WELL and BORING RECORD 221072 Quad Brush Creek Update Quad ID 12A Minnesota Statutes Chapter 1031 Received Date 08/18/2014

Total Page:16

File Type:pdf, Size:1020Kb

WELL and BORING RECORD 221072 Quad Brush Creek Update Quad ID 12A Minnesota Statutes Chapter 1031 Received Date 08/18/2014 Minnesota Unique Well No. MINNESOTA DEPARTMENT OF HEALTH County Faribault Entry Date 11/16/1987 WELL AND BORING RECORD 221072 Quad Brush Creek Update Quad ID 12A Minnesota Statutes Chapter 1031 Received Date 08/18/2014 Well Name Township Range Dir Section Subsection Use Status Well Depth Depth Completed Date Well Completed Lic/Reg. No. WL-7 103 25 W 13 CDCCDB test well 1246 ft. 1246 ft. 10/13/1978 Elevation 1133 ft. Elev. Method Surveyed Aquifer Depth to Bedrock 100 ft Open Hole - ft Static Water Level ft Field Located By Minnesota Geological Survey Locate Method Digitized - scale 1:24,000 or larger (Digitizing Universal Transverse Mercator (UTM) - NAD83 - Zone 15 - Unique No. Verified Information from owner-site Input Source Minnesota Geological Survey UTM Easting (X) 437020 Geological Interpretation John Mossler Input Date 01/01/1990 UTM Northing (Y) 484084 Agency (Interpretation) Interpretaion Method Geologic study 1:24k to 1:100k Depth (ft.) Elevation (ft.) Geological Material Color Hardness From To Thickness From To Stratigraphy Primary Lithology Secondary Minor Lithology DRIFT 0 100 100 1133 1033 Quaternary deposit drift GALENA LIMESTONE 100 178 78 1033 955 Stewartville- limestone DECORAH SHALE 178 227 49 955 906 Decorah Shale shale PLATTEVILLE LIMESTONE 227 236 9 906 897 Platteville Formation limestone GLENWOOD SHALE 236 245 9 897 888 Glenwood Formation shale ST. PETER SANDSTONE 245 338 93 888 795 St.Peter Sandstone sandstone SHAKOPEE DOLOMITE 338 595 257 795 538 Prairie Du Chien dolomite JORDAN SANDSTONE 595 679 84 538 454 Jordan Sandstone sandstone ST. LAWRENCE FORMATION 679 765 86 454 368 St.Lawrence dolomite siltstone FRANCONIA FORMATION 765 864 99 368 269 Tunnel CIty/Lone sandstone shale dolomite IRONTON FORMATION 864 888 24 269 245 Wonewoc Sandstone sandstone GALESVILLE FORMATION 888 946 58 245 187 Wonewoc Sandstone sandstone EAU CLAIRE FORMATION 946 983 37 187 150 Eau Claire Formation shale sandstone GREENSAND 983 1059 76 150 74 Eau Claire Formation shale sandstone glauconite RED SHALE UNIT 1059 1177 118 74 -44 Eau Claire Formation shale sandstone LOMBARD SHALE 1177 1197 20 -44 -64 Eau Claire Formation shale MT. SIMON SANDSTONE 1197 1246 49 -64 -113 Mt.Simon Sandstone sandstone Minnesota Well Index - Stratigraphy Report 221072 Printed on 09/29/2021.
Recommended publications
  • Recent Fossil Finds in the Indian Islands Group, Central Newfoundland
    Current Research (2006) Newfoundland and Labrador Department of Natural Resources Geological Survey, Report 06-1, pages 221-231 RECENT FOSSIL FINDS IN THE INDIAN ISLANDS GROUP, CENTRAL NEWFOUNDLAND 1W.D. Boyce, P.Geo. and 2W.L. Dickson, P.Geo. 1Regional Geology Section 2Mineral Deposits Section ABSTRACT During the 2004 and 2005 field seasons a number of fossiliferous exposures of the Indian Islands Group rocks were exam- ined. The results of these fossil surveys are presented here. The occurrence of the bryozoan Stictopora scalpellum (Lonsdale, 1839) in many outcrops of the Silurian Indian Islands Group definitively dates these exposures as latest Wenlock (late Home- rian). Several richly fossiliferous localities yield faunas indicative of Wenlock, late Wenlock (Homerian), and middle Ludlow (late Gorstian to early Ludfordian) ages. INTRODUCTION Dudley, West Midlands, England, of late Homerian (latest Wenlock) age (Snell, 2004, page 6, Text-Figure 4). There is as yet no comprehensive, integrated lithostrati- graphic–biostratigraphic scheme for the Silurian shelly fau- Boyce (2004, page 7) identified Ptilodictya scalpellum nas of the Indian Islands Group (IIG). Furthermore, apart Lonsdale, 1839 from a sawdust-filled quarry near Glenwood from this report, the most extensive recent paleontological (JOD-2003-113 and LD05-0064 - see Plates 2 and 3) as well studies of the area remain those of Boyce et al. (1993), as from drill core at the Beaver Brook antimony mine Boyce and Ash (1994) and Donovan et al. (1997). (2004F016 - see Plate 4). During the summers of 2004 and 2005, Stictopora scalpellum (Lonsdale, 1839) was also iden- In 2004, a total of six days was spent in the field with tified from a number of additional IIG outcrops, including: G.C.
    [Show full text]
  • Hydrogeology and Stratigraphy of the Dakota Formation in Northwest Iowa
    WATER SUPPLY HYDROGEOLOGY AND J.A. MUNTER BULLETIN G.A. LUDVIGSON NUMBER 13 STRATIGRAPHY OF THE B.J. BUNKER 1983 DAKOTA FORMATION IN NORTHWEST IOWA Iowa Geological Survey Donald L. Koch State Geologist and Director 123 North Capitol Street Iowa City, Iowa 52242 IOWA GEOLOGICAL SURVEY WATER-SUPPLY BULLETIN NO. 13 1983 HYDROGEOLOGY AND STRATIGRAPHY OF THE DAKOTA FORMATION IN NORTHWEST IOWA J. A. Munter G. A. Ludvigson B. J. Bunker Iowa Geological Survey Iowa Geological Survey Donald L. Koch Director and State Geologist 123 North Capitol Street Iowa City, Iowa 52242 Foreword An assessment of the quantity and quality of water available from the Dakota (Sandstone) Formation 1n northwest Iowa is presented in this report. The as sessment was undertaken to provide quantitative information on the hydrology of the Dakota aquifer system to the Iowa Natural Resources Council for alloca tion of water for irrigation, largely as a consequence of the 1976-77 drought. Most area wells for domestic, livestock, and irrigation purposes only partial ly penetrated the Dakota Formation. Consequently, the long-term effects of significant increases in water withdrawals could not be assessed on the basis of existing wells. Acquisition of new data was based upon a drilling program designed to penetrate the entire sequence of Dakota sediments at key loca tions, after a thorough inventory and analysis of existing data. Definition of the distribution, thickness, and lateral and vertical changes in composition of the Dakota Formation has permitted the recognition of two mem bers. Additionally, Identification of the rock units that underlie the Dakota Formation has contributed greatly to our knowledge of the regional geology of northwest Iowa and the upper midwest.
    [Show full text]
  • Stratigraphic Succession in Lower Peninsula of Michigan
    STRATIGRAPHIC DOMINANT LITHOLOGY ERA PERIOD EPOCHNORTHSTAGES AMERICANBasin Margin Basin Center MEMBER FORMATIONGROUP SUCCESSION IN LOWER Quaternary Pleistocene Glacial Drift PENINSULA Cenozoic Pleistocene OF MICHIGAN Mesozoic Jurassic ?Kimmeridgian? Ionia Sandstone Late Michigan Dept. of Environmental Quality Conemaugh Grand River Formation Geological Survey Division Late Harold Fitch, State Geologist Pennsylvanian and Saginaw Formation ?Pottsville? Michigan Basin Geological Society Early GEOL IN OG S IC A A B L N Parma Sandstone S A O G C I I H E C T I Y Bayport Limestone M Meramecian Grand Rapids Group 1936 Late Michigan Formation Stratigraphic Nomenclature Project Committee: Mississippian Dr. Paul A. Catacosinos, Co-chairman Mark S. Wollensak, Co-chairman Osagian Marshall Sandstone Principal Authors: Dr. Paul A. Catacosinos Early Kinderhookian Coldwater Shale Dr. William Harrison III Robert Reynolds Sunbury Shale Dr. Dave B.Westjohn Mark S. Wollensak Berea Sandstone Chautauquan Bedford Shale 2000 Late Antrim Shale Senecan Traverse Formation Traverse Limestone Traverse Group Erian Devonian Bell Shale Dundee Limestone Middle Lucas Formation Detroit River Group Amherstburg Form. Ulsterian Sylvania Sandstone Bois Blanc Formation Garden Island Formation Early Bass Islands Dolomite Sand Salina G Unit Paleozoic Glacial Clay or Silt Late Cayugan Salina F Unit Till/Gravel Salina E Unit Salina D Unit Limestone Salina C Shale Salina Group Salina B Unit Sandy Limestone Salina A-2 Carbonate Silurian Salina A-2 Evaporite Shaley Limestone Ruff Formation
    [Show full text]
  • Bedrock Geology of Dodge County, Wisconsin (Wisconsin Geological
    MAP 508 • 2021 Bedrock geology of Dodge County, Wisconsin DODGE COUNTY Esther K. Stewart 88°30' 88°45' 88°37'30" 88°52'30" 6 EXPLANATION OF MAP UNITS Tunnel City Group, undivided (Furongian; 0–155 ft) FOND DU LAC CO 630 40 89°0' 6 ! 6 20 ! 10 !! ! ! A W ! ! 1100 W ! GREEN LAKE CO ! ! ! WW ! ! ! ! DG-92 ! ! ! 1100 B W! Includes Lone Rock and Mazomanie Formations. These formations are both DG-53 W ! «49 ! CORRELATION OF MAP UNITS !! ! 7 ! !W ! ! 43°37'30" R16E _tc EL709 DG-1205 R15E W R14E R15E DG-24 W! ! 1 Quaternary ! 980 ! W W 1 ! ! ! 6 DG-34 6 _ ! 1 R17E Os Lake 1 R16E 6 interbedded and laterally discontinuous and therefore cannot be mapped 1 6 W ! ! 1100 !! 175 940 Waupun DG-51 ! 980 « Oa ! R13E 6 Emily R14E W ! 43°37'30" ! ! ! 41 ¤151 B «49 ! ! ! ! Opc ! Drew «68 ! W ! East ! ! ! individually at this scale in Dodge County. Overlies Elk Mound Group across KW313 940 ! ! ! ! ! ! 940 ! W B ! ! - ! ! W ! ! ! ! ! ! !! Waupun ! W ! Undifferentiated sediment ! ! W! B 000m Cr W! ! º Libby Cr ! 3 INTRUSIVE SUPRACRUSTAL 3 1020 ! ! Waupun ! DG-37 W ! ! º 1020 a sharp contact. W ! 50 50 N ! ! KS450 ! ! ! IG300 ! B B Airport ! RO703 ! ! Brownsville ! ! ! ! ! ! 1060 ! ROCKS W ! ! ROCKS Unconsolidated sediments deposited by modern and glacial processes. 940 ° ! Qu ! W Br Rock SQ463 B ! Pink, gray, white, and green; coarse- to fine-grained; moderately to poorly 980 B River B B ! ! KT383 ! ! Generally 20–60 feet (ft) thick; ranges from absent where bedrock crops ! !! ! ! ! ! ! Su Lower Silurian ° ! ! ! ! ! 940 860 ! ! ! ! ! ! ! ! ! ! sorted; glauconitic sandstone, siltstone, and mudstone with variable W ! B B B ! ! ! 980 ! ! ! 780 ! Kummel !! out to more than 200 ft thick in preglacial bedrock valleys.
    [Show full text]
  • Mechanical Properties of St. Peter Sandstone a Comparison of Field and Laboratory Results a Thesis Submitted to the Faculty of T
    MECHANICAL PROPERTIES OF ST. PETER SANDSTONE A COMPARISON OF FIELD AND LABORATORY RESULTS A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY MICHAEL EUGENE DITTES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DECEMBER, 2015 This thesis contains previously published material (Appendix E) in the “Journal of Geotechnical and Geoenvironmental Engineering” © 2002 ASCE. All other material © 2015 Michael E. Dittes All Rights Reserved. ACKNOWLEDGMENTS I would like to extend my thanks to those, who without their help I would not have been able to bring this project to completion. First and foremost, I thank Professor Joseph Labuz who took a chance on me, by offering me a TA-ship. Through my time in school, Joe helped me stay focused when I started to move off on tangents, offered timely advice, and over the years has become much more than my advisor. I am proud to think of him as a friend. Professors Andrew Drescher and Peter Huddleston also deserve special thanks for providing critical review of my work, and agreeing to sit on my thesis committee. To Ms. Tiffany Ralston who had an uncanny way of knowing what I needed to do, and how, before I knew myself. To Charles Nelson who helped me streamline my thesis project and helped me gain access to the Minnesota Library Archives construction site. To my fellow graduate students with whom I debated, joked and laughed, you helped me see things that I was missing. Your input was invaluable and you have my deep appreciation.
    [Show full text]
  • Back Matter (PDF)
    Index acritarchs 131 Carbonate Dagestan 259 Aeronian, recovery patterns 127-33 carbonate ramps, Frasnian-Famennian 135 Alaska, graptolites 119-26 Carboniferous Albian, Late, Albian-Cenomanian oceanic anoxic 'lesser mass extinction event' events (OAEs) 240-1 rugose corals ammonites 231 extinction 188-9 Campanian 299-308 recovery 192-7 desmoceratacean, E Russia, Sakhalin 299-308 survival interval 189-91 Santonian-Maastrichtian, stratigraphy 300-3 catastrophic mass extinction 54 see also goniatites Caucasus, N ammonoids foraminifera, Danian extinctions 337-42 early stages 164-8 locations 337 goniatite survival 163-85 Caucasus, NE Japan 306 foraminifera, Cenomanian-Turonian Boundary juvenile ornament 169 Event 259--64 morphological sequence 169 location map 260 protoconch size 166, 181 Cauvery Basin, oceanic anoxic events (OAEs) 238 recovery, Sakhalin 304, 306 Cenomanian-Turonian Boundary Event taxonomic diversity, dynamics 305 dinoflagellate cyst assemblages recovery, England, Amphipora-bearing limestone 135-61 oceanic anoxic events 279-97 angiosperms, origination, extinction and diversity 73 England, S 267 Anisian Stage 223, 224 food chain recovery 265-77 Lazarus taxa 227 foraminifera 237-44, 259-64 Annulata Event, Devonian 178 Milankovitch rhythms 246 Apterygota 65 oceanic anoxic events (OAEs) archaeocyaths 82, 86 India, SE, Cauvery Basin 237-44 Ashgill, correlation of biotic events 129 NE Caucasus 259-64 Atavograptus atavus Zone 124 Spain, Menoyo section 245-58 Avalonian plate 125 Turonian lithological logs, England, SE 280-2 Changxingian
    [Show full text]
  • Preliminary Hydrogeologic Evaluation of the Cincinnati Arch Region For
    PRELIMINARY HYDROGEOLOGIC EVALUATION OF THE CINCINNATI ARCH REGION FOR UNDERGROUND HIGH-LEVEL RADIOACTIVE WASTE DISPOSAL, INDIANA, KENTUCKY, AND OHIO By Orville B. Lloyd, Jr., and Robert W. Davis U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 88-4098 Raleigh, North Carolina 1989 DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information, Copies of this report can contact: be purchased from: Chief, Branch of Nuclear Waste Hydrology Books and Open-File Reports U.S. Geological Survey U.S. Geological Survey National Center, Mail Stop 410 Federal Center, Building 810 12201 Sunrise Valley Drive Box 25425 Reston, Virginia 22092 Denver, Colorado 80225 or District Chief U.S. Geological Survey Post Office Box 2857 Raleigh, North Carolina 27602 Telephone: (919) 856-4510 CONTENTS Page Abstract. ............................... 1 Introduction. ............................. 2 Background ............................ 2 Purpose and scope. ........................ 4 Previous investigations. ..................... 4 Acknowledgments.......................... 6 Methods of investigation. ....................... 6 Hydrogeology of the sedimentary rocks ................. 8 General geology. ......................... 8 Hydrogeologic framework. ..................... 14 Basal sandstone aquifer ................... 14 Potential confining unit. .................. 17 Distribution and source of freshwater, saline water, and brine. ........................... 19 Ground-water occurrence and
    [Show full text]
  • Review & Evaluation of Groundwater Contamination & Proposed Remediation
    -1 r r n CONFIDENTIAL REVIEW AND EVALUATION r OF GROUND-WATER CONTAMINATION AND PROPOSED REMEDIATION AT THE REILLY TAR SITE, ST. LOUIS PARK, MINNESOTA r. c Prepared by L Dr. James W. Mercer GeoTrans, inc. 209 Elden Street Herndon, Virginia 22070 [ Report to L U.S. Environmental Protection Agency Region V, Remedial Response Branch (5HR-13) Chicago, Illinois 60604 December 1984 L ieoT L GEOTRANS, INC. lrran« s P.O. Box 2550 Reston.Virginia 22090 USA (703)435-4400 EPA Region 5 Recorcte Ctr. i inn minium iflBiniiiiiiiw L 234542 r. CONFIDENTIAL REVIEW AND EVALUATION OF GROUND-WATER CONTAMINATION AND PROPOSED REMEDIATION AT THE REILLY TAR SITE, ST. LOUIS PARK, MINNESOTA Prepared By Dr. James W. Mercer GeoTrans, Inc. 209 El den Street Herndon, Virginia 22070 Report To U.S. Environmental Protection Agency Region V, Remedial Response Branch (5HR-13) Chicago, Illinois 60604 December 1984 TABLE OF CONTENTS Page LIST OF FIGURES v LIST OF TABLES vii 1.0 INTRODUCTION 1 1.1 PURPOSE AND SCOPE 1 1.2 SITE HISTORY 2 2.0 CONCLUSIONS AND RECOMMENDATIONS 4 2.1 CONCLUSIONS 4 2.2 RECOMMENDATIONS 6 3.0 SITE HYDROGEOLOGY 7 3.1 GEOLOGY 7 3.1.1 Stratigraphy 7 3.1.2 Geomorphic Features 14 3.2 GROUND-WATER HYDROLOGY 17 3.2.1 Flow Directions 17 3.2.1.1 Mount Simon-Hinckley Aquifer 17 3.2.1.2 Ironton-Galesville Aquifer 25 3.2.1.3 Prairie du Chien-Jordan Aquifer 25 3.2.1.4 St. Peter Aquifer 29 3.2.1.5 Drift-Platteville Aquifers 33 3.2.1.6 Vertical Gradients 35 3.2.2 Flow Properties 35 3.3 CHEMISTRY 39 4.0 GROUND-WATER MODELING 42 4.1 CODE SELECTED 42 4.2 GEOMETRY 43
    [Show full text]
  • B2150-B FRONT Final
    Bedrock Geology of the Paducah 1°×2° CUSMAP Quadrangle, Illinois, Indiana, Kentucky, and Missouri By W. John Nelson THE PADUCAH CUSMAP QUADRANGLE: RESOURCE AND TOPICAL INVESTIGATIONS Martin B. Goldhaber, Project Coordinator T OF EN TH TM E U.S. GEOLOGICAL SURVEY BULLETIN 2150–B R I A N P T E E R D . I O S . R A joint study conducted in collaboration with the Illinois State Geological U Survey, the Indiana Geological Survey, the Kentucky Geological Survey, and the Missouri M 9 Division of Geology and Land Survey A 8 4 R C H 3, 1 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1998 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Mark Schaefer, Acting Director For sale by U.S. Geological Survey, Information Services Box 25286, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging-in-Publication Data Nelson, W. John Bedrock geology of the Paducah 1°×2° CUSMAP Quadrangle, Illinois, Indiana, Ken- tucky, and Missouri / by W. John Nelson. p. cm.—(U.S. Geological Survey bulletin ; 2150–B) (The Paducah CUSMAP Quadrangle, resource and topical investigations ; B) Includes bibliographical references. Supt. of Docs. no. : I 19.3:2150–B 1. Geology—Middle West. I. Title. II. Series. III. Series: The Paducah CUSMAP Quadrangle, resource and topical investigations ; B QE75.B9 no. 2150–B [QE78.7] [557.3 s—dc21 97–7724 [557.7] CIP CONTENTS Abstract ..........................................................................................................................
    [Show full text]
  • Pre-Pennsylvanian Stratigraphy of Nebraska
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Earth and Atmospheric Sciences, Department Papers in the Earth and Atmospheric Sciences of 12-1934 PRE-PENNSYLVANIAN STRATIGRAPHY OF NEBRASKA Alvin Leonard Lugn University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/geosciencefacpub Part of the Earth Sciences Commons Lugn, Alvin Leonard, "PRE-PENNSYLVANIAN STRATIGRAPHY OF NEBRASKA" (1934). Papers in the Earth and Atmospheric Sciences. 360. https://digitalcommons.unl.edu/geosciencefacpub/360 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. BULLETIN OF THE AMERICAN ASSOCIATION OF PETROLEUM GEOLOGISTS VOL. 18. NO 12 'DECEMBER, 1934). PP 1597-1631, 9 FIGS PRE-PENNSYLVANIAN STRATIGRAPHY OF NEBRASKA1 A. L. LUGN2 liincoln, Nebraska ABSTRACT Sioux quartzite, granite, and schistose metamorphic rocks have been recognized in the pre-Cambrian. The present irregularities, the "basins and highs," on the pre- Cambrian surface are the result of erosion and a long structural history. In general succeedingly younger rocks rest unconformably by overlap against the pre-Cambrian "highs." The principal erosional and structural "highs" are: the "Nemaha moun­ tains," the Cambridge anticline, the Chadron dome, and the Sioux Falls area. "Basins," or saddle-like depressions, occur on the pre-Cambrian surface between the "highs." The largest of these trends from southeast to northwest across the central part of Nebraska. The history of each ridge or "high" is more or less individualistic, but it seems certain that the structural framework of Nebraska came into existence in late pre-Cambrian time and has dominated the structural and depositional history of the state ever since.
    [Show full text]
  • Geology of Winneshiek County
    GEOLOGY OF WINNESHIEK COUNTY. BY SAMUEL CALVIN. • GEOLOGY OF WINNESHIEK COUNTY. BY SAMUEL CALVIN. CONTENTS. PA.GE . Introduction . .. " .. ... .. ..... ....... ....... .. .. , ...... ... .. .. ... ... 43 Geographic and Geologic Rt:lations . .. .. ...... ...... .. 43 Area.. .............. .. .. .. ........... ..... .... ... .. ....... .. 43 Boundaries . ... .. ... ......... .. .... .... ... ..... ..... 43 Relations to topographic areas . .. ..... .. ... .... .. ... 43 Relations to dist~ibution of geological formations .... .. ... 44 Previous geological work . .... .. ..... ... .. ......... 45 PhYliography .... .. ........ ....• , . .. .... ... ....... 47 Topography. .. .. .. ... 47 Preglacial topography. ... .... ..... .... .. .. .. ... ... 47 Topographic effects of the several rock formations.... ... 48 Topography controlled by Pleistocene deposits......... .. ..... 53 The area of Kansas drift. .. ... ... .. .. ... ... ..... 53 The Iowan-Kansas border. .. 54 The area of Iowan drift . , ....... .. .. .. .. .... .... ... 54 Topography due to recent shifting of mantle rocks. ....... 55 The larger topographic features. .. .......... .. ... .. ... ... 56 The Cresco-Calmar ridge. .. ... .. .... ......... .... 56 Drainage ba&in of the Ox.Eota, or Upper Iowa river..... .. 56 Drainage basin of the Yellow river.... •. .... .. ..... .. .... 56 Drainage basin of the Turkey river. .. ... .. .. ....... 56 Elevations.... .......... .. .... .. .. .... .. .. .... .. ... 56 Drainage ..... ... .... .. ... .................. ........ '" 57 The Oneota, or
    [Show full text]
  • Paleozoic Lithostratigraphic Nomenclature for Minnesota
    MINNESOTA GEOLOGICAL SURVEY PRISCILLA C. GREW, Director PALEOZOIC LITHOSTRATIGRAPHIC NOMENCLATURE FOR MINNESOTA John H. Mossier Report of Investigations 36 ISSN 0076-9177 UNIVERSITY OF MINNESOTA Saint Paul - 1987 PALEOZOIC LITHOSTRATIGRAPHIC NOMENCLATURE FOR MINNESOTA CONTENTS Abstract. Structural and sedimentological framework • Cambrian System • 2 Mt. Simon Sandstone. 2 Eau Claire Formation • 6 Galesville Sandstone • 8 Ironton Sandstone. 9 Franconia Formation. 9 St. Lawrence Formation. 11 Jordan Standstone. 12 Ordovician System. 13 Prairie du Chien Group. 14 Oneota Dolomite. 14 Shakopee Formation. 15 St. Peter Sandstone. 17 Glenwood Formation. 17 Platteville Formation. 18 Decorah Shale. 19 Galena Group • 22 Cummings ville Formation. 22 Prosser Limestone. 23 Stewartville Formation • 24 Dubuque Formation. 24 Maquoketa Formation. 25 Devonian System • 25 Spillville Formation • 26 Wapsipinicon Formation 26 Cedar Valley Formation • 26 Northwestern Minnesota. 28 Winnipeg Formation • 28 Red River Formation. 29 Acknowledgments • 30 References cited. 30 Appendix--Principal gamma logs used to construct the composite gamma log illustrated on Plate 1. 36 ILLUSTRATIONS Plate 1 • Paleozoic lithostratigraphic nomenclature for Minnesota • .in pocket Figure 1. Paleogeographic maps of southeastern Minnesota • 3 2. Map showing locations of outcrops, type sections, and cores, southeastern t1innesota • 4 3. Upper Cambrian stratigraphic nomenclature 7 iii Figure 4. Lower Ordovician stratigraphic nomenclature • • • • 14 5. Upper Ordovician stratigraphic nomenclature 20 6. Middle Devonian stratigraphic nomenclature. • • . • • 27 7. Map showing locations of cores and cuttings in northwestern Minnesota • • • • • • • • • • • • • • • • • • 29 TABLE Table 1. Representative cores in Upper Cambrian formations •••••• 5 The University of Minnesota is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, religion, color, sex, national orgin, handicap, age, veteran status, or sexual orientation.
    [Show full text]