Paleozoic Geology of the New Madrid Area
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stratographic Coloumn of Iowa
Iowa Stratographic Column November 4, 2013 QUATERNARY Holocene Series DeForest Formation Camp Creek Member Roberts Creek Member Turton Submember Mullenix Submember Gunder Formation Hatcher Submember Watkins Submember Corrington Formation Flack Formation Woden Formation West Okoboji Formation Pleistocene Series Wisconsinan Episode Peoria Formation Silt Facies Sand Facies Dows Formation Pilot Knob Member Lake Mills Member Morgan Member Alden Member Noah Creek Formation Sheldon Creek Formation Roxana/Pisgah Formation Illinoian Episode Loveland Formation Glasford Formation Kellerville Memeber Pre-Illinoian Wolf Creek Formation Hickory Hills Member Aurora Memeber Winthrop Memeber Alburnett Formation A glacial tills Lava Creek B Volcanic Ash B glacial tills Mesa Falls Volcanic Ash Huckleberry Ridge Volcanic Ash C glacial tills TERTIARY Salt & Pepper sands CRETACEOUS "Manson" Group "upper Colorado" Group Niobrara Formation Fort Benton ("lower Colorado ") Group Carlile Shale Greenhorn Limestone Graneros Shale Dakota Formation Woodbury Member Nishnabotna Member Windrow Formation Ostrander Member Iron Hill Member JURASSIC Fort Dodge Formation PENNSYLVANIAN (subsystem of Carboniferous System) Wabaunsee Group Wood Siding Formation Root Formation French Creek Shale Jim Creek Limestone Friedrich Shale Stotler Formation Grandhaven Limestone Dry Shale Dover Limestone Pillsbury Formation Nyman Coal Zeandale Formation Maple Hill Limestone Wamego Shale Tarkio Limestone Willard Shale Emporia Formation Elmont Limestone Harveyville Shale Reading Limestone Auburn -
Algal Stromatolites in the Willow River Member of the Lower Ordovician Shakopee Formation Near Chatfield, Minnesota, USA
The Compass: Earth Science Journal of Sigma Gamma Epsilon Volume 84 Issue 1 Article 6 1-6-2012 Algal Stromatolites in the Willow River Member of the Lower Ordovician Shakopee Formation near Chatfield, Minnesota, USA Sophia L. May College of St. Benedict / St. John's University, [email protected] Larry E. Davis College of St. Benedict / St. John's University, [email protected] David G. Brown College of St. Benedict / St. John's University, [email protected] Follow this and additional works at: https://digitalcommons.csbsju.edu/compass Part of the Paleontology Commons Recommended Citation May, Sophia L.; Davis, Larry E.; and Brown, David G. (2012) "Algal Stromatolites in the Willow River Member of the Lower Ordovician Shakopee Formation near Chatfield, Minnesota, USA," The Compass: Earth Science Journal of Sigma Gamma Epsilon: Vol. 84: Iss. 1, Article 6. Available at: https://digitalcommons.csbsju.edu/compass/vol84/iss1/6 This Article is brought to you for free and open access by DigitalCommons@CSB/SJU. It has been accepted for inclusion in The Compass: Earth Science Journal of Sigma Gamma Epsilon by an authorized editor of DigitalCommons@CSB/SJU. For more information, please contact [email protected]. ON THE OUTCROP Algal Stromatolites in the Willow River Member of the Lower Ordovician Shakopee Formation near Chatfield, Minnesota, USA Sophia L. May, Larry E. Davis, and David G. Brown Department of Biology College of Saint Benedict/Saint John’s University Collegeville, Minnesota, 56321 USA [email protected] LOCATION From the intersection of (Olmsted) Co. Hwy 2 and U.S. 52 Rochester I-90 (Main Street) in Chatfield, MN drive N south-southeast on U.S. -
Bedrock Geology of Altenburg Quadrangle, Jackson County
BEDROCK GEOLOGY OF ALTENBURG QUADRANGLE Institute of Natural Resource Sustainability William W. Shilts, Executive Director JACKSON COUNTY, ILLINOIS AND PERRY COUNTY, MISSOURI STATEMAP Altenburg-BG ILLINOIS STATE GEOLOGICAL SURVEY E. Donald McKay III, Interim Director Mary J. Seid, Joseph A. Devera, Allen L. Weedman, and Dewey H. Amos 2009 360 GEOLOGIC UNITS ) ) ) 14 Qal Alluvial deposits ) 13 18 Quaternary Pleistocene and Holocene 17 360 ) 15 360 16 14 0 36 ) 13 Qf Fan deposits ) Unconformity Qal ) & 350 tl Lower Tradewater Formation Atokan ) ) Pennsylvanian 360 ) &cv Caseyville Formation Morrowan 24 360 ) Unconformity ) 17 Upper Elviran undivided, Meu ) Waltersburg to top of Degonia 19 20 Qal 21 22 23 ) 24 ) Mv Vienna Limestone 360 o ) 3 Mts ) 350 Mts Tar Springs Sandstone ) 20 360 ) Mgd 360 30 ) Mgd Glen Dean Limestone ) 21 350 360 Mts 29 ) Qal Hardinsburg Sandstone and J N Mhg Chesterian ) Golconda Formations h Æ Qal Mav anc 28 27 Br ) N oJ 26 25 JN 85 N ) Cypress Sandstone through J Mcpc Dsl 500 Paint Creek Formation JN N ) J o Mts N 5 J s ) Dgt 600 J N 70 J N Mgd Yankeetown Formation s ) Myr Db 80 28 Æ and Renault Sandstone N J 29 N J N ) Sb J Mgd Mississippian o Dgt Ssc 25 Clines o N 25 Msg 27 ) Qal J 80 s 3 Mav Aux Vases Sandstone N J N Mts o MILL J MISSISSIPPI 34 ) Qal J N ) N J Dsl 35 N 26 J o N 25 J Mgd Mgd ) Msg Ste. Genevieve Limestone 500 o Db DITCH J 20 Mgd N N N ) J J o RIVER o N 600 J 80 N ) 10 o J Mav Æ Msl St. -
Stratigraphic Succession in Lower Peninsula of Michigan
STRATIGRAPHIC DOMINANT LITHOLOGY ERA PERIOD EPOCHNORTHSTAGES AMERICANBasin Margin Basin Center MEMBER FORMATIONGROUP SUCCESSION IN LOWER Quaternary Pleistocene Glacial Drift PENINSULA Cenozoic Pleistocene OF MICHIGAN Mesozoic Jurassic ?Kimmeridgian? Ionia Sandstone Late Michigan Dept. of Environmental Quality Conemaugh Grand River Formation Geological Survey Division Late Harold Fitch, State Geologist Pennsylvanian and Saginaw Formation ?Pottsville? Michigan Basin Geological Society Early GEOL IN OG S IC A A B L N Parma Sandstone S A O G C I I H E C T I Y Bayport Limestone M Meramecian Grand Rapids Group 1936 Late Michigan Formation Stratigraphic Nomenclature Project Committee: Mississippian Dr. Paul A. Catacosinos, Co-chairman Mark S. Wollensak, Co-chairman Osagian Marshall Sandstone Principal Authors: Dr. Paul A. Catacosinos Early Kinderhookian Coldwater Shale Dr. William Harrison III Robert Reynolds Sunbury Shale Dr. Dave B.Westjohn Mark S. Wollensak Berea Sandstone Chautauquan Bedford Shale 2000 Late Antrim Shale Senecan Traverse Formation Traverse Limestone Traverse Group Erian Devonian Bell Shale Dundee Limestone Middle Lucas Formation Detroit River Group Amherstburg Form. Ulsterian Sylvania Sandstone Bois Blanc Formation Garden Island Formation Early Bass Islands Dolomite Sand Salina G Unit Paleozoic Glacial Clay or Silt Late Cayugan Salina F Unit Till/Gravel Salina E Unit Salina D Unit Limestone Salina C Shale Salina Group Salina B Unit Sandy Limestone Salina A-2 Carbonate Silurian Salina A-2 Evaporite Shaley Limestone Ruff Formation -
Early Ordovician Strata Along Fox River in Northern Illinois
URBANA jf-.'-INOIS STATE GEOLOGICAL SURVEY 3 3051 00003 5240 Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/earlyordovicians100will STATE OF ILLINOIS DWIGHT H. GREEN, Governor DEPARTMENT OF REGISTRATION AND EDUCATION FRANK G. THOMPSON, Director DIVISION OF THE STATE GEOLOGICAL SURVEY M. M. LEIGHTON, Chief URBANA CIRCULAR 100 EARLY ORDOVIC1AN STRATA ALONG FOX RIVER IN NORTHERN ILLINOIS H. B. WILLMAN AND J. NORMAN PAYNE Reprinted from the Journal of Geology Vol. LI, No. 8, November-December, 1943 PRINTED BY AUTHORITY OF THE STATE OF ILLINOIS URBANA, ILLINOIS 1943 EARLY ORDOVICIAN STRATA ALONG FOX RIVER IN NORTHERN ILLINOIS H. B. WILLMAN AND J. NORMAN PAYNE Illinois State Geological Survey ABSTRACT A nearly complete sequence of Ordovician strata along Fox River, southwest of Aurora, indicates the presence of the Kankakee arch—a major structure trending northwest-southeast across northeastern Illinois —and the probable location of the Sandwich fault, which parallels the arch for many miles and had been found previously by studies of well records. Outcrops of sandstone and dolomite which have long been corre- lated with the St. Peter and Galena-Platteville formations have been found to belong to the New Richmond sandstone and the Shakopee dolomite. Study of the outcrops and well records shows that the anticlinal struc- ture underwent major movements both before and after deposition of the St. Peter sandstone. INTRODUCTION subsurface data showed that this struc- ture, termed the "Kankakee arch," In the earliest geological studies of this (1) 2 had its greatest deformation before, rather area the sandstone and the dolomite out- than since, St. -
Directory of Illinois Mineral Producers, and Maps of Extraction Sites 1997
j:MH7 Directory of Illinois Mineral Producers, and Maps of Extraction Sites 1997 John M. Masters, Viju C. Ipe, Lisa R. Smith, and Michael Falter (Office of Mines and Minerals) Department of Natural Resources ILLINOIS STATE GEOLOGICAL SURVEY ILLINOIS MINERALS 117 1999 Directory of Illinois Mineral Producers, and Maps of Extraction 1997 John M. Masters, Viju C. Ipe, Lisa R. Smith, and Michael Faiter (Office of Mines and Minerals) Illinois Minerals 117 t<C?* 1999 %*+ noS§> linois State Geological Survey ^o^ ^<^ J * William W. Shilts, Chief v Natural Resources Building <& 615 East Peabody Drive ^ Champaign, IL 61820-6964 Phone:(217)333-4747 COVER: This large hydraulic dredge recovers sand and gravel from the Wisconsinan-age valley-train deposit in the background. Material is pumped in a slurry to a floating processing plant connected to the dredge. Products are then conveyed directly to barges for shipment to market (photo by J.M. Masters, August 1987). ILLIMOI MATURAL RESOURCES © Printed with soybean ink on recycled paper Printed by authority of the State of Illinois/1999/800 CONTENTS Introduction 1 Illinois Mineral Producers, by County 6 Illinois Mineral Producers, by Company 15 Illinois Mineral Producers, by Commodity 22 Barite 22 Cadmium 22 Cement 22 Clay products 23 Clay mines 24 Coal 25 Coke 28 Fluorspar 28 Fly ash 28 Glass products 30 Gypsum, calcined 31 Industrial sand mines 31 Iron oxide pigments 32 Iron and raw steel 32 Lime 33 Natural gas liquids 33 Peat 33 Perlite, expanded 34 Petroleum refineries 34 Sand and gravel 35 Slag 60 -
Deep Oil Possibilities of the Illinois Basin
s Ccc 36? STATE OF ILLINOIS DEPARTMENT OF REGISTRATION AND EDUCATION DEEP OIL POSSIBILITIES OF THE ILLINOIS BASIN Alfred H. Bell Elwood Atherton T. C. Buschbach David H. Swann ILLINOIS STATE GEOLOGICAL SURVEY John C. Frye, Chief URBANA CIRCULAR 368 1964 . DEEP OIL POSSIBILITIES OF THE ILLINOIS BASIN Alfred H. Bell, Elwood Atherton, T. C. Buschbach, and David H. Swann ABSTRACT The Middle Ordovician and younger rocks of the Illinois Basin, which have yielded 3 billion barrels of oil, are underlain by a larger volume of virtually untested Lower Ordovician and Cambrian rocks. Within the region that has supplied 99 percent of the oil, where the top of the Middle Ordovician (Trenton) is more than 1,000 feet be- low sea level, less than 8 inches of hole have been drilled per cubic mile of the older rocks. Even this drilling has been near the edges; and in the central area, which has yielded five- sixths of the oil, only one inch of test hole has been drilled per cubic mile of Lower Ordovician and Cambrian. Yet drilling depths are not excessive, ranging from 6,000 to 14,000 feet to the Precambrian. More production may be found in the Middle Ordovician Galena Limestone (Trenton), thus extending the present productive regions. In addition, new production may be found in narrow, dolomitized fracture zones in the tight limestone facies on the north flank of the basin . The underlying Platteville Limestone is finer grained and offers fewer possibilities. The Joachim Dolomite oil- shows occur in tight sandstone bodies that should have commercial porosity in some re- gions. -
Geology and Oil Production in the Tuscola Area, Illinois
124 KUItOfS GEOLOGICAL S SURVEY LIBRARY 14.GS: 4^ ^ CIR 424 :. 1 STATE OF ILLINOIS DEPARTMENT OF REGISTRATION AND EDUCATION Geology and Oil Production in the Tuscola Area, Illinois H. M. Bristol Ronald Prescott ILLINOIS STATE GEOLOGICAL SURVEY John C. Frye, Chief URBANA CIRCULAR 424 1968 Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/geologyoilproduc424bris GEOLOGY AND OIL PRODUCTION IN THE TUSCOLA AREA, ILLINOIS H. M. Bristol and Ronald Prescott ABSTRACT The Tuscola Anticline, in east-central Illinois, lies astride the complex LaSalle Anticlinal Belt and dips steeply westward into the Fairfield Basin and gradually eastward into the Murdock Syncline. The anticline is broken into two structural highs, the Hayes Dome and the Shaw Dome. Pleistocene sediments, 50 to 250 feet thick, cover the area. Pennsylvanian sediments cover much of the area, thinning to expose an inlier of Mississippian, Devonian, and Silurian rock north of Tuscola. The basal Cambrian for- mation, the Mt. Simon Sandstone, is penetrated by only two wells. Oil production from the Kimmswick (Trenton) com- menced in 1962 from the R. D. Ernest No. 1 Schweighart well, near Hayes, and as of January 1, 1968, approximately 30 wells were producing oil. Cumulative oil production as of January 1, 1968, is approximately 94,000 barrels. The potential pay zone is confined to the upper 5 to 100 feet of structure and to the upper 125 feet of the Kimmswick, whose permeability ranges from 0.1 to 2. millidarcys, av- eraging 0.6, and whose porosity ranges from 2 to 12 per- cent. -
Mineral Resources of the Illinois Basin in the Context of Basin Evolution
Mineral Resources of the Illinois Basin in the Context of Basin Evolution St. Louis, Missouri, January 22-23,1992 Program and Abstracts Edited by Martin B. Goldhaber and J. James Eidel U.S. Geological Survey Open-File Report 92-1 This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey, Illinois State Geological Survey, Kentucky Geological Survey, Missouri Division of Geology and Land Survey, and Indiana Geological Survey standards. PREFACE The mineral resources of the U.S. midcontinent were instrumental to the development of the U.S. economy. Mineral resources are an important and essential component of the current economy and will continue to play a vital role in the future. Mineral resources provide essential raw materials for the goods consumed by industry and the public. To assess the availability of mineral resources and contribute to the abib'ty to locate and define mineral resources, the U.S. Geological Survey (USGS) has undertaken two programs in cooperation with the State Geological Surveys in the midcontinent region. In 1975, under the Conterminous U.S. Mineral Assessment Program (CUSMAP) work began on the Rolla 1° X 2° Quadrangle at a scale of 1:250,000 and was continued in the adjacent Springfield, Harrison, Joplin, and Paducah quadrangles across southern Missouri, Kansas, Illinois, Arkansas, and Oklahoma. Public meetings were held in 1981 to present results from the Rolla CUSMAP and in 1985 for the Springfield CUSMAP. In 1984, the Midcontinent Strategic and Critical Minerals Project (SCMP) was initiated by the USGS and the State Geological Surveys of 16 states to map and compile data at 1:1,000,000 scale and conduct related topical studies for the area from latitude 36° to 46° N. -
A Deposit Model for Mississippi Valley-Type Lead-Zinc Ores
A Deposit Model for Mississippi Valley-Type Lead-Zinc Ores Chapter A of Mineral Deposit Models for Resource Assessment 2 cm Sample of spheroidal sphalerite with dendritic sphalerite, galena, and iron sulfides (pyrite plus marcasite) from the Pomorzany mine. Note the “up direction” is indicated by “snow-on-the-roof” texture of galena and Scientificsphalerite Investigations alnong colloform Report layers of2010–5070–A light-colored spahlerite. Hydrothermal sulfide clasts in the left center of the sample are encrusted by sphalerire and iron sulfides. Size of sample is 20x13 cm. Photo by David Leach. U.S. Department of the Interior U.S. Geological Survey COVER: Sample of spheroidal sphalerite with dendritic sphalerite, galena, and iron sulfides (pyrite plus mar- casite) from Pomorzany mine. Note the “up direction” is indicated by “snow-on-the-roof” texture of galena and sphalerite along colloform layers of light-colored sphalerite. Hydrothermal sulfide clasts in the left center of the sample are encrusted by sphalerite and iron sulfides. Size of sample is 20x13 centimeters. (Photograph by David L. Leach, U.S. Geological Survey.) A Deposit Model for Mississippi Valley- Type Lead-Zinc Ores By David L. Leach, Ryan D. Taylor, David L. Fey, Sharon F. Diehl, and Richard W. Saltus Chapter A of Mineral Deposit Models for Resource Assessment Scientific Investigations Report 2010–5070–A U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. -
Guidebook for Field Trips for the Thirty-Fifth Annual Meeting of the North-Central Section of the Geological Society of America
Guidebook for Field Trips for the Thirty-Fifth Annual Meeting of the North-Central Section of the Geological Society of America April 23-24, 2001 David Malone, Editor ISGS Guidebook 33 2001 George H. Ryan, Governor Department of Natural Resources ILLINOIS STATE GEOLOGICAL SURVEY William W. Shilts, Chief EDITOR'S MESSAGE Greetings from the Executive Committee of the North Central Section of the Geological Society of America! As geologists, we all recognize the great importance of field experiences. This year's meeting includes a diverse and excellent set of field trips. Collectively, this year's field trips visit a broad spectrum of the geologic features of Illinois and Missouri that range in age from Precambrian to Quaternary. These trips present a number of new ideas and interpretations that will broaden the perspectives of all field trip participants. Your participation, interaction, and exchange of ideas with the field trip leaders are encouraged at all times These trips are the culmination of the time and energy freely given by a number of individuals. I would like to thank and recognize the field trip leaders for their hard work in planning the field trips and preparing the individual field guides. I would also like to thank the technical reviewers at Illinois State University and the Illinois State Geological Survey for their efforts. I appreciate the efforts of Jon Goodwin and the publication staff at the Illinois State Geological Survey for their substantial work in preparing this field guide. A special thanks goes out to the property owners who have been most helpful in planning these trips. -
106Th Annual Report of the State Geologist
106TH ANNUAL REPORT OF THE STATE GEOLOGIST of INDIANA GEOLOGICAL SURVEY DEPARTMENT OF NATURAL RESOURCES for July 1, 1981 - June 30, 1982 GEOLOGICAL SURVEY ONE HUNDRED AND SIXTH ANNUAL REPORT OF THE STATE GEOLOGIST PERSONNEL Permanent Personnel Administration John B. Patton •.•••• • .•.•••••••••.. State Geo 1og i st Maurice E. Biggs •. Assistant State Geologist Mary E. Fox • • • • • • • • . • . • . • • • • • • . •Mineral Statistician E. Co leen George. • . • . • . • • . • . • . • • • • • Principal Secretary Coal and Industrial Minerals Section Donald D. Carr .•• • •••.•••Geologist and Head Curtis H. Ault ••. .Geologist and Associate Head Donald L. Eggert. • Geologist Gordon S. Fraser •••••• • .•.• Geologist Denver Harper • • · .••• Geologist Nancy R. Hasenmueller .•...• • Geologist Wa 1ter A. Hasenmue 11 er. • • . .••••• Geologist Paul Irwin (Reclamation). • Geologist Nelson R. Shaffer ••• • Geologist Michele Wright (NRC) •. • • Geo log ist Janet Roller ••• · . • • • Secretary (To August 14, 1981) Susan E. Rumple . • • • . • Secretary (From August 12, 1981) Kathryn Shaffer • • . • • . • • Secretary Drafting and Photography Section William H. Moran. ••Chief Draftsman and Head Richard T. Hill •. •••.•.• Senior Geological Draftsman Roger L. Purcell. • Senior Geological Draftsman George R. Ringer ••. • •••••••••.•Photographer Wilbur E. Stalions. • Geological Artist-Draftsman Educational Services Reevan D. Rarick .•••. .•••.•.•. Geologist 1 Geochemistry Section Richard K. Leininger. Geochemist and Head Margaret V. Golde •.••. • .Instrument Analyst