Preliminary Hydrogeologic Evaluation of the Cincinnati Arch Region For
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stratigraphic Succession in Lower Peninsula of Michigan
STRATIGRAPHIC DOMINANT LITHOLOGY ERA PERIOD EPOCHNORTHSTAGES AMERICANBasin Margin Basin Center MEMBER FORMATIONGROUP SUCCESSION IN LOWER Quaternary Pleistocene Glacial Drift PENINSULA Cenozoic Pleistocene OF MICHIGAN Mesozoic Jurassic ?Kimmeridgian? Ionia Sandstone Late Michigan Dept. of Environmental Quality Conemaugh Grand River Formation Geological Survey Division Late Harold Fitch, State Geologist Pennsylvanian and Saginaw Formation ?Pottsville? Michigan Basin Geological Society Early GEOL IN OG S IC A A B L N Parma Sandstone S A O G C I I H E C T I Y Bayport Limestone M Meramecian Grand Rapids Group 1936 Late Michigan Formation Stratigraphic Nomenclature Project Committee: Mississippian Dr. Paul A. Catacosinos, Co-chairman Mark S. Wollensak, Co-chairman Osagian Marshall Sandstone Principal Authors: Dr. Paul A. Catacosinos Early Kinderhookian Coldwater Shale Dr. William Harrison III Robert Reynolds Sunbury Shale Dr. Dave B.Westjohn Mark S. Wollensak Berea Sandstone Chautauquan Bedford Shale 2000 Late Antrim Shale Senecan Traverse Formation Traverse Limestone Traverse Group Erian Devonian Bell Shale Dundee Limestone Middle Lucas Formation Detroit River Group Amherstburg Form. Ulsterian Sylvania Sandstone Bois Blanc Formation Garden Island Formation Early Bass Islands Dolomite Sand Salina G Unit Paleozoic Glacial Clay or Silt Late Cayugan Salina F Unit Till/Gravel Salina E Unit Salina D Unit Limestone Salina C Shale Salina Group Salina B Unit Sandy Limestone Salina A-2 Carbonate Silurian Salina A-2 Evaporite Shaley Limestone Ruff Formation -
Columnals (PDF)
2248 22482 2 4 V. INDEX OF COLUMNALS 8 Remarks: In this section the stratigraphic range given under the genus is the compiled range of all named species based solely on columnals assigned to the genus. It should be noted that this range may and often differs considerably from the range given under the same genus in Section I, because that range is based on species identified on cups or crowns. All other abbreviations and format follow that of Section I. Generic names followed by the type species are based on columnals. Genera, not followed by the type species, are based on cups and crowns as given in Section I. There are a number of unlisted columnal taxa from the literature that are indexed as genera recognized on cups and crowns. Bassler and Moodey (1943) did not index columnal taxa that were not new names or identified genera with the species unnamed. I have included some of the omissions of Bassler and Moodey, but have not made a search of the extensive literature specifically for the omitted citations because of time constraints. Many of these unlisted taxa are illustrated in the early state surveys of the eastern and central United States. Many of the columnal species assigned to genera based on cups or crowns are incorrect assignments. An uncertain, but significant, number of the columnal genera are synonyms of other columnal genera as they are based on different parts of the stem of a single taxon. Also a number of the columnal genera are synonyms of genera based on cups and crowns as they come from more distal parts of the stem not currently known to be associated with the cup or crown. -
Tremichnus in Crinoid Pluricolumnals from the Silurian of Western Estonia (Baltica)
Carnets Geol. 15 (17) Tremichnus in crinoid pluricolumnals from the Silurian of western Estonia (Baltica) Olev VINN 1 Mark A. WILSON 2 William I. AUSICH 3 Ursula TOOM 4 Abstract: Rare pits attributed to Tremichnus have been found in crinoids from the Silurian of Estonia. The Rhuddanian Tremichnus is the earliest symbiont in crinoid columnals of Baltica. These pits presu- mably were domiciles of unknown organisms. Tremichnus had a negative effect on the host crinoid as demonstrated by swollen columnals. Tremichnus in the Silurian of Estonia is less common than similar traces in the Silurian of nearby Gotland. The most important aspect of this study is the rarity of this interaction in these samples in contrast to most other samples of comparable age elsewhere. These structures have a very patchy distribution. Key Words: Trace fossils; Tremichnus; symbiosis; crinoids; Silurian; Estonia. Citation: VINN O., WILSON M.A., AUSICH W.I. & TOOM U. (2015).- Tremichnus in crinoid pluricolumnals from the Silurian of western Estonia (Baltica).- Carnets Geol., Madrid, vol. 15, nº 17, p. 239-243. Résumé : Tremichnus dans des segments de tiges de crinoïdes du Silurien d'Estonie occiden- tale (bouclier balte).- Quelques petites cavités attribuées à Tremichnus ont été trouvées dans des crinoïdes provenant du Silurien d'Estonie. Ce Tremichnus rhuddanien est le symbiote le plus ancien ob- servé dans des segments de tiges de crinoïdes du bouclier balte. Ces cavités correspondent vraisem- blablement à des habitats d'organismes inconnus. Tremichnus a eu un impact négatif sur le crinoïde hôte comme en attestent les renflements des tiges. Tremichnus est moins fréquent dans le Silurien d'Estonie que des traces semblables dans le Silurien du Gotland voisin. -
X Hydrogeologic Framework and Geochemistry of Ground Water
U.S. DEPARTMENT OF THE INTERIOR PREPARED IN COOPERATION WITH THE WATER-RESOURCES INVESTIGATIONS REPORT 02-4123 U.S. GEOLOGICAL SURVEY U.S. DEPARTMENT OF THE NAVY, SOUTHERN DIVISION, SHEET 1 of 3 NAVAL FACILITIES ENGINEERING COMMAND Taylor. C.J., and Hostettler, F.D., 2002, Hydrogeologic Framework and Geochemistry of Ground Water and Petroleum in the Silurian-Devonian Carbonate Aquifer, South-Central Louisville, Kentucky science USGSfor a changing world INTRODUCTION (A) (B) (C) (D) Previously published investigations concerning the ground-water resources HOLE DIAMETER, ACOUSTIC HOLE DIAMETER. ACOUSTIC HOLE DIAMETER. ACOUSTIC HOLE DIAMETER, ACOUSTIC of the city of Louisville and Jefferson County, Kentucky, have mostly focused on IN INCHES LITHOLOGY TELEVIEWER IN INCHES LITHOLOGY TELEVIEWER IN INCHES LITHOLOGY TELEVIEWER IN INCHES LITHOLOGY TELEVIEWER the highly productive Ohio River alluvial aquifer (Rorabaugh, 1956; Walker, 1957; Bell. 1966: Unthank and others, 1995). In contrast, relatively little attention has been given to the Ordovician and Silurian-Devonian carbonate aquifers that 10h X 10.4 underlie much of the Louisville and Jefferson County area (fig. I) because of their limited potential for water-supply development (Palmquist and Hall, 1960). LLJ LU O O However, detailed information about the ground-water quality and hydrogeology of £ the carbonate aquifer is needed by State and Federal environmental regulators and o: a: ^ ID private consultants for planning and conducting local environmental t,ite 5% CO C/3 t. * assessments and ground-water remediation. The Silurian-Devonian carbonate Q Q aquifer is of particular interest because it underlies much of the urbanized and 40;: 72%- industrialized areas of the city of Louisville, exhibits moderately well-developed NF karst, and is potentially vulnerable to human-induced contamination. -
Geologic Cross Section C–C' Through the Appalachian Basin from Erie
Geologic Cross Section C–C’ Through the Appalachian Basin From Erie County, North-Central Ohio, to the Valley and Ridge Province, Bedford County, South-Central Pennsylvania By Robert T. Ryder, Michael H. Trippi, Christopher S. Swezey, Robert D. Crangle, Jr., Rebecca S. Hope, Elisabeth L. Rowan, and Erika E. Lentz Scientific Investigations Map 3172 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Ryder, R.T., Trippi, M.H., Swezey, C.S. Crangle, R.D., Jr., Hope, R.S., Rowan, E.L., and Lentz, E.E., 2012, Geologic cross section C–C’ through the Appalachian basin from Erie County, north-central Ohio, to the Valley and Ridge province, Bedford County, south-central Pennsylvania: U.S. Geological Survey Scientific Investigations Map 3172, 2 sheets, 70-p. -
Le Silurien Du Synclinorium De Moncorvo (Ne Du Portugal): Biostratigraphie Et Importance Paléogéographique
LE SILURIEN DU SYNCLINORIUM DE MONCORVO (NE DU PORTUGAL): BIOSTRATIGRAPHIE ET IMPORTANCE PALÉOGÉOGRAPHIQUE GRACIELA NOEMI SARMIENTO, JOSÉ MANDEL PIÇARRA, JOSÉ ALMEIDA REBELO, MICHEL ROBARDET, JUAN CARLOS GUTIÉRREZ-MARCO, PETR STORCH & ISABEL RABANO SARMIENTO G.N., PIÇARRA, REBELO J.A., ROBARDET M., GUTIÉRREZ-MARCO J.C., STORCH P. & RABANO I. 1999. Le Silurien du synclinorium de Moncorvo (NE du Portugal): biostratigraphie et importance paléogéogra- phique. [The Silurian of the Moncorvo synclinorium (NE Portugal): biostratigraphy and paleogeographical impor- tance]. GEOBIOS, 32, 5: 749-767. Villeurbanne, le 31.10.1999. RÉSUMÉ - Dans la succession silurienne du synclinorium de Moncorvo (NW de la Zone Centre Ibérique, Portugal), des lentilles calcaires ont livré, dans deux localités distinctes, les premiers conodontes siluriens du Portugal. Dans la première localité, Kockelella cf. uariabilis, K. cf. absidata, Ozarkodina confluens, Oz. excauata et Pseudooneotod us beckmanni indiquent le Ludlow s.l. (ou peut-être le Wenlock supérieur ou terminal). Dans la seconde, Oulod us ele- gans, O. cf. cristagalli et Ozarkodina ex gr. remscheidensis indiquent le Pridoli, ce que confirme la présence, dans le même gisement, de scyphocrinoïdes du genre Scyphocrinites, et en particulier les lobolithes à cirrhes. Dans les schistes noirs à nodules sous-jacents aux calcaires, des graptolites montrent l'existence de niveaux du Llandovery moyen et supérieur (Aéronien et Télychien) et du Wenlock. La succession silurienne de Moncorvo apparaît ainsi comme une séquence condensée, analogue, en particulier, à celles qui existent dans la Zone d'Ossa Morena, en Sardaigne et dans certaines régions d'Afrique du Nord. Ces successions sont bien différentes de celles qui caracté- risent les régions centrales et méridionales de la Zone Centre Ibérique où, dans leur partie supérieure, les dépôts siluriens, de faible profondeur, sont beaucoup plus épais et plus riches en matériel terrigène grossier. -
Geology for Environmental Planning . in Marion County
GEOLOGY FOR ENVIRONMENTAL PLANNING . GEOLOGY--:~ .\RY IN MARION COUNTY, INDIANA SURVEY Special Report 19 c . 3 State of)pdiana Department of N'.atural Resources GEOLOGICAL SURVEY SCIENTIFIC AND TECHNICAL STAFF OF THE GEOLOGICAL SURVEY JOHN B. PATION, State Geologist MAURICE E. BIGGS, Assistant State Geologist MARY BETH FOX, Mineral Statistician COAL AND INDUSTRIAL MINERALS SECTION GEOLOGY SECTION DONALD D. CARR, Geologist and Head ROBERT H. SHAVER, Paleontologist and Head CURTIS H. AULT, Geologist and Associate Head HENRY H. GRAY, Head Stratigrapher PEl-YUAN CHEN, Geologist N. K. BLEUER, Glacial Geologist DONALD L. EGGERT, Geologist EDWIN J. HARTKE, Environmental Geologist GORDON S. FRASER, Geologist JOHN R. HILL, Glacial Geologist DENVER HARPER, Geologist CARL B. REXROAD, Paleontologist WALTER A. HASENMUELLER, Geologist NELSON R. SHAFFER, Geologist GEOPHYSICS SECTION PAUL IRWIN, Geological Assistant MAURICE E. BIGGS, Geophysicist and Head ROBERT F. BLAKELY, Geophysicist JOSEPH F. WHALEY, Geophysicist DRAFTINGANDPHOTOGRAPHYSECTION JOHN R. HELMS, Driller WILLIAM H. MORAN, Chief Draftsman and Head SAMUEL L. RIDDLE, Geophysical Assistant RICHARDT. HILL, Geological Draftsman ROGER L. PURCELL, Senior Geological Draftsman PETROLEUM SECTION GEORGE R. RINGER, Photographer G. L. CARPENTER, Geologist and Head WILBUR E. STALIONS, Artist-Draftsman ANDREW J. HREHA, Geologist BRIAN D. KEITH, Geologist EDUCATIONAL SERVICES SECTION STANLEY J. KELLER, Geologist R. DEE RARICK, Geologist and Head DAN M. SULLIVAN, Geologist JAMES T. CAZEE, Geological Assistant -
Xerox University Microfilms
information t o u s e r s This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target” for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again - beginning below the first row and continuing on until complete. 4. The majority of usefs indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. -
B2150-B FRONT Final
Bedrock Geology of the Paducah 1°×2° CUSMAP Quadrangle, Illinois, Indiana, Kentucky, and Missouri By W. John Nelson THE PADUCAH CUSMAP QUADRANGLE: RESOURCE AND TOPICAL INVESTIGATIONS Martin B. Goldhaber, Project Coordinator T OF EN TH TM E U.S. GEOLOGICAL SURVEY BULLETIN 2150–B R I A N P T E E R D . I O S . R A joint study conducted in collaboration with the Illinois State Geological U Survey, the Indiana Geological Survey, the Kentucky Geological Survey, and the Missouri M 9 Division of Geology and Land Survey A 8 4 R C H 3, 1 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1998 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Mark Schaefer, Acting Director For sale by U.S. Geological Survey, Information Services Box 25286, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging-in-Publication Data Nelson, W. John Bedrock geology of the Paducah 1°×2° CUSMAP Quadrangle, Illinois, Indiana, Ken- tucky, and Missouri / by W. John Nelson. p. cm.—(U.S. Geological Survey bulletin ; 2150–B) (The Paducah CUSMAP Quadrangle, resource and topical investigations ; B) Includes bibliographical references. Supt. of Docs. no. : I 19.3:2150–B 1. Geology—Middle West. I. Title. II. Series. III. Series: The Paducah CUSMAP Quadrangle, resource and topical investigations ; B QE75.B9 no. 2150–B [QE78.7] [557.3 s—dc21 97–7724 [557.7] CIP CONTENTS Abstract .......................................................................................................................... -
The Silurian of Central Kentucky, U.S.A.: Stratigraphy, Palaeoenvironments and Palaeoecology
The Silurian of central Kentucky, U.S.A.: Stratigraphy, palaeoenvironments and palaeoecology FRANK R. ETTENSOHN, R. THOMAS LIERMAN, CHARLES E. MASON, WILLIAM M. ANDREWS, R. TODD HENDRICKS, DANIEL J. PHELPS & LAWRENCE A. GORDON ETTENSOHN, F.R., LIERMAN, R.T., MASON, C.E., ANDREWS, W.M., HENDRICKS, R.T., PHELPS, D.J. & GORDON, L.A., 2013:04:26. The Silurian of central Kentucky, U.S.A.: Stratigraphy, palaeoenvironments and palaeoecology. Memoirs of the Association of Australasian Palaeontologists 44, 159-189. ISSN 0810-8889. Silurian rocks in Kentucky are exposed on the eastern and western flanks of the Cincinnati Arch, a large-wavelength cratonic structure separating the Appalachian foreland basin from the intracratonic Illinois Basin. The Cincinnati Arch area experienced uplift during latest Ordovician-early Silurian time, so that the exposed Silurian section is relatively thin due to onlap and post- Silurian erosional truncation on the arch. On both flanks of the arch, dolomitic carbonates predominate, but the section on the eastern side reflects a more shale-rich ramp that faced eastern Appalachian source areas. In the Silurian section on the western side of the arch, which apparently developed across a platform-like isolation-accommodation zone, shales are rare except dur- ing some highstand episodes, and rocks in the area reflect deposition across a broad, low-gradient shelf area, interrupted by structurally controlled topographic breaks. Using the progression of interpreted depositional environments and nearshore faunal communities, a relative sea-level curve, which parallels those of previous workers, was generated for the section in Kentucky. While the curve clearly shows the influence of glacial eustasy, distinct indications of the far-field, flexural influence of Taconian and Salinic tectonism are also present. -
Paleozoic Lithostratigraphic Nomenclature for Minnesota
MINNESOTA GEOLOGICAL SURVEY PRISCILLA C. GREW, Director PALEOZOIC LITHOSTRATIGRAPHIC NOMENCLATURE FOR MINNESOTA John H. Mossier Report of Investigations 36 ISSN 0076-9177 UNIVERSITY OF MINNESOTA Saint Paul - 1987 PALEOZOIC LITHOSTRATIGRAPHIC NOMENCLATURE FOR MINNESOTA CONTENTS Abstract. Structural and sedimentological framework • Cambrian System • 2 Mt. Simon Sandstone. 2 Eau Claire Formation • 6 Galesville Sandstone • 8 Ironton Sandstone. 9 Franconia Formation. 9 St. Lawrence Formation. 11 Jordan Standstone. 12 Ordovician System. 13 Prairie du Chien Group. 14 Oneota Dolomite. 14 Shakopee Formation. 15 St. Peter Sandstone. 17 Glenwood Formation. 17 Platteville Formation. 18 Decorah Shale. 19 Galena Group • 22 Cummings ville Formation. 22 Prosser Limestone. 23 Stewartville Formation • 24 Dubuque Formation. 24 Maquoketa Formation. 25 Devonian System • 25 Spillville Formation • 26 Wapsipinicon Formation 26 Cedar Valley Formation • 26 Northwestern Minnesota. 28 Winnipeg Formation • 28 Red River Formation. 29 Acknowledgments • 30 References cited. 30 Appendix--Principal gamma logs used to construct the composite gamma log illustrated on Plate 1. 36 ILLUSTRATIONS Plate 1 • Paleozoic lithostratigraphic nomenclature for Minnesota • .in pocket Figure 1. Paleogeographic maps of southeastern Minnesota • 3 2. Map showing locations of outcrops, type sections, and cores, southeastern t1innesota • 4 3. Upper Cambrian stratigraphic nomenclature 7 iii Figure 4. Lower Ordovician stratigraphic nomenclature • • • • 14 5. Upper Ordovician stratigraphic nomenclature 20 6. Middle Devonian stratigraphic nomenclature. • • . • • 27 7. Map showing locations of cores and cuttings in northwestern Minnesota • • • • • • • • • • • • • • • • • • 29 TABLE Table 1. Representative cores in Upper Cambrian formations •••••• 5 The University of Minnesota is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, religion, color, sex, national orgin, handicap, age, veteran status, or sexual orientation. -
Geological Sequestration of Carbon Dioxide in the Cambrian Mount Simon Sandstone Figure 1
Geological sequestration of AUTHORS David A. Barnes Michigan Geological carbon dioxide in the Cambrian Repository for Research and Education and Geosciences, Western Michigan University, Mount Simon Sandstone: Kalamazoo, Michigan 49008; [email protected] Regional storage capacity, David Barnes is a professor of geosciences and a research scientist at the Michigan Geological site characterization, and Repository for Research and Education at Western Michigan University, Kalamazoo, Michigan. He received his Ph.D. from the University of Cali- large-scale injection feasibility, fornia Santa Barbara in 1982 with an emphasis in sedimentary geology, he worked for SOHIO Michigan Basin Petroleum Company in the early 1980s, and he has been at Western Michigan University since David A. Barnes, Diana H. Bacon, and Stephen R. Kelley 1986. Diana H. Bacon Battelle Pacific Northwest Division, Richland, Washington 99352; ABSTRACT [email protected] Diana H. Bacon has 23 years of experience in The Mount Simon Sandstone (Cambrian) is recognized as an impor- vadose zone hydrology and geochemistry. She tant deep saline reservoir with potential to serve as a target for geolog- received her Ph.D. in geology from Washington ical sequestration in the Midwest, United States. The Mount Simon State University in 1997 and her M.S. degree in Sandstone in Michigan consists primarily of sandy clastics and grades hydrology from New Mexico Institute of Mining upward into the more argillaceous Eau Claire Formation, which and Technology in 1986. She has been a research serves as a regional confining zone. The Mount Simon Sandstone lies scientist at Battelle since May 1986 and is cur- at depths from about 914 m (3000 ft) to more than 4572 m (15,000 ft) rently supporting the development of STOMP-CO2 in the Michigan Basin and ranges in thickness from more than 396 m for several midwestern regional carbon se- (1300 ft) to near zero adjacent to basement highs.