­ and subsequently modified by erosion. The mitic limestone. It is massive to irregularly bluffs along the Wabash River afford the bedded and contains abundant stromatopo­ greatest topographic relief; their bedrock roids and colonial corals. The Devonian rocks cores are exposed at many localities along the have been eroded from the northern two­ river's course. Industrial minerals. such as thirds of the county except for isolated crushed stone and sand and gravel, are derived patches illustrated in figure 1. from the bedrock and the glacial drift. Underlying the Devonian strata and sepa­ Although mineral production represents only rated from them by a regional unconformity a minor part of the county income, many is the Salina Formation, which in Cass County aspects of daily life in urban and rural is assigned to the upper part of the Silurian communities are influenced by the local System. Most of the rocks exposed either in geology. Crops are grown in soils that formed outcrop or in quarry operations belong to two on glacial drift. Most of the fresh water is members of the Salina: the Kenneth Lime­ pumped from buried geologic formations. stone Member and the Kokomo Limestone Refuse is isolated in sanitary landfills located Member. At the Louisville Cement Co. in glacial deposits. Construction of nearly quarry, the Kenneth is dark-gray micritic every variety involves excavating or boring limestone that has sparry zones and contains into earth materials. Consequently, a knowl­ much white nodular chert. The subjacent edge of the local geology is desirable for most Kokomo is gray to tan micritic limestone that facets of planning. is essentially massive in the upper few feet but This report is intended to provide a for its greater part exhibits fine laminae, background for the character and distribution especially on weathered surfaces. The Koko­ of geologic materials, both at the surface and mo is dolomitic in places, lacks fossils and in the subsurface, throughout the county. On chert, and only rarely contains secondary the basis of this information, limestone calcite. resources, sand and gravel resources, sanitary The Salina Formation in Cass County both landfills, oil and gas production and storage, overlies and is in lateral facies relationship and water wells are discussed. with the upper part of the Wabash Formation 1 2 SOME ENVIRONMENTAL GEOLOGIC FACTORS AS AIDS TO PLANNING IN CASS COUNTY, INDIANA PULASKI co FULTON CO - o (,) w I­ CARROLL CO EXPLANATION Traverse Formation Limestone and some dolomite Salina Formation Limestone and dolomite HOWARD CO Wabash Formation Limestone, dolomite, and calcareous siltstone. LC, base of Liston Crae/( Limestone Member; IN. base of Waldron Formation 5 o 5 Miles 5 o 10 Km I Areas of bedrock outcrop Figure 1. Map showing distribution of bedrock formations on outcrop and beneath glacial drift in Cass County. Modified from Wayne and others, 1966. BEDROCK GEOLOGY 3 SYSTEM SERIES GROUP I FORMATION OR MEMBER DEVONIAN Erian 1M uscatatuck I Traverse Formation Wabash Formation Salina Formation c Vl Cayugan Kenneth Limestone Member t;C'oo '" Liston Creek Limestone Member Kokomo Limestone Member cJ'? ~oc.J:; Mississinewa Shale Member :l:l: :I:...J Louisville Limestone z <C Waldron Formation CE => Niagaran -' Limberlost Dolomite en I i Salamonie Dolomite i i Alexandrian Sexton Creek Limestone Brainard Shale Cincinnatian\ Maquoketa Fart Atkinson Limestone Scales Shale z .. ... <C _--_ <:) :> 0 Trenton Limestone 0 c a:: 0 ·c'" I2 Black River Limestone c. E ro Joachim Dolomite .J:: U St. Peter Sandstone I i Canadian ..__. Knox Dolomite Franconia Formation z Ironton Sandstone <C CE co S1. Croixan I ! Galesville Sandstone :::;: <C () Eau Claire Formation Mount Simon Sandstone i I Figure 2. Generalized bedrock stratigraphic column for Cass County. (fig. 2). For example, well logs indicate that thickening glacial drift north of the Wabash the Kenneth and Kokomo Limestone Mem­ River. bers in northwestern Cass County are lateral In northern Indiana, the Huntington equivalents of the Liston Creek Limestone Lithofacies, which crops out along the Member of the Wabash Formation. The Wabash River west of Logansport (sec. 36, T. Liston Creek, however. does not crop out in 27 N., R. 1 W., and NIh sec. 32), consists
Recommended publications
  • Cambrian Ordovician
    Open File Report LXXVI the shale is also variously colored. Glauconite is generally abundant in the formation. The Eau Claire A Summary of the Stratigraphy of the increases in thickness southward in the Southern Peninsula of Michigan where it becomes much more Southern Peninsula of Michigan * dolomitic. by: The Dresbach sandstone is a fine to medium grained E. J. Baltrusaites, C. K. Clark, G. V. Cohee, R. P. Grant sandstone with well rounded and angular quartz grains. W. A. Kelly, K. K. Landes, G. D. Lindberg and R. B. Thin beds of argillaceous dolomite may occur locally in Newcombe of the Michigan Geological Society * the sandstone. It is about 100 feet thick in the Southern Peninsula of Michigan but is absent in Northern Indiana. The Franconia sandstone is a fine to medium grained Cambrian glauconitic and dolomitic sandstone. It is from 10 to 20 Cambrian rocks in the Southern Peninsula of Michigan feet thick where present in the Southern Peninsula. consist of sandstone, dolomite, and some shale. These * See last page rocks, Lake Superior sandstone, which are of Upper Cambrian age overlie pre-Cambrian rocks and are The Trempealeau is predominantly a buff to light brown divided into the Jacobsville sandstone overlain by the dolomite with a minor amount of sandy, glauconitic Munising. The Munising sandstone at the north is dolomite and dolomitic shale in the basal part. Zones of divided southward into the following formations in sandy dolomite are in the Trempealeau in addition to the ascending order: Mount Simon, Eau Claire, Dresbach basal part. A small amount of chert may be found in and Franconia sandstones overlain by the Trampealeau various places in the formation.
    [Show full text]
  • Bedrock Geology of Altenburg Quadrangle, Jackson County
    BEDROCK GEOLOGY OF ALTENBURG QUADRANGLE Institute of Natural Resource Sustainability William W. Shilts, Executive Director JACKSON COUNTY, ILLINOIS AND PERRY COUNTY, MISSOURI STATEMAP Altenburg-BG ILLINOIS STATE GEOLOGICAL SURVEY E. Donald McKay III, Interim Director Mary J. Seid, Joseph A. Devera, Allen L. Weedman, and Dewey H. Amos 2009 360 GEOLOGIC UNITS ) ) ) 14 Qal Alluvial deposits ) 13 18 Quaternary Pleistocene and Holocene 17 360 ) 15 360 16 14 0 36 ) 13 Qf Fan deposits ) Unconformity Qal ) & 350 tl Lower Tradewater Formation Atokan ) ) Pennsylvanian 360 ) &cv Caseyville Formation Morrowan 24 360 ) Unconformity ) 17 Upper Elviran undivided, Meu ) Waltersburg to top of Degonia 19 20 Qal 21 22 23 ) 24 ) Mv Vienna Limestone 360 o ) 3 Mts ) 350 Mts Tar Springs Sandstone ) 20 360 ) Mgd 360 30 ) Mgd Glen Dean Limestone ) 21 350 360 Mts 29 ) Qal Hardinsburg Sandstone and J N Mhg Chesterian ) Golconda Formations h Æ Qal Mav anc 28 27 Br ) N oJ 26 25 JN 85 N ) Cypress Sandstone through J Mcpc Dsl 500 Paint Creek Formation JN N ) J o Mts N 5 J s ) Dgt 600 J N 70 J N Mgd Yankeetown Formation s ) Myr Db 80 28 Æ and Renault Sandstone N J 29 N J N ) Sb J Mgd Mississippian o Dgt Ssc 25 Clines o N 25 Msg 27 ) Qal J 80 s 3 Mav Aux Vases Sandstone N J N Mts o MILL J MISSISSIPPI 34 ) Qal J N ) N J Dsl 35 N 26 J o N 25 J Mgd Mgd ) Msg Ste. Genevieve Limestone 500 o Db DITCH J 20 Mgd N N N ) J J o RIVER o N 600 J 80 N ) 10 o J Mav Æ Msl St.
    [Show full text]
  • Stratigraphic Succession in Lower Peninsula of Michigan
    STRATIGRAPHIC DOMINANT LITHOLOGY ERA PERIOD EPOCHNORTHSTAGES AMERICANBasin Margin Basin Center MEMBER FORMATIONGROUP SUCCESSION IN LOWER Quaternary Pleistocene Glacial Drift PENINSULA Cenozoic Pleistocene OF MICHIGAN Mesozoic Jurassic ?Kimmeridgian? Ionia Sandstone Late Michigan Dept. of Environmental Quality Conemaugh Grand River Formation Geological Survey Division Late Harold Fitch, State Geologist Pennsylvanian and Saginaw Formation ?Pottsville? Michigan Basin Geological Society Early GEOL IN OG S IC A A B L N Parma Sandstone S A O G C I I H E C T I Y Bayport Limestone M Meramecian Grand Rapids Group 1936 Late Michigan Formation Stratigraphic Nomenclature Project Committee: Mississippian Dr. Paul A. Catacosinos, Co-chairman Mark S. Wollensak, Co-chairman Osagian Marshall Sandstone Principal Authors: Dr. Paul A. Catacosinos Early Kinderhookian Coldwater Shale Dr. William Harrison III Robert Reynolds Sunbury Shale Dr. Dave B.Westjohn Mark S. Wollensak Berea Sandstone Chautauquan Bedford Shale 2000 Late Antrim Shale Senecan Traverse Formation Traverse Limestone Traverse Group Erian Devonian Bell Shale Dundee Limestone Middle Lucas Formation Detroit River Group Amherstburg Form. Ulsterian Sylvania Sandstone Bois Blanc Formation Garden Island Formation Early Bass Islands Dolomite Sand Salina G Unit Paleozoic Glacial Clay or Silt Late Cayugan Salina F Unit Till/Gravel Salina E Unit Salina D Unit Limestone Salina C Shale Salina Group Salina B Unit Sandy Limestone Salina A-2 Carbonate Silurian Salina A-2 Evaporite Shaley Limestone Ruff Formation
    [Show full text]
  • Columnals (PDF)
    2248 22482 2 4 V. INDEX OF COLUMNALS 8 Remarks: In this section the stratigraphic range given under the genus is the compiled range of all named species based solely on columnals assigned to the genus. It should be noted that this range may and often differs considerably from the range given under the same genus in Section I, because that range is based on species identified on cups or crowns. All other abbreviations and format follow that of Section I. Generic names followed by the type species are based on columnals. Genera, not followed by the type species, are based on cups and crowns as given in Section I. There are a number of unlisted columnal taxa from the literature that are indexed as genera recognized on cups and crowns. Bassler and Moodey (1943) did not index columnal taxa that were not new names or identified genera with the species unnamed. I have included some of the omissions of Bassler and Moodey, but have not made a search of the extensive literature specifically for the omitted citations because of time constraints. Many of these unlisted taxa are illustrated in the early state surveys of the eastern and central United States. Many of the columnal species assigned to genera based on cups or crowns are incorrect assignments. An uncertain, but significant, number of the columnal genera are synonyms of other columnal genera as they are based on different parts of the stem of a single taxon. Also a number of the columnal genera are synonyms of genera based on cups and crowns as they come from more distal parts of the stem not currently known to be associated with the cup or crown.
    [Show full text]
  • X Hydrogeologic Framework and Geochemistry of Ground Water
    U.S. DEPARTMENT OF THE INTERIOR PREPARED IN COOPERATION WITH THE WATER-RESOURCES INVESTIGATIONS REPORT 02-4123 U.S. GEOLOGICAL SURVEY U.S. DEPARTMENT OF THE NAVY, SOUTHERN DIVISION, SHEET 1 of 3 NAVAL FACILITIES ENGINEERING COMMAND Taylor. C.J., and Hostettler, F.D., 2002, Hydrogeologic Framework and Geochemistry of Ground Water and Petroleum in the Silurian-Devonian Carbonate Aquifer, South-Central Louisville, Kentucky science USGSfor a changing world INTRODUCTION (A) (B) (C) (D) Previously published investigations concerning the ground-water resources HOLE DIAMETER, ACOUSTIC HOLE DIAMETER. ACOUSTIC HOLE DIAMETER. ACOUSTIC HOLE DIAMETER, ACOUSTIC of the city of Louisville and Jefferson County, Kentucky, have mostly focused on IN INCHES LITHOLOGY TELEVIEWER IN INCHES LITHOLOGY TELEVIEWER IN INCHES LITHOLOGY TELEVIEWER IN INCHES LITHOLOGY TELEVIEWER the highly productive Ohio River alluvial aquifer (Rorabaugh, 1956; Walker, 1957; Bell. 1966: Unthank and others, 1995). In contrast, relatively little attention has been given to the Ordovician and Silurian-Devonian carbonate aquifers that 10h X 10.4 underlie much of the Louisville and Jefferson County area (fig. I) because of their limited potential for water-supply development (Palmquist and Hall, 1960). LLJ LU O O However, detailed information about the ground-water quality and hydrogeology of £ the carbonate aquifer is needed by State and Federal environmental regulators and o: a: ^ ID private consultants for planning and conducting local environmental t,ite 5% CO C/3 t. * assessments and ground-water remediation. The Silurian-Devonian carbonate Q Q aquifer is of particular interest because it underlies much of the urbanized and 40;: 72%- industrialized areas of the city of Louisville, exhibits moderately well-developed NF karst, and is potentially vulnerable to human-induced contamination.
    [Show full text]
  • Preliminary Geological Feasibility Report
    R. L. LANGENHEfM, JR. EGN 111 DEPT. GEOL. UNIV. ILLINOIS 234 N.H. B., 1301 W. GREEN ST. URBANA, ILLINOIS 61801 Geological-Geotechnical Studies for Siting the Superconducting Super Collider in Illinois Preliminary Geological Feasibility Report J. P. Kempton, R.C. Vaiden, D.R. Kolata P.B. DuMontelle, M.M. Killey and R.A. Bauer Maquoketa Group Galena-Platteville Groups Illinois Department of Energy and Natural Resources ENVIRONMENTAL GEOLOGY NOTES 111 STATE GEOLOGICAL SURVEY DIVISION 1985 Geological-Geotechnical Studies for Siting the Superconducting Super Collider in Illinois Preliminary Geological Feasibility Report J.P. Kempton, R.C. Vaiden, D.R. Kolata P.B. DuMontelle, M.M. Killey and R.A. Bauer ILLINOIS STATE GEOLOGICAL SURVEY Morris W. Leighton, Chief Natural Resources Building 615 East Peabody Drive Champaign, Illinois 61820 ENVIRONMENTAL GEOLOGY NOTES 111 1985 Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/geologicalgeotec1 1 1 kemp 1 INTRODUCTION 1 Superconducting Super Collider 1 Proposed Site in Illinois 2 Geologic and Hydrogeologic Factors 3 REGIONAL GEOLOGIC SETTING 5 Sources of Data 5 Geologic Framework 6 GEOLOGIC FRAMEWORK OF THE ILLINOIS SITE 11 General 1 Bedrock 12 Cambrian System o Ordovician System o Silurian System o Pennsylvanian System Bedrock Cross Sections 18 Bedrock Topography 19 Glacial Drift and Surficial Deposits 21 Drift Thickness o Classification, Distribution, and Description of the Drift o Banner Formation o Glasford Formation
    [Show full text]
  • Le Silurien Du Synclinorium De Moncorvo (Ne Du Portugal): Biostratigraphie Et Importance Paléogéographique
    LE SILURIEN DU SYNCLINORIUM DE MONCORVO (NE DU PORTUGAL): BIOSTRATIGRAPHIE ET IMPORTANCE PALÉOGÉOGRAPHIQUE GRACIELA NOEMI SARMIENTO, JOSÉ MANDEL PIÇARRA, JOSÉ ALMEIDA REBELO, MICHEL ROBARDET, JUAN CARLOS GUTIÉRREZ-MARCO, PETR STORCH & ISABEL RABANO SARMIENTO G.N., PIÇARRA, REBELO J.A., ROBARDET M., GUTIÉRREZ-MARCO J.C., STORCH P. & RABANO I. 1999. Le Silurien du synclinorium de Moncorvo (NE du Portugal): biostratigraphie et importance paléogéogra- phique. [The Silurian of the Moncorvo synclinorium (NE Portugal): biostratigraphy and paleogeographical impor- tance]. GEOBIOS, 32, 5: 749-767. Villeurbanne, le 31.10.1999. RÉSUMÉ - Dans la succession silurienne du synclinorium de Moncorvo (NW de la Zone Centre Ibérique, Portugal), des lentilles calcaires ont livré, dans deux localités distinctes, les premiers conodontes siluriens du Portugal. Dans la première localité, Kockelella cf. uariabilis, K. cf. absidata, Ozarkodina confluens, Oz. excauata et Pseudooneotod us beckmanni indiquent le Ludlow s.l. (ou peut-être le Wenlock supérieur ou terminal). Dans la seconde, Oulod us ele- gans, O. cf. cristagalli et Ozarkodina ex gr. remscheidensis indiquent le Pridoli, ce que confirme la présence, dans le même gisement, de scyphocrinoïdes du genre Scyphocrinites, et en particulier les lobolithes à cirrhes. Dans les schistes noirs à nodules sous-jacents aux calcaires, des graptolites montrent l'existence de niveaux du Llandovery moyen et supérieur (Aéronien et Télychien) et du Wenlock. La succession silurienne de Moncorvo apparaît ainsi comme une séquence condensée, analogue, en particulier, à celles qui existent dans la Zone d'Ossa Morena, en Sardaigne et dans certaines régions d'Afrique du Nord. Ces successions sont bien différentes de celles qui caracté- risent les régions centrales et méridionales de la Zone Centre Ibérique où, dans leur partie supérieure, les dépôts siluriens, de faible profondeur, sont beaucoup plus épais et plus riches en matériel terrigène grossier.
    [Show full text]
  • Geology for Environmental Planning . in Marion County
    GEOLOGY FOR ENVIRONMENTAL PLANNING . GEOLOGY--:~ .\RY IN MARION COUNTY, INDIANA SURVEY Special Report 19 c . 3 State of)pdiana Department of N'.atural Resources GEOLOGICAL SURVEY SCIENTIFIC AND TECHNICAL STAFF OF THE GEOLOGICAL SURVEY JOHN B. PATION, State Geologist MAURICE E. BIGGS, Assistant State Geologist MARY BETH FOX, Mineral Statistician COAL AND INDUSTRIAL MINERALS SECTION GEOLOGY SECTION DONALD D. CARR, Geologist and Head ROBERT H. SHAVER, Paleontologist and Head CURTIS H. AULT, Geologist and Associate Head HENRY H. GRAY, Head Stratigrapher PEl-YUAN CHEN, Geologist N. K. BLEUER, Glacial Geologist DONALD L. EGGERT, Geologist EDWIN J. HARTKE, Environmental Geologist GORDON S. FRASER, Geologist JOHN R. HILL, Glacial Geologist DENVER HARPER, Geologist CARL B. REXROAD, Paleontologist WALTER A. HASENMUELLER, Geologist NELSON R. SHAFFER, Geologist GEOPHYSICS SECTION PAUL IRWIN, Geological Assistant MAURICE E. BIGGS, Geophysicist and Head ROBERT F. BLAKELY, Geophysicist JOSEPH F. WHALEY, Geophysicist DRAFTINGANDPHOTOGRAPHYSECTION JOHN R. HELMS, Driller WILLIAM H. MORAN, Chief Draftsman and Head SAMUEL L. RIDDLE, Geophysical Assistant RICHARDT. HILL, Geological Draftsman ROGER L. PURCELL, Senior Geological Draftsman PETROLEUM SECTION GEORGE R. RINGER, Photographer G. L. CARPENTER, Geologist and Head WILBUR E. STALIONS, Artist-Draftsman ANDREW J. HREHA, Geologist BRIAN D. KEITH, Geologist EDUCATIONAL SERVICES SECTION STANLEY J. KELLER, Geologist R. DEE RARICK, Geologist and Head DAN M. SULLIVAN, Geologist JAMES T. CAZEE, Geological Assistant
    [Show full text]
  • Proceedings of the Indiana Academy of Science
    Thick High-Purity Limestone and Dolomite, In Carroll County, Indiana Curtis H. Ault and Donald D. Carr Indiana Geological Survey, Bloomington, Indiana 47401 Introduction Large -size high-purity dolomite deposits of reefal origin are well known in northern Indiana, northeastern Illinois, Michigan, and northwestern Ohio, but high-purity limestone reefal deposits are rare. Without doubt the original reef composition was limestone, but in many of the deposits diagenesis has changed the limestone to dolomite. Exceptions seem to occur, however, almost as accidents of nature, and because of this we were pleasantly surprised to discover two thick sections of high-purity carbonate rock in reefs of Silurian age, one limestone and one dolomite, about 6 miles apart in Carroll County (Fig. 1). Discovery of the high-purity limestone was propitious because the demand for high-purity carbonate rock for use in flue gas desulfurization, fluidized bed 50 MILES Figure 1 Indiana . Map of showing areas of Fort Wayne and Terre Haute Bank and locations ofsome exposed (dots) and buried (circles) Silurian reefs. Reef interpretations by Curtis H. Ault, John B. Droste, and Robert H. Shaver. 282 Geography and Geology 283 combustion, lime, glass raw materials, and chemical products has been increasing. The dolomite is currently being exploited for aggregate, but the limestone awaits commercial development. Background In 1973 the Indiana Geological Survey drilled a core hole (SDH 244) in the center of the Delphi reef as part of a study of reefs in northern Indiana by Curtis H. Ault and Robert H. Shaver. The reef was found to be 398 feet thick; this is the thickest continuous section of high-magnesium dolomite in Indiana ever analyzed by the Survey.
    [Show full text]
  • Xerox University Microfilms
    information t o u s e r s This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target” for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again - beginning below the first row and continuing on until complete. 4. The majority of usefs indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation.
    [Show full text]
  • Geology of Michigan and the Great Lakes
    35133_Geo_Michigan_Cover.qxd 11/13/07 10:26 AM Page 1 “The Geology of Michigan and the Great Lakes” is written to augment any introductory earth science, environmental geology, geologic, or geographic course offering, and is designed to introduce students in Michigan and the Great Lakes to important regional geologic concepts and events. Although Michigan’s geologic past spans the Precambrian through the Holocene, much of the rock record, Pennsylvanian through Pliocene, is miss- ing. Glacial events during the Pleistocene removed these rocks. However, these same glacial events left behind a rich legacy of surficial deposits, various landscape features, lakes, and rivers. Michigan is one of the most scenic states in the nation, providing numerous recre- ational opportunities to inhabitants and visitors alike. Geology of the region has also played an important, and often controlling, role in the pattern of settlement and ongoing economic development of the state. Vital resources such as iron ore, copper, gypsum, salt, oil, and gas have greatly contributed to Michigan’s growth and industrial might. Ample supplies of high-quality water support a vibrant population and strong industrial base throughout the Great Lakes region. These water supplies are now becoming increasingly important in light of modern economic growth and population demands. This text introduces the student to the geology of Michigan and the Great Lakes region. It begins with the Precambrian basement terrains as they relate to plate tectonic events. It describes Paleozoic clastic and carbonate rocks, restricted basin salts, and Niagaran pinnacle reefs. Quaternary glacial events and the development of today’s modern landscapes are also discussed.
    [Show full text]
  • Hydrogeology and Simulation of Ground-Water Flow in the Aquifers Underlying Belvidere, Illinois
    U.S. Department of the Interior U.S. Geological Survey Hydrogeology and Simulation of Ground-Water Flow in the Aquifers Underlying Belvidere, Illinois By P.C. Mills (U.S. Geological Survey), J.E. Nazimek (U.S. Geological Survey), K.J. Halford (U.S. Geological Survey), and D.J. Yeskis (U.S. Environmental Protection Agency) Water-Resources Investigations Report 01-4100 In cooperation with the U.S. Environmental Protection Agency Illinois Environmental Protection Agency Urbana, Illinois 2002 U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. For additional information write to: Copies of this report can be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Branch of Information Services 221 N. Broadway Avenue Box 25286 Urbana, IL 61801 Denver, CO 80225-0286 CONTENTS Abstract.................................................................................................................................................................................. 1 Introduction ........................................................................................................................................................................... 2 Purpose and Scope....................................................................................................................................................... 6
    [Show full text]