Bedrock Geology of Altenburg Quadrangle, Jackson County

Total Page:16

File Type:pdf, Size:1020Kb

Bedrock Geology of Altenburg Quadrangle, Jackson County BEDROCK GEOLOGY OF ALTENBURG QUADRANGLE Institute of Natural Resource Sustainability William W. Shilts, Executive Director JACKSON COUNTY, ILLINOIS AND PERRY COUNTY, MISSOURI STATEMAP Altenburg-BG ILLINOIS STATE GEOLOGICAL SURVEY E. Donald McKay III, Interim Director Mary J. Seid, Joseph A. Devera, Allen L. Weedman, and Dewey H. Amos 2009 360 GEOLOGIC UNITS ) ) ) 14 Qal Alluvial deposits ) 13 18 Quaternary Pleistocene and Holocene 17 360 ) 15 360 16 14 0 36 ) 13 Qf Fan deposits ) Unconformity Qal ) & 350 tl Lower Tradewater Formation Atokan ) ) Pennsylvanian 360 ) &cv Caseyville Formation Morrowan 24 360 ) Unconformity ) 17 Upper Elviran undivided, Meu ) Waltersburg to top of Degonia 19 20 Qal 21 22 23 ) 24 ) Mv Vienna Limestone 360 o ) 3 Mts ) 350 Mts Tar Springs Sandstone ) 20 360 ) Mgd 360 30 ) Mgd Glen Dean Limestone ) 21 350 360 Mts 29 ) Qal Hardinsburg Sandstone and J N Mhg Chesterian ) Golconda Formations h Æ Qal Mav anc 28 27 Br ) N oJ 26 25 JN 85 N ) Cypress Sandstone through J Mcpc Dsl 500 Paint Creek Formation JN N ) J o Mts N 5 J s ) Dgt 600 J N 70 J N Mgd Yankeetown Formation s ) Myr Db 80 28 Æ and Renault Sandstone N J 29 N J N ) Sb J Mgd Mississippian o Dgt Ssc 25 Clines o N 25 Msg 27 ) Qal J 80 s 3 Mav Aux Vases Sandstone N J N Mts o MILL J MISSISSIPPI 34 ) Qal J N ) N J Dsl 35 N 26 J o N 25 J Mgd Mgd ) Msg Ste. Genevieve Limestone 500 o Db DITCH J 20 Mgd N N N ) J J o RIVER o N 600 J 80 N ) 10 o J Mav Æ Msl St. Louis Limestone N 35 N J o J J N Ssc o N N 3 ) 36 12 J J o 35 500 Mts JN Dc 600 Mgd ) 600 N J o50 Msg N 500 o Ok J J N N Mv N 5 N J J 34 4 35 ) Msm Salem Limestone Og J 33 o 600 35 o N 500 N J J 32 35 N ) N J 36 Mfg J N Mgd N J LTJ o Dsl N N 10 J J o80 Mv Mts ) AU Warsaw Formation Msl N N 500 Mw Valmeyeran o J J 31 F 10 N ) Sb o J N Mav 500 &tl J JN Dgk N 40 J Mw N J Mhg LICKN Mkb J N Mgd ) Od N J - J N 5 500 Db 600 J 25 Keokuk Limestone and H o TZ ) N N N N N J N o J J J J 32 Mkb | N J N J J N Burlington Limestone J J N G N Mhg J Mcpc OwlNJ ) 400 600 500 NJ N N J J N ) Mfg J 5 Mav 6 ) ODENSCHA Mfg o J N N Fern Glen Formation H 20 N o ) o J J ) | 35 5 B ) Qal ) G Ssc Dc N Mav 1 ) J o38 Msg N ) N Unconformity ) J 1 J &cv ) Mav N 500 ) J N J J N ) Og o Dsl 30 ) Chattanooga Shale, MO ) 40 4 2 Myr Cr N Qal 500 Dc ) Db 3 o J Upper 5 ) eek (Grassy Creek Shale, IL) ) ) ) N N H J J 500 | ) o o20 ) 20 ) N Mav G ) J Dgt N 400 ) ) J ) 500 N J 2 J N N ) N J Dgk ) J o ) ) Mav ) ) Dsl St. Laurent Formation ) 600 Qal ) ) ) H Db ) N J ) J N Middle | Od ) Op ) N J ) G ) Sb ) Ok ) Dgt Grand Tower Limestone 400 o ) o ) Ssc ) J 15 N 5 o Myr &cv 8 ) 12 500 ) 0 40 o ) Ok 580 ) 560 H Og 400 ) 400 N ) J Myr Devonian Dcc Clear Creek Chert o | Msg Qal 5 J 8 ) N G Mav 12 ) 9 Ok ) 500 Og 11 ) 12 11 500 ) Br ) N J azeau ) 5 o 600 Meu AЈ Ok J Dbb Backbone Limestone (Illinois) ) N H ) 10 Dls | S N ) Little Saline Ls (Missouri) T J ) G E ) ) . ) G ) E ) &cv ) Lower N ) ) ) J N o4 N E J 500 V Msg ) IE ) ) V ) 500 H E ) Dgk Grassy Knob Chert ) 500 | N ) F J Msl ) N ) A J G 400 U ) ) J L N T N ) J J ) N Z ) O 400 ) N J ) ) H N N ) J ) | E ) Db Bailey Limestone ) o N J ) J J N 11 G Qal N Mav ) ) 400 ) Meu 2 Cr ) N ) Unconformity N J J ) ) ) ) ) ) J N ) ) o H eek | ) ) G 500 ) Qal Op J ) 2 N N Sb Bainbridge Formation Middle J ) ) o Qal o N Msg 25 400 J ) &cv JN Qf 2 15 Msg ) 500 Mav Silurian N ) J J N 14 Db N 13 ) N J J o N Msl ) Ssc Sexton Creek Limestone Lower Op Qal J 27 14 N JN o Op J Dsl J Msl Br 400 N azeau 400 N J Msg Unconformity o 2 N J Msg 400 J N N Girardeau Limestone N J J 3 500 15 N o J o Og and Maquoketa Formation o N Upper 17 J 15 o N 15 16 Db JÆ Dgt 5 JN Mav o Unconformity N Qal o J Dsl J N Dcc Op 3 N 500 N 500 13 J J J N N 12 J N Ok Kimmswick Limestone Op o J 23 N 8 N J NJ J N J NJ o N o Sb Od J Unconformity Qal 400 Dsl Ordovician Og N Qal 10 J o 500 3 500 N 24 J Dgt 25 500 N Od J N Ssc J Od Decorah Shale Middle Creek Op Dsl 400 N N Ok J Dsl J J N Æ N J 400 J N Msl o o 23 4 Op Plattin Limestone Qal N N 15 J J Od J N Msm 20 N Æ o 24 J Dsl 21 Dgt 400 22 10 Db N N J J 500 N Od 500 J J N 19 500 Dbb J Ok Æ N N 400 J J N N Dcc J J Dgt Od N Dcc J 20 N Og Ssc 600 J 520 N Db N Sb J 25 J Ok N Od 500 500 Db Symbols Op 540 500 27 26 500 25 31 Op 29 500 28 Qal J Ok N 600 30 Dgk 500 40 Strike and dip of bedding; number indicates 5 o Od o Db Dgk degree of dip A s80 Overturned bedding - showing strike and dip; number indicates degree of dip Base map compiled by Illinois State Geological Survey from digital data (Digital Line SCALE 1:24,000 Geology based on field work and map compilation by Mary J. Seid, Joseph A. Devera, 2008– Æ Abandoned quarry Graphs) provided by the United States Geological Survey. Topography compiled 1946. Pla- 1 1/ 2 0 1 MILE 2009, and Allen L. Weedman, 1991. Misouri geology by Dewey H. Amos, 1985. nimetry derived from imagery taken 1993. Public Land Survey System and survey control 1000 0 1000 2000 3000 4000 5000 6000 7000 FEET current as of 1996. partial field check by U.S. Forest Service 1996. Digital cartography by Jane E.J. Domier, Steven M. Radil, and Daniel R. Stevenson, Illinois State Line Symbols 1 .5 0 1 KILOMETER Geological Survey. dashed where inferred, dotted where concealed North American Datum of 1983 (NAD 83) Projection: Transverse Mercator This research was supported in part by the U.S. Geological Survey National Cooperative Geo- 10,000-foot ticks: Illinois State Plane Coordinate system, west zone (Transverse Mercator) logic Mapping Program (STATEMAP) under USGS award number 08HQAG0084. The views and Contact 1,000-meter ticks: Universal Transverse Mercator grid system, zone 16 BASE MAP CONTOUR INTERVAL 20 FEET conclusions contained in this document are those of the authors and should not be interpreted as SUPPLEMENTARY CONTOUR INTERVAL 10 FEET necessarily representing the official policies, either expressed or implied, of the U.S. Government. Fault; bar and ball on downthrown side NATIONAL GEODETIC VERTICAL DATUM OF 1929 Recommended citation: This map has not undergone the formal Illinois Geologic Quadrangle map review process. Anticline Seid, M.J., J.A. Devera, A.L. Weedman, and D.H. Amos, 2009, Bedrock Geology of Alten- Whether or when this map will be formally reviewed and published depends on the resources and burg Quadrangle, Jackson County, Illinois and Perry County, Missouri: Illinois State priorities of the ISGS. Geological Survey, USGS-STATEMAP contract report, 2 sheets, 1:24,000, report, 3 p. © 2009 University of Illinois Board of Trustees. All rights reserved. A AЈ Line of cross section For permission information, contact the Illinois State Geological Survey. The Illinois State Geological Survey and the University of Illinois make no guarantee, expressed or implied, regarding the correctness of the interpretations presented in this document and ac- cept no liability for the consequences of decisions made by others on the basis of the information presented here. The geologic interpretations are based on data that may vary with respect to accuracy of geographic location, the type and quantity of data available at each location, and the scientific and technical qualifications of the data sources. Maps or cross sections in this document are not meant to be enlarged. 1° ROAD CLASSIFICATION ADJOINING 1 2 3 QUADRANGLES MA TR 1 Rockwood, MO GNETIC NOR Primary highway, Light-duty road, hard or UE NOR 2 Raddle hard surface improved surface 3 Oraville 4 5 Secondary highway, Light-duty road, dirt 4 Crosstown, MO TH hard surface For more information contact: 5 Gorham T Unimproved road Institute of Natural Resource Sustainability 6 Oak Ridge, MO H Illinois State Geological Survey 6 7 8 7 Neelys Landing, MO 615 East Peabody Drive 8 Wolf Lake APPROXIMATE MEAN State Route County Route Champaign, Illinois 61820-6964 DECLINATION, 2009 (217) 244-2414 http://www.isgs.illinois.edu STATEMAP Altenburg-BG Sheet 1 of 2 E MEMBER THICKNESS A Alluvial deposits Sand, gravel, silt and clay.
Recommended publications
  • Two New Crinoids from Lower Mississippian Rocks in Southeastern Kentucky
    TWO NEW CRINOIDS FROM LOWER MISSISSIPPIAN ROCKS IN SOUTHEASTERN KENTUCKY BY GEORGE M. EHLERS AND ROBERT V. KESLING Reprinted from JOURNAL OF PALEONTOLOGY Val. 37, No. 5, September, 1963 JOURNALOF PALEONTOLOGY,V. 37, NO. 5, P. 1028-1041, PLS. 133,134, 3 TEXT-FIGS., SEPTEMBER,1963 TWO NEW CRINOIDS FROM L20\'C7ERMISSISSIPPIAN ROCKS IN SOUTHEASTERN KENTUCKY GEORGE M. EHLERS AKD ROBERT V. ICESLING Museum of Paleontology, The University of Michigan .~BsTR.~~T-AII~~~~specimens collected many years ago bl- the senior author and his students near Mill Springs, Kentucky, are a new species of Agaricocrinzis and a new speries of Actino- crinites. Although only one specimen of each is known, it is well preserved. The new Agnrico- crinus bears a resemblance to A. ponderoszts Wood, and the new Actinocriniles to four species described by Miller & Gurley: A. spergenensis, A. botuztosz~s,A. gibsoni, and A. shnronensis. A preliminary survey of species assigned to Agaricocrinz~ssuggests that revision of the genus is overdue. Although the occurrence of the specimens leaves some doubt as to their stratigraphic posi- tion, we conclude that they both probably weathered from the Fort Payne formation and rolled down the slope onto the New Providence, where they were found. The sites where the crinoids were picked up are now deeply inundated by water impounded by the Wolf Creek dam on the Cumberland River. INTRODUCTION onto the New Providence, \$here they were OTH of the new crinoids described here are found. rZt present, both the New Providence B from Lower Mississippian rocks in the valley formation and the I~asalbeds of the Fort Payne of the Cumberland River in Wayne and Russell are underwater at the type locality of the new Counties, Kentucky.
    [Show full text]
  • Stratigraphic Evaluation of the St. Joe-Boone Boundary Interval
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 8-2018 Stratigraphic Evaluation of the St. Joe-Boone Boundary Interval, Kinderhookian-Osagean Series, Lower Mississippian System, Tri-State Region, Southern Midcontinent Forrest Dalton McFarlin University of Arkansas, Fayetteville Follow this and additional works at: https://scholarworks.uark.edu/etd Part of the Geology Commons, and the Stratigraphy Commons Recommended Citation McFarlin, Forrest Dalton, "Stratigraphic Evaluation of the St. Joe-Boone Boundary Interval, Kinderhookian-Osagean Series, Lower Mississippian System, Tri-State Region, Southern Midcontinent" (2018). Theses and Dissertations. 2952. https://scholarworks.uark.edu/etd/2952 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Stratigraphic Evaluation of the St. Joe-Boone Boundary Interval, Kinderhookian-Osagean Series, Lower Mississippian System, Tri-State Region, Southern Midcontinent A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology by Forrest Dalton McFarlin Texas Christian University Bachelor of Science in Geology, 2015 August 2018 University of Arkansas This thesis is approved for recommendation to the Graduate Council. _____________________________________ Walter Manger, PhD Thesis Director _____________________________________ Adriana Potra, PhD Committee Member _____________________________________ Thomas McGilvery, PhD Committee Member ©2018 by Forrest Dalton McFarlin All Rights Reserved Abstract The Lower Mississippian interval comprises a single, third-order, eustatic cycle subdivided lithostratigraphically into the St. Joe Limestone (Hopkins 1893) and overlying Boone Formation (Branner 1891, Simonds 1891) with type areas in northern Arkansas.
    [Show full text]
  • Download Printable Version of the Geology and Why It Matters Story
    Geology and Why it Matters This story was made with Esri's Story Map Journal. Read the interactive version on the web at http://arcg.is/qrG8W. The geology, landforms and land features are extremely important components of watersheds. They influence water quality, hydrology and watershed resiliency. Every watershed has critical areas where water interacts with and mobilizes contaminants, including non-point and point source contributions to surface water bodies. Where and how nutrients, bacteria and/or pesticides are mobilized to reach surface water can be better understood through a careful study of subsurface hydrology, or hydrogeology, which, according to the Iowa Geological and Water Survey Bureau, “allows better identification for sources, pathways and delivery points for groundwater and contaminants transported through the watershed’s subsurface geological plumbing system.” Diagram courtesy of Iowa DNR Iowa Geological Survey The highly developed karst topography and highly permeable bedrock layers of the Upper Iowa River increase the depth from which actively circulating groundwater contributes to stream flows, making an understanding of the hydrogeology even more important. Fortunately, the Iowa Geological and Water Survey Bureau completed a detailed mapping project of bedrock geologic units, key subsurface horizons, and surficial karst features in the Iowa portion of the Upper Iowa River watershed in 2011. The project “provides information on the subsurface part of the watersheds, which is necessary for evaluating the vulnerability of groundwater to nonpoint-source contamination, the groundwater contributions to surface water contamination, and for targeting best management practices for water quality improvements.” The map on the right shows the surface elevation of bedrock in the state of Iowa and the Upper Iowa River Watershed.
    [Show full text]
  • Columnals (PDF)
    2248 22482 2 4 V. INDEX OF COLUMNALS 8 Remarks: In this section the stratigraphic range given under the genus is the compiled range of all named species based solely on columnals assigned to the genus. It should be noted that this range may and often differs considerably from the range given under the same genus in Section I, because that range is based on species identified on cups or crowns. All other abbreviations and format follow that of Section I. Generic names followed by the type species are based on columnals. Genera, not followed by the type species, are based on cups and crowns as given in Section I. There are a number of unlisted columnal taxa from the literature that are indexed as genera recognized on cups and crowns. Bassler and Moodey (1943) did not index columnal taxa that were not new names or identified genera with the species unnamed. I have included some of the omissions of Bassler and Moodey, but have not made a search of the extensive literature specifically for the omitted citations because of time constraints. Many of these unlisted taxa are illustrated in the early state surveys of the eastern and central United States. Many of the columnal species assigned to genera based on cups or crowns are incorrect assignments. An uncertain, but significant, number of the columnal genera are synonyms of other columnal genera as they are based on different parts of the stem of a single taxon. Also a number of the columnal genera are synonyms of genera based on cups and crowns as they come from more distal parts of the stem not currently known to be associated with the cup or crown.
    [Show full text]
  • Directory of Illinois Mineral Producers, and Maps of Extraction Sites 1997
    j:MH7 Directory of Illinois Mineral Producers, and Maps of Extraction Sites 1997 John M. Masters, Viju C. Ipe, Lisa R. Smith, and Michael Falter (Office of Mines and Minerals) Department of Natural Resources ILLINOIS STATE GEOLOGICAL SURVEY ILLINOIS MINERALS 117 1999 Directory of Illinois Mineral Producers, and Maps of Extraction 1997 John M. Masters, Viju C. Ipe, Lisa R. Smith, and Michael Faiter (Office of Mines and Minerals) Illinois Minerals 117 t<C?* 1999 %*+ noS§> linois State Geological Survey ^o^ ^<^ J * William W. Shilts, Chief v Natural Resources Building <& 615 East Peabody Drive ^ Champaign, IL 61820-6964 Phone:(217)333-4747 COVER: This large hydraulic dredge recovers sand and gravel from the Wisconsinan-age valley-train deposit in the background. Material is pumped in a slurry to a floating processing plant connected to the dredge. Products are then conveyed directly to barges for shipment to market (photo by J.M. Masters, August 1987). ILLIMOI MATURAL RESOURCES © Printed with soybean ink on recycled paper Printed by authority of the State of Illinois/1999/800 CONTENTS Introduction 1 Illinois Mineral Producers, by County 6 Illinois Mineral Producers, by Company 15 Illinois Mineral Producers, by Commodity 22 Barite 22 Cadmium 22 Cement 22 Clay products 23 Clay mines 24 Coal 25 Coke 28 Fluorspar 28 Fly ash 28 Glass products 30 Gypsum, calcined 31 Industrial sand mines 31 Iron oxide pigments 32 Iron and raw steel 32 Lime 33 Natural gas liquids 33 Peat 33 Perlite, expanded 34 Petroleum refineries 34 Sand and gravel 35 Slag 60
    [Show full text]
  • Geologic Resources Inventory Ancillary Map Information Document for Little River Canyon National Preserve
    U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Directorate Geologic Resources Division Little River Canyon National Preserve GRI Ancillary Map Information Document Produced to accompany the Geologic Resources Inventory (GRI) Digital Geologic Data for Little River Canyon National Preserve liri_geology.pdf Version: 6/30/2020 I Little River Canyon National Preserve Geologic Resources Inventory Ancillary Map Information Document for Little River Canyon National Preserve Table of Contents Geologic Reso..u..r..c..e..s.. .I.n..v..e..n..t.o...r.y.. .M...a..p.. .D...o..c..u..m...e...n..t............................................................................ 1 About the NPS.. .G...e..o..l.o..g..i.c... .R..e..s..o..u...r.c..e..s.. .I.n..v..e..n...t.o..r.y.. .P...r.o..g...r.a..m............................................................... 3 GRI Digital Ma.p..s.. .a..n...d.. .S..o..u...r.c..e.. .M...a..p.. .C...i.t.a..t..i.o..n..s.................................................................................. 5 Index Ma..p........................................................................................................................................................................ 6 Map Unit List ................................................................................................................................... 7 Map Unit Desc..r.i.p..t.i.o...n..s...................................................................................................................... 9 Qal - Allu..v..iu..m... .a..n..d.. .l.o..w... .t.e..r.r.a..c..e.. .d..e..p..o..s..i.t.s. .(..Q..u..a..t.e..r..n..a..r.y.)..................................................................................................... 9 Tal - Fluv..i.a..l. .d..e..p..o..s.i.t.s.. .(.T..e..r..t.ia..r..y.)........................................................................................................................................ 9 PNpv - P.o..t.t.s..v..i.l.le.. .F...o..r.m...a..t.i.o..n.
    [Show full text]
  • Carboniferous Formations and Faunas of Central Montana
    Carboniferous Formations and Faunas of Central Montana GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 Carboniferous Formations and Faunas of Central Montana By W. H. EASTON GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 A study of the stratigraphic and ecologic associa­ tions and significance offossils from the Big Snowy group of Mississippian and Pennsylvanian rocks UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows : Eastern, William Heyden, 1916- Carboniferous formations and faunas of central Montana. Washington, U.S. Govt. Print. Off., 1961. iv, 126 p. illus., diagrs., tables. 29 cm. (U.S. Geological Survey. Professional paper 348) Part of illustrative matter folded in pocket. Bibliography: p. 101-108. 1. Paleontology Montana. 2. Paleontology Carboniferous. 3. Geology, Stratigraphic Carboniferous. I. Title. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, B.C. CONTENTS Page Page Abstract-__________________________________________ 1 Faunal analysis Continued Introduction _______________________________________ 1 Faunal relations ______________________________ 22 Purposes of the study_ __________________________ 1 Long-ranging elements...__________________ 22 Organization of present work___ __________________ 3 Elements of Mississippian affinity.._________ 22 Acknowledgments--.-------.- ___________________
    [Show full text]
  • Paleozoic Rocks Antelope Valley Eureka and Nye Counties Nevada
    :It k 'I! ' Paleozoic Rocks Antelope Valley Eureka and Nye Counties Nevada GEOLOGICAL SURVEY PROFESSIONAL PAPER 423 Paleozoic Rocks of Antelope Valley Eureka and Nye Counties Nevada By CHARLES W. MERRIAM GEOLOGICAL SURVEY PROFESSIONAL PAPER 423 P,rinciples of stratigraphy applied in descriptive study of the Central Great Basin Paleozoic column UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Page Silurian system ____________________________________ _ Abstract------------------------------------------- 1 36 Introduction. _____________________________________ _ 2 General features-------------------------------- 36 Geologic setting ______________ ------ ___ --------- 2 Roberts Mountains formation ___________________ _ 37 History of investigation ________________________ _ 5 Lone Mountain dolomite ______ ---_-------------- 39 Purpose and scope _____________ -- ______ ------ --- 6 Devonian system ______________ ---- __ - _- ___ - _------- 41 Acknowledgments ______________________________ _ 6 General features _____________ - ___________ -_----- 41 Geologic structure as related to stratigraphy __________ _ 6 Western Helderberg age limestones of the Monitor Paleontologic studies ______ ..:. _______ ~ ________________ _ 9 · Range ______ - _.- ___ --------------------------- 42 The Paleozoic column at Antelope Valley
    [Show full text]
  • Geohydrology of the Weldon Spring Ordnance Works, St. Charles County, Missouri
    Geohydrology of the Weldon Spring Ordnance Works, St. Charles County, Missouri By DOUGLAS N. MUGEL U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 96-4171 Prepared in cooperation with the U.S. ARMY CORPS OF ENGINEERS Rolla, Missouri 1996 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. For addtional information write to: Copies of this report can be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Information Services 1400 Independence Road Box 25286 Mail Stop 100 Federal Center Rolla, MO 65401 Denver, CO 80225 CONTENTS Abstract...........................................................................................~^ 1 Introduction ..................................................................................................................................^ 2 Purpose and Scope....................................................................................................................................................... 4 Physical Setting of the Weldon Spring Ordnance Works ............................................................................................ 4 Previous Studies.......................................................................................................................................................... 4 Approach ..................................................................................................................................................................^
    [Show full text]
  • Geology and Oil Production in the Tuscola Area, Illinois
    124 KUItOfS GEOLOGICAL S SURVEY LIBRARY 14.GS: 4^ ^ CIR 424 :. 1 STATE OF ILLINOIS DEPARTMENT OF REGISTRATION AND EDUCATION Geology and Oil Production in the Tuscola Area, Illinois H. M. Bristol Ronald Prescott ILLINOIS STATE GEOLOGICAL SURVEY John C. Frye, Chief URBANA CIRCULAR 424 1968 Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/geologyoilproduc424bris GEOLOGY AND OIL PRODUCTION IN THE TUSCOLA AREA, ILLINOIS H. M. Bristol and Ronald Prescott ABSTRACT The Tuscola Anticline, in east-central Illinois, lies astride the complex LaSalle Anticlinal Belt and dips steeply westward into the Fairfield Basin and gradually eastward into the Murdock Syncline. The anticline is broken into two structural highs, the Hayes Dome and the Shaw Dome. Pleistocene sediments, 50 to 250 feet thick, cover the area. Pennsylvanian sediments cover much of the area, thinning to expose an inlier of Mississippian, Devonian, and Silurian rock north of Tuscola. The basal Cambrian for- mation, the Mt. Simon Sandstone, is penetrated by only two wells. Oil production from the Kimmswick (Trenton) com- menced in 1962 from the R. D. Ernest No. 1 Schweighart well, near Hayes, and as of January 1, 1968, approximately 30 wells were producing oil. Cumulative oil production as of January 1, 1968, is approximately 94,000 barrels. The potential pay zone is confined to the upper 5 to 100 feet of structure and to the upper 125 feet of the Kimmswick, whose permeability ranges from 0.1 to 2. millidarcys, av- eraging 0.6, and whose porosity ranges from 2 to 12 per- cent.
    [Show full text]
  • Groundwater Issues in the Paleozoic Plateau a Taste of Karst, a Modicum of Geology, and a Whole Lot of Scenery
    GGroundwaterroundwater IssuesIssues inin tthehe PaleozoicPaleozoic PlateauPlateau A Taste of Karst, a Modicum of Geology, and a Whole Lot of Scenery Iowa Groundwater Association Field Trip Guidebook No. 1 Iowa Geological and Water Survey Guidebook Series No. 27 Dunning Spring, near Decorah in Winneshiek County, Iowa September 29, 2008 In Conjunction with the 53rd Annual Midwest Ground Water Conference Grand River Center, Dubuque, Iowa, September 30 – October 2, 2008 Groundwater Issues in the Paleozoic Plateau A Taste of Karst, a Modicum of Geology, and a Whole Lot of Scenery Iowa Groundwater Association Field Trip Guidebook No. 1 Iowa Geological and Water Survey Guidebook Series No. 27 In Conjunction with the 53rd Annual Midwest Ground Water Conference Grand River Center, Dubuque, Iowa, September 30 – October 2, 2008 With contributions by M.K. Anderson Robert McKay Iowa DNR-Water Supply Engineering Iowa DNR-Geological and Water Survey Bruce Blair Jeff Myrom Iowa DNR-Forestry Iowa DNR-Solid Waste Michael Bounk Eric O’Brien Iowa DNR-Geological and Water Survey Iowa DNR-Geological and Water Survey Karen Osterkamp Lora Friest Iowa DNR-Fisheries Northeast Iowa Resource Conservation and Development Jean C. Prior Iowa DNR-Geological and Water Survey James Hedges Luther College James Ranum Natural Resources Conservation Service John Hogeman Winneshiek County Landfi ll Operator Robert Rowden Iowa DNR-Geological and Water Survey Claire Hruby Iowa DNR-Geographic Information Systems Joe Sanfi lippo Iowa DNR-Manchester Field Offi ce Bill Kalishek Gary Siegwarth Iowa DNR-Fisheries Iowa DNR-Fisheries George E. Knudson Mary Skopec Luther College Iowa DNR-Geological and Water Survey Bob Libra Stephanie Surine Iowa DNR-Geological and Water Survey Iowa DNR-Geological and Water Survey Huaibao Liu Paul VanDorpe Iowa DNR-Geological and Water Survey Iowa DNR-Geological and Water Survey Iowa Department of Natural Resources Richard Leopold, Director September 2008 CONTENTS INTRODUCTION .
    [Show full text]
  • Xerox University Microfilms
    information t o u s e r s This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target” for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again - beginning below the first row and continuing on until complete. 4. The majority of usefs indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation.
    [Show full text]