Genotypic Variation in Chilling Sensitivity of Mature-Green

Total Page:16

File Type:pdf, Size:1020Kb

Genotypic Variation in Chilling Sensitivity of Mature-Green RESEARCH REPORTS Decoteau, D.R., M.J. Kasperbauer, and and temperature conditions between P.G. Hunt. 1989. Mulch surface color Genotypic Variation the treatments (Brown and Brown, affects yield of fresh market tomatoes. J. 1992). Amer. Soc. Hort. Sci. 114:216–219. in Chilling Sensitivity In conclusion, foam mulch main- tained its integrity for the entire grow- Gough, R.E. 2001. Colored plastic mulches of Mature-green increase fruit production in tomato and ing season and provided similar weed pepper. HortScience 36:587–588. Bananas and suppression to the black plastic mulch. Mulch color did not affect weed sup- Ham, J.M., G.J. Kluitenberg, and W.J. Plantains pression. This is probably because re- Lamont. 1993. Optical properties of plas- gardless of color the foam mulch did tic mulches affect the field temperature not allow light penetration and likely regime. J. Amer. Soc. Hort. Sci. 118:188– 1 193. Keri L. Morrelli, served as a physical barrier impeding 2 weed emergence. Hanna, H.Y. 2000. Black polyethylene Betty M. Hess-Pierce, and Mulch color but not mulch type mulch does not reduce yields of cucumber Adel A. Kader3 affected early, ripe fruit, and total yield. double- cropped with tomatoes under heat Yields in blue foam mulch were greater stress. HortScience 35:190-191. than in the other treatments. Tomato Kasperbauer, M.J. and P.G. Hunt. 1998. ADDITIONAL INDEX WORDS. Musa fruit yields in black foam and black Far-red light affects photosynthate alloca- paradisiaca, chilling injury plastic mulches were similar. Further tion and yield of tomato over red mulch. research is needed to confirm the ef- Crop Sci. 38:970–974. SUMMARY. The variation in chilling fect of blue color on tomato yield and Liburd, O.E., R.A. Cassgrande, and S.R. sensitivity of mature-green specialty to compare blue foam mulch with blue Alm. 1998. Evaluation of various color bananas (Musa paradisiaca var. plastic mulch. Microenvironment hydromulches and weed fabric on broccoli sapientum) and plantains (Musa monitoring is also needed under foam insect populations. J. Econ. Entomol. paradisiaca var. paradisiaca) was mulch to determine its effects on the 91:256–262. examined using four cultivars of bananas and one plantain cultivar crop environment and to understand Loehrlein, M. 2001. Plastic mulch pro- stored under various time and tempera- how foam mulch impacts tomato duces variable response on early yield of ture combinations. Cold storage for 1 growth and yield. tomato. HortScience 36:588. day at 5.0, 7.2, or 10.0 °C (41, 45, or Foam mulch is currently being 50 °F) resulted in acceptable fruit commercialized for use in high-value Maynard, D.N. and G.J. Hochmuth. 1997. quality for up to 8 days at 20.0 °C (68 situations. Foam mulch may also have Knott’s handbook for vegetable growers. °F) for ‘Petite’ and ‘Red Macabu’ 4th ed. Wiley, New York. potential for use in organic vegetable bananas and ‘Dominico Harton’ production. At this stage, foam mulch McGiffen, Jr., M.E., J.B. Masiunas, and J. plantains. ‘Grand Nain’ and is more costly than plastic mulch and is Hesketh. 1992. Competition for light be- ‘Yangambi’ bananas were considered uneconomical to use on larger con- tween tomatoes and nightshades (Solanum unmarketable due to moderate to severe graying after 8 days at 20.0 °C ventionally-produced, commercial nigrum and S. ptycanthum). Weed Science 40:220–226. when fruit were previously stored for 1 plantings of tomato or basil. We ex- day at 5.0 or 7.2 °C. Storage for 3 days pect that as application technology is Morgan, A.W. 2000. Biodegradable mulch at 10.0 °C was acceptable for all improved and the use of foam mulch mat. US Patent 6,029,395. 29 Feb. 2000. cultivars tested, however 5 days at 10.0 becomes more common, the price of U.S. Patent and Trademark Office, Wash., °C resulted in moderate to severe foam mulch will decrease and its use in D.C. browning and graying of the ‘Grand larger vegetable plantings will increase. Ricotta, J.A. and J.B. Masiunas. 1991. The Nain’ fruit. The traditional Cavendish- effect of black plastic mulch on weed con- type, ‘Grand Nain’, as well as ‘Petite’ trol in herbs. HortScience 26:539–541. and ‘Yangambi’, required temperatures Literature cited greater than 10.0 °C for a 7-day Anderson, D.F., M.A. Garisto, J.C. Roberts, B.W. and J.A. Anderson. 1994. storage duration while ‘Red Macabu’ Bourrut, M.W. Schonbeck, R. Jaye, A. Canopy shade and soil mulch affect yield bananas could be safely stored for 7 Wurzberger, and R. DeGregorio. 1995. and solar injury of bell pepper. HortScience days at 10.0 °C. Plantains could be Evaluation of a paper mulch made from 29:258–260. stored at 7.2 °C for 7 days without recycled materials as an alternative to plas- visible chilling injury symptoms. The tic film mulch for vegetables. J. Sustainable Schmidt, J.R. and J.W. Worthington. 1998. storage of specialty bananas and Agr. 7:39–61. Modifying heat unit accumulation with plantains at or above their minimum contrasting colors of polyethylene mulch. safe temperatures resulted in improved Ashworth, S. and H. Harrison. 1983. Evalu- HortScience 33:210–214. uniformity of ripening and overall ation of mulches for use in the home quality of the fruit due to a decrease in garden. HortScience 18:180–182. Summers, C.G., J.J. Stapleton, A.S. New- ton, R.A. Duncan, and D. Hart. 1995. chilling injury symptoms. Brown, J.E., W.D. Goff, J.M. Dangler, W. Comparison of sprayable and film mulches Department of Pomology, University of California, Hogue, and M.S. West. 1992. Plastic mulch in delaying the onset of aphid-transmitted One Shields Avenue, Davis, CA 95616. color inconsistently affects yield and earli- virus diseases in zucchini squash. Plant Dis. This paper is a portion of a MS thesis submitted by K.L. ness of tomato. HortScience 27:1135. 79:1126–1131. Morrelli. We thank Dole Fruit International for partial funding of this research. Brown, S.L. and J.E. Brown. 1992. Effect Tarara, J. 2000. Microclimate modifica- 1Graduate student. of plastic mulch color and insecticides on tion with plastic mulch. HortScience thrips populations and damage to toma- 35:169–180. 2Staff research associate. toes. HortTechnology 2:208–211. 3Professor and corresponding author; e-mail [email protected]. 328 G April–June 2003 13(2) RR3 328 2/25/03, 11:00 AM hilling injury (CI) in ba- were ripened; however, there were no using a gas chromatograph (Carle model nanas, as well as many additional signs of CI on the fruit. When 211; EG&G Engineering, Tulsa, Okla.) C other tropical and subtropical bananas were stored for 4 d at 7.2 °C, equipped with a flame ionization detec- fruits and vegetables, is a postharvest there was no effect on the ripening of tor and stainless steel column packed disorder which can result in great losses the pulp; however, there was a consider- with activated alumina at 80 °C (176 ° in the quality and shelf life of the fruit. able delay in the color development of °F). After the 48-h treatment period, Classic symptoms of CI in bananas are the peel (Young et al., 1932). Wardlaw the fruit were removed from the tanks subepidermal vascular browning, peel and McGuire (1931) found that ‘Gros and the bags and placed on trays at 20.0 discoloration, delayed or abnormal rip- Michel’ bananas developed CI symp- °C. External fruit quality was evaluated ening, and sometimes failure to ripen. toms when stored for 9 d at 10.6 °C (51 every other day for up to 8 d at 20.0 °C Experimentation to determine the °F) and 14 d at 11.1 °C (52 °F), while to assure development of any latent CI temperatures at which various banana no damage was observed when fruit symptoms (Fidler, 1968). cultivars should be stored and trans- were held for 16 to 20 d at 11.7 °C. QUALITY EVALUATIONS. Visual evalu- ported, primarily in relation to avoiding The focus of this study was to ations of peel color, browning, and CI during transit, was initiated in the determine the minimum safe temperature graying were made. Scoring for color early 1930s. ‘Gros Michel’ and ‘Dwarf for 7 d storage (simulated transport time was determined using a 1-7 color scor- Cavendish’ bananas were well suited for from production areas to U.S.) of five ing scale as described by Von Loesecke storage up to 18 d at 11.7 °C (53 °F) specialty banana and plantain cultivars. (1950): 1 = hard green; 2 = soft green; (Wardlaw, 1961). Wardlaw and 3 = more green than yellow; 4 = more McGuire (1933) reported that when Materials and methods yellow than green; 5 = yellow with green ‘Giant Governor’ (‘Giant Cavendish’) PLANT MATERIAL. Mature-green tips; 6 = full yellow; and 7 = yellow with fruit were stored for 16 d at 14.4 °C (58 ‘Grand Nain’ and ‘Petite’ bananas and brown spots. Color development in °F), the fruit was superior in color to ‘Dominico Harton’ plantains were ob- ‘Yangambi’ and ‘Red Macabu’ bananas that of fruit stored at 11.7 °C. ‘Fillbasket’, tained for the first experiment and was scored on a 1 to 6 color scale a ladyfinger-type banana, could with- ‘Yangambi’ and ‘Red Macabu’ bananas because fruit never developed brown stand 16 d at 11.7 °C and continue were obtained for the second experi- spots (based on previous observation). normal ripening and color development ment from Dole Fruit International, Peel browning was described as vascular when ripened at 21.1 °C (70 °F), while Costa Rica, via air transport.
Recommended publications
  • Banana Growing in the Florida Home Landscape1 Jonathan H
    HS10 Banana Growing in the Florida Home Landscape1 Jonathan H. Crane and Carlos F. Balerdi2 Scientific name: Musa acuminata and Musa balbisiana per plant than sweet bananas. The groups differ in whether the male parts of the inflorescence are persistent or absent. Common names for banana: English—banana, plantain; Spanish—banano, platano, guineo, cambur History and Distribution Common names for plantain: English—plantain, horse The banana and plantain are native to southeast Asia, banana; Spanish—platano where they have been cultivated for thousands of years. Bananas are believed to have been introduced to Africa in Family: Musaceae prehistoric times. Recent evidence suggests bananas were introduced into the New World (Ecuador) by southeast Relatives of banana within the Order Zingiberales: Asians around 200 BCE, and more recently by Portuguese Numerous ornamental plants including traveler’s palm, and Spanish explorers in the early 16th century. The bird-of-paradise, heliconia, and ginger. Portuguese introduced bananas into the Canary Islands and the Spanish to the Island of Hispaniola during the 1500s. Introduction Susceptibility to frost keeps the banana from spreading Bananas are vigorously growing, monocotyledonous beyond the tropics and the warm subtropics. However, herbaceous plants. There are two species of banana, Musa bananas are grown commercially in a number of subtropi- acuminata and M. balbisiana, and most banana cultivars cal areas such as Australia, Morocco, South Africa, Egypt, are hybrids of these species. Banana cultivars vary greatly Israel, the Canary Islands, and south Florida. In some areas, in plant and fruit size, plant morphology, fruit quality, and bananas are grown inside plastic or glass covered structures.
    [Show full text]
  • Medicinal and Nutritional Importance of Banana
    ACTA SCIENTIFIC AGRICULTURE (ISSN: 2581-365X) Volume 3 Issue 5 May 2019 Short Communication Medicinal and Nutritional Importance of Banana Chandrashekhar Vasant Kothawade* Agri Search (I) Pvt. Ltd, NashiK, Maharashtra, India *Corresponding Author: Chandrashekhar Vasant Kothawade, Agri Search (I) Pvt. Ltd, NashiK, Maharashtra, India. Received: August 14, 2018; Published: April 15, 2019 Abstract The Cavendish subgroup is the most widely grown group of bananas since it includes the cultivars that dominate the international trade in bananas (e.g. Grande Naine, Williams and Valery) and as such have set the standards in terms of taste, yield and post-harvest characteristics expected of an export banana. They are also increasingly grown for domestic markets. In 2010, Cavendish cultivars accounted for about 40% of the global production of bananas, which includes the 27% produced for domestic markets and the 14% grown for export[1]. Their domination of the international trade started in the late 1950s when they were selected to replace Gros Michel, whose susceptibility to Fusarium wilt precluded its cultivation in large commercial plantations. Although Cavendish cultivars are resistant to the race 1 strains of the fungus that causes the disease, they are susceptible to tropical race 4. Source: www.promusa.org/Cavendish+subgroup Keywords: Banana; Medicinal; Nutritional Importance Millions of people around the world depend on banana as a There is an urgent need to protect and further explore the di- source of food and income. However, despite increasing global versity of banana (Musa), both wild and cultivated, to increase banana production, yields of banana – both dessert and cooking types – are far below their potential.
    [Show full text]
  • Cultivo Del Platano En Los Jardines De Florida
    Cultivo del Plátano en los Jardines de Florida1 Jonathan H. Crane, Carlos F. Balerdi, y Ian Maguire2, 3 Nombre científico: Musa acuminata y Musa Los plátanos usados para freir son híbridos balbisiana cuyas flores masculinas han degenerado, Nombres comunes del plátano: Español- desaparecido, o existen como vestigios de la banano, guineo, cambur; English – banana, flores originales. Los plátanos de freir siempre plantain se cocinan antes de consumirse y poseen un Familia: Musaceae. contenido de almidón mayor que los de postres o dulces. Los plátanos se clasifican en dos Otras especies relacionadas dentro del grupos: French y Horn, los cuales difieren en si Orden Zingiberales: Numerosas plantas las partes masculinas de las inflorescencias ornamentales que incluyen al árbol del viajero, están presentes o no. Ambos grupos producen ave del paraíso, heliconias y el gengibre. una cantidad de frutos menor por planta que las que producen los plátanos dulces. INTRODUCCION HISTORIA Y DISTRIBUCION Los plátanos son plantas herbáceas, monocotiledoneas que crecen vigorosamente. Los plátanos, dulces o de postre y de freir, Existen dos especies de plátanos, Musa son nativos del sudeste de Asia, en donde han acuminata y Musa balbisiana, y la mayoría de sido cultivados desde hace miles de años. Se los cultivares de plátanos son híbridos de ambas piensa que los plátanos dulces fueron especies. Los cultivares de plátanos varían introducidos en Africa en tiempos prehistóricos. grandemente en el tamaño de la planta y el Evidencias recientes sugieren que los mismos fruto, la morfología de la planta, la calidad de fueron introducidas en el Nuevo Mundo los frutos y en la resistencia a las enfermedades (Ecuador) por inmigrantes provenientes del e insectos.
    [Show full text]
  • Phenotypic Characters of Various Off Types Identified in Laboratory, Primary and Secondary Hardening in Tissue Cultured Banana Var
    Indian Journal of Biotechnology Vol 9, April 2010, pp 178-186 Phenotypic characters of various off types identified in laboratory, primary and secondary hardening in tissue cultured banana var. Grand naine Shailesh Vasane, Anil Patil and R M Kothari* Jain Hi-Tech Agri Research Institute, Jain Irrigation Systems Ltd, Jalgaon 425 001, India Received 4 August 2008; revised 20 August 2009; accepted 25 October 2009 An integrated study was undertaken on micropropagation of Grand nain variety of banana (Musa paradisiaca) from elite plants to identify and segregate (i) 3 types of off plants at the end of growth room phase development, (ii) 5 types of off plants at the end of primary hardening phase and (iii) totally 9 types (which included common 5 types observed at the end of primary hardening) at the end of secondary hardening phase. The morphological profiles of normal and off type plants were studied as a function of the above mentioned growth phases. The 9 off types identified after secondary hardening were finally subjected to field trials along with normal plants to serve as control using an optimized protocol of fertilizer application and irrigation. Their outcome indicated that off types, regardless of the type, could not sustain either transplantation shock or survived for not more that 3-6 months, giving poor growth/ no fruiting/ poor yield in quality and quantity. The composite data indicated that these off types were somoclonal variants and were not the result of epigenetic factor(s), as ruled out from studies of factors likely to affect their growth. It is, therefore, prudent to segregate them rigorously at each developmental phase so that delivery of only healthy normal plants to farmers was assured, limiting to minimum, if any, inadvertent contamination of off type plants due to limitation in their identification.
    [Show full text]
  • Bananas the Green Gold of the South Table of Contents Abstract 3 Abstract Facts and Figures 4
    Facts Series Bananas the green gold of the South Table of Contents Abstract 3 Abstract Facts and figures 4 Chapter I: Bananas, the green gold of the South 5 There are few people in the world who are not familiar with bananas. With an annual production of 145 million metric tons in over 130 countries and an economic value of 44.1 billion dollars, bananas are the The ancestors of the modern banana 6 fourth most important food crop in the world. The banana originally came from Asia, but was imported into Why are bananas bent? 7 Africa long ago, where it now constitutes a significant source of food security. One third of all bananas are Bananas: from the hand or from the pan? 8 cultivated in Asia, another third in Latin America, and the other in Africa. 20% of the world’s production of East African Highland bananas 11 bananas comes from Burundi, Rwanda, the Democratic Republic of the Congo, Uganda, Kenya, and Tanza- nia, where they are grown on fields of 0.5 to 4 hectares. Only 15% of the worldwide production of bananas Chapter 2: Bananas, a vital part of the world’s economy 12 is exported to Western countries, which means that 85% of bananas are cultivated by small farmers to be Banana export and production 13 consumed and sold at local and regional markets. Given that bananas serve as a basic food source for 20 Picked when green and ripe in the shops 15 million people in East Africa and for 70 million people in West and Central Africa, Africa is highly dependent Gros Michel and Cavendish, the favorites of the West 15 on banana cultivation for food, income, and job security.
    [Show full text]
  • Banana Root System: Towards a Better Understanding for Its Productive
    Banana Root System: towards a better understanding for its productive management Proceedings of an international symposium held in San José, Costa Rica, 3-5 November 2003 Sistema Radical del Banano: hacia un mejor conocimiento para su manejo productivo Memorias de un simposio internacional, San José, Costa Rica, 3-5 noviembre 2003 David W. Turner and Franklin E. Rosales, editors INIBAP – International Network for the Improvement of Banana and Plantain The mission of INIBAP is to sustainably increase the productivity of banana and plantain grown on smallholdings for domestic consumption and for local and export markets. The Programme has four specific objectives: • To organize and coordinate a global research effort on banana and plantain, aimed at the development, evaluation and dissemination of improved cultivars and at the conservation and use of Musa diversity • To promote and strengthen collaboration and partnerships in banana-related research activities at the national, regional and global levels • To strengthen the ability of NARS to conduct research and development activities on bananas and plantains • To coordinate, facilitate and support the production, collection and exchange of information and documentation related to banana and plantain. INIBAP is a network of the International Plant Genetic Resources Institute (IPGRI), a Future Harvest centre. MUSALAC – Banana and Plantain Research and Development Network for Latin America and the Caribbean MUSALAC was created under the umbrella of FORAGRO on 6 June 2000 in Cartagena de Indias, Colombia, following the signing of a Constitution Agreement. MUSALAC is composed of 15 national research and development institutions representing their respective country (Bolivia, Brazil, Colombia, Costa Rica, Cuba, Ecuador, Honduras, Jamaica, Mexico, Nicaragua, Panama, Peru, Puerto Rico, Dominican Republic and Venezuela) and 4 regional/international institutions (CATIE, CIRAD, IICA and INIBAP).
    [Show full text]
  • Domestication, Genomics and the Future for Banana
    Annals of Botany 100: 1073–1084, 2007 doi:10.1093/aob/mcm191, available online at www.aob.oxfordjournals.org REVIEW Domestication, Genomics and the Future for Banana J. S. HESLOP-HARRISON* and TRUDE SCHWARZACHER Department of Biology, University of Leicester, Leicester LE1 7RH, UK Received: 16 July 2007 Returned for revision: 22 July 2007 Accepted: 25 July 2007 Published electronically: 31 August 2007 † Background Cultivated bananas and plantains are giant herbaceous plants within the genus Musa. They are both sterile and parthenocarpic so the fruit develops without seed. The cultivated hybrids and species are mostly triploid (2n ¼ 3x ¼ 33; a few are diploid or tetraploid), and most have been propagated from mutants found in the wild. With a production of 100 million tons annually, banana is a staple food across the Asian, African and American tropics, with the 15 % that is exported being important to many economies. † Scope There are well over a thousand domesticated Musa cultivars and their genetic diversity is high, indicating multiple origins from different wild hybrids between two principle ancestral species. However, the difficulty of gen- etics and sterility of the crop has meant that the development of new varieties through hybridization, mutation or transformation was not very successful in the 20th century. Knowledge of structural and functional genomics and genes, reproductive physiology, cytogenetics, and comparative genomics with rice, Arabidopsis and other model species has increased our understanding of Musa and its diversity enormously. † Conclusions There are major challenges to banana production from virulent diseases, abiotic stresses and new demands for sustainability, quality, transport and yield.
    [Show full text]
  • FUSARIUM WILT of BANANA: Main Production Constraints in LA&C
    4/30/2014 FUSARIUM WILT OF BANANA: GLOBAL EPIDEMIOLOGICAL SITUATION OF TROPICAL RACE 4 OF Fusarium oxysporum f. sp. cubense AND PREVENTION PROGRAM. Luis PérezVicente Main production constraints in LA&C Production systems Main constrains Intensive tropical Cavendish for Black Sigatoka, nematode, bacterial wilt or export moko (R. solanacearum); environmental and labor safety regulation; abiotic stresses (hurrican, flooding/ drought) Organic Cavendish production Black Sigatoka, nematode; fruit trips; BSV Subtropical Cavendish production Fusarium wilt (Fusarium oxysporum sp. cubense); abiotic stresses (low temperatures) Plantain monoculture Black Sigatoka, nematode; , Cosmopolites sordidus, Banana streak badnavirus (BSV), pseudostem rots by Dickeya spp., finger soft rot by Pectobacterium carotovorum, bacterial wilt (R. solanacearum) Mix crops of Musa with cocoa, Black Sigatoka, Panama disease, bacterial wilt, coconuts, coffee, etc. black weevil, etc. Mix crops/ banana and plantain Black Sigatoka, Panama disease, bacterial wilt, monocultures in small plots (for home black weevil, etc. compsumtion or local markets) 1 4/30/2014 Fusarium wilt of banana or Panama disease Symptoms of Fusarium wilt or Panama disease Yellow leaf syndrome Non-Yellow leaf syndrome 2 4/30/2014 External symptoms of Panama disease Shortening of emergent Reddish brown streaks Pseudostem split leaf in the inner side of sheath Internal symptoms of Fusarium wilt 3 4/30/2014 Distinctive symptoms between bacterial wilt (Moko) by Ralstonia solanacearum race 2 and Panamá disease by Fusarium oxysporum f. sp. cubense. Fusarium oxysporum f. sp. cubense 4 4/30/2014 OMNIPRESENT IN SOIL, WATER, AIR AND OTHER MULTIPLE SUBSTRATES; ARE SAPROPHYTES, PATHOGENS, ANTAGONISTS F. oxysporum: a pathogens complex Kistler, H.Fusarium C. 2001. oxysporum f.
    [Show full text]
  • Banana (Musa Spp) from Peel to Pulp Ethnopharmacology, Source Of
    Journal of Ethnopharmacology 160 (2015) 149–163 Contents lists available at ScienceDirect Journal of Ethnopharmacology journal homepage: www.elsevier.com/locate/jep Review Banana (Musa spp) from peel to pulp: Ethnopharmacology, source of bioactive compounds and its relevance for human health Aline Pereira n, Marcelo Maraschin Federal University of Santa Catarina, Plant Morphogenesis and Biochemistry Laboratory, PO Box 476, 88049-900 Florianopolis, Brazil article info abstract Article history: Ethnopharmacological relevance: Banana is a fruit with nutritional properties and also with acclaimed Received 29 April 2014 therapeutic uses, cultivated widely throughout the tropics as source of food and income for people. Received in revised form Banana peel is known by its local and traditional use to promote wound healing mainly from burns and 5 November 2014 to help overcome or prevent a substantial number of illnesses, as depression. Accepted 5 November 2014 Aim of the study: This review critically assessed the phytochemical properties and biological activities of Available online 13 November 2014 Musa spp fruit pulp and peel. Keywords: Materials and methods: A survey on the literature on banana (Musa spp, Musaceae) covering its botanical Musa spp classification and nomenclature, as well as the local and traditional use of its pulp and peel was Banana peel performed. Besides, the current state of art on banana fruit pulp and peel as interesting complex matrices Bioactive compounds sources of high-value compounds from secondary metabolism was also approached. Phytochemistry fi Metabolomics Results: Dessert bananas and plantains are systematic classi ed into four sections, Eumusa, Rhodochla- Parkinson’s disease mys, Australimusa, and Callimusa, according to the number of chromosomes.
    [Show full text]
  • (Mycosphaerella Fijiensis Morelet) in Puerto Rico
    Crop Protection 54 (2013) 229e238 Contents lists available at ScienceDirect Crop Protection journal homepage: www.elsevier.com/locate/cropro Evaluation of banana hybrids for tolerance to black leaf streak (Mycosphaerella fijiensis Morelet) in Puerto Rico B.M. Irish a,*, R. Goenaga a, C. Rios a, J. Chavarria-Carvajal b, R. Ploetz c a USDA e ARS Tropical Agriculture Research Station, 2200 Pedro Albizu Campos Ave., Mayaguez, Puerto Rico b University of Puerto Rico, Department of Crop and Agro-Environmental Sciences, Piñero Bldg., Mayaguez, Puerto Rico c University of Florida, Tropical Research and Education Center, 18905 SW 280th St., Homestead, FL 33031, USA article info abstract Article history: In Puerto Rico, bananas (including plantains) are important agricultural commodities; their combined Received 5 July 2013 production totaled over 158,000 tons in 2011. Black leaf streak (BLS) and Sigatoka leaf spot diseases, Received in revised form caused by Mycosphaerella fijiensis and Mycosphaerella musicola, respectively, are responsible for signifi- 13 September 2013 cant losses of this crop, due to the high susceptibility of the most important cultivars. Diploid, triploid Accepted 16 September 2013 and tetraploid hybrids were introduced from international breeding programs for evaluation in Isabela, Puerto Rico. Accessions were established in the field in a randomized complete block design and were Keywords: evaluated over two cropping cycles (2007e2010) for response to BLS and agronomic traits. Significant Musa ¼ Sigatoka differences (P 0.05) in BLS severity were observed among accessions throughout both crop cycles and Mycosphaerella fijiensis were most pronounced at harvest. When averaged across production cycles, severity indices at harvest Germplasm ranged from very resistant (20% of the leaf surface affected) for ‘FHIA 02’ to extremely susceptible Breeding (97%) for ‘Grand Nain’.
    [Show full text]
  • Banana Production
    MOALF/SHEP PLUS Japan International Cooperation Agency Agriculture, and Food Authority Ministry of Agriculture, Livestock and Fisheries Horticultural Crops Directorate State Department for Crop Development & Agricultural Research Smallholder Horticulture Empowerment & Promotion Project for Local and Up-Scaling (SHEP PLUS) “Changing Farmers’ Mindset from “Grow and Sell” to ”Grow to Sell”” BANANA PRODUCTION Prepared by SHEP PLUS Photo:Photos: SHEP SHEP PLUS PLUS MOALF/SHEP PLUS Training Title: Banana Production Preface Objective: To provide a guideline on production of Bananas Specific Objective: • This training material applies the fundamental practices essential • To provide basic information on production, post-harvest for crop production and successful marketing to put into handling, and marketing of Banana perspective the case of horticultural crop production. Contents: • The fundamental practices are categorized into seven (7) broad 1. Introduction: Background, Common Varieties and Optimal topics and twenty (20) sub-topics; the twenty sub-topics are Ecological Requirements referred to as the General Horticulture Crop Production and Post- 2. Pre-Cultivation Preparation 1 – 4 Harvest Handling Techniques (GHCP&PHHT20). This categorization is based on the Smallholder Horticulture 3. Cultural Practices 1- 7 Empowerment & Promotion Unit Project (SHEP UP) experience in 4. Harvest mitigating production and marketing challenges facing smallholder 5. Post-Harvest Handling horticultural farmers. 6. Cost & Income Analysis • The seven (7) broad
    [Show full text]
  • Annual Report 2020 1 Citation ICAR – NRCB
    2020 ICAR - NRCB Annual Report 2020 1 Citation ICAR – NRCB. 2021. Annual Report 2020. ICAR – National Research Centre for Banana, Tiruchirappalli Editors Dr. P. Giribabu Dr. J. Poorani Dr. M. Mayil Vaganan Dr. C. Anuradha Dr. P. Ravichamy Published by Dr. S. Uma Director ICAR - National Research Centre for Banana Thayanur Post, Thogamalai Road Tiruchirappalli - 620 102 Tamil Nadu, India Designed by S. Ajith Kumar 2 ICAR - NRCB Annual Report 2020 CONTENTS 1 Preface 1 2 Introduction 4 3 Executive Summary 4 Research Achievements 14 4.1 Crop Improvement 26 4.2 Crop Production and Post-Harvest Technology 35 4.3 Physiology and Biochemistry 39 4.4 Crop Protection 46 4.5 Externally Funded Projects 57 5 Technology Assessed and Transferred 60 6 Education and Training 65 7 Awards and Recognitions 73 8 Linkages and Collaborations 76 9 Publications 87 10 Consultancy Services and Commercialization of Technologies 89 11 IRC / RAC / IMC Meetings 90 12 Human Resource Development : Training / Refresher Course/ Summer/ Winter Institutes/ Seminar/ Conference/ Symposia/ Workshop attended by the Scientists and other Staff 101 13 Workshops, Seminars, Farmers day, etc. organized at the Centre 104 14 Distinguished Visitors 106 15 Personnel 108 16 Other Informations 110 17 Success Stories 112 Annexure I 116 Annexure II ICAR - NRCB Annual Report 2020 3 4 ICAR - NRCB Annual Report 2020 PREFACE Since early 2020, the world and India have been facing the scourge of the deadly Covid-19 pandemic, which has affected the economy and all spheres of life. We are facing the grim prospect of an impending second wave this year too.
    [Show full text]