Chapter 1 Genetic Improvement of Banana
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fusarium Wilt of Bananas: a Review of Agro-Environmental Factors in the Venezuelan Production System Affecting Its Development
agronomy Perspective Fusarium Wilt of Bananas: A Review of Agro-Environmental Factors in the Venezuelan Production System Affecting Its Development Barlin O. Olivares 1,*, Juan C. Rey 2 , Deyanira Lobo 2 , Juan A. Navas-Cortés 3 , José A. Gómez 3 and Blanca B. Landa 3,* 1 Programa de Doctorado en Ingeniería Agraria, Alimentaria, Forestal y del Desarrollo Rural Sostenible, Campus Rabanales, Universidad de Córdoba, 14071 Cordoba, Spain 2 Facultad de Agronomía, Universidad Central de Venezuela, Maracay 02105, Venezuela; [email protected] (J.C.R.); [email protected] (D.L.) 3 Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, 14004 Cordoba, Spain; [email protected] (J.A.N.-C.); [email protected] (J.A.G.) * Correspondence: [email protected] (B.O.O.); [email protected] (B.B.L.) Abstract: Bananas and plantains (Musa spp.) are among the main staple of millions of people in the world. Among the main Musaceae diseases that may limit its productivity, Fusarium wilt (FW), caused by Fusarium oxysporum f. sp. cubense (Foc), has been threatening the banana industry for many years, with devastating effects on the economy of many tropical countries, becoming the leading cause of changes in the land use on severely affected areas. In this article, an updated, reflective and practical review of the current state of knowledge concerning the main agro-environmental factors Citation: Olivares, B.O.; Rey, J.C.; that may affect disease progression and dissemination of this dangerous pathogen has been carried Lobo, D.; Navas-Cortés, J.A.; Gómez, J.A.; Landa, B.B. Fusarium Wilt of out, focusing on the Venezuelan Musaceae production systems. -
(A Species).Cdr
BIOTROPIA Vol. 19 No. 1, 2012: 19 - 29 A SPECIES-SPECIFIC PCR ASSAY BASED ON THE INTERNAL TRANSCRIBED SPACER (ITS) REGIONS FOR IDENTIFICATION OF Mycosphaerella eumusae, M. fijiensis AND M. musicola ON BANANA IMAN HIDAYAT Microbiology Division, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong 16911, West Java, Indonesia Recipient of BIOTROP Research Grant 2010/Accepted 28 June 2012 ABSTRACT A study on development of a rapid PCR-based detection method based on ITS region of M. eumusae, M. fijiensis , and M. musicola on banana was carried out. The main objecive of this study was to develop a fast and species-specific PCR-based detection method for the presence ofMycosphaerella species on banana. The methods include collection of specimens, morphological identification supported by molecular phylogenetic analysis, RFLP analysis, species-specific primers development, and validation. Two species ofMycosphaerella , namely, M. fijiensisand M. musicola , and one unidentified Pseudocercospora species were found in Java Island. Three restriction enzymes used in the RFLP analysis, viz, AluI, HaeIII, and TaqI were capable to discriminateM. eumusae , M. fijiensis , and M. musicola . Two species-specific primer pairs, viz, MfijF/MfijR and MmusF/MmusR have been successfully developed to detect the presence ofM. fijiensis and M. musicola , respectively. Key words: banana, detection, fungi,Mycosphaerella leaf spot, phytopathology INTRODUCTION Indonesia is one of banana production zones in Southeast Asia. However, crop losses from global climate change and fungal pathogens pose a serious threat not only to Indonesia, but also to global food security. Therefore, these threats should not be underestimated. Among the banana pathogens, three morphologically similar species, viz,Mycosphaerella fijiensis (black leaf streak disease/black Sigatoka), M. -
History of the Banana
History of the Banana Bananas: The Same The World Over Banana is the common name for the fruit and herbaceous plant that is part of the genus Musa. Bananas are one of the world’s oldest and most popular fruits. They are very nutritious, generally inexpensive, and readily available. The banana plant is a large flowering plant that grows 6–7 meters tall. Each plant produces a bunch of bananas from a flowering stem. Whether eating a ripe banana in the United States or in Europe, these store-bought bananas tend to taste the same. Part of the banana’s popularity is due to its predictably delicious flavor. However, the uniformity that makes the banana so popular could also lead to its demise. A bunch of bananas hangs from the main stem of the Banana History plant. As humans’ hunter-gatherer ancestors roamed the jungle collecting food, they ignored the bananas they found. Wild bananas, which flower and reproduce sexually, produce hard seed cases with inedible seeds inside. Occasionally, prehistoric humans found fruit on wild banana plants that did not contain seeds. These seedless bananas, when peeled, contained sweet, edible flesh. This is the edible banana that people know and enjoy today. Today’s edible banana is a genetic mutation. The mutation produces tasty fruit but prevents proper seed development. The dark lines sometimes seen after biting into a banana are the stunted seeds. Banana Sexual Reproduction In nature, bananas reproduce through sexual reproduction. Sexual reproduction in flowering plants is similar to sexual reproduction in animals. Sperm cells are produced inside pollen grains. -
Banana Growing in the Florida Home Landscape1 Jonathan H
HS10 Banana Growing in the Florida Home Landscape1 Jonathan H. Crane and Carlos F. Balerdi2 Scientific name: Musa acuminata and Musa balbisiana per plant than sweet bananas. The groups differ in whether the male parts of the inflorescence are persistent or absent. Common names for banana: English—banana, plantain; Spanish—banano, platano, guineo, cambur History and Distribution Common names for plantain: English—plantain, horse The banana and plantain are native to southeast Asia, banana; Spanish—platano where they have been cultivated for thousands of years. Bananas are believed to have been introduced to Africa in Family: Musaceae prehistoric times. Recent evidence suggests bananas were introduced into the New World (Ecuador) by southeast Relatives of banana within the Order Zingiberales: Asians around 200 BCE, and more recently by Portuguese Numerous ornamental plants including traveler’s palm, and Spanish explorers in the early 16th century. The bird-of-paradise, heliconia, and ginger. Portuguese introduced bananas into the Canary Islands and the Spanish to the Island of Hispaniola during the 1500s. Introduction Susceptibility to frost keeps the banana from spreading Bananas are vigorously growing, monocotyledonous beyond the tropics and the warm subtropics. However, herbaceous plants. There are two species of banana, Musa bananas are grown commercially in a number of subtropi- acuminata and M. balbisiana, and most banana cultivars cal areas such as Australia, Morocco, South Africa, Egypt, are hybrids of these species. Banana cultivars vary greatly Israel, the Canary Islands, and south Florida. In some areas, in plant and fruit size, plant morphology, fruit quality, and bananas are grown inside plastic or glass covered structures. -
Ripe Plantain Slices 4 X 6 LB
NATURALLY SWEET PLANTAIN SLICES PLANTAINPLANTAIN MIC SKU DESCRIPTION PACK SIZE BAKE OPTION SB010 Ripe Plantain Slices 4 x 6 LB 2 slices of plantain = 1/4 cup Ripe plantains are classified as a Starchy Vegetable in the USDA of the starchy Child Nutrition Program. vegetable requirement! What is a Plantain? Commonly referred to as “cooking banana” or “plátano” in Spanish, a plantain can easily be mistaken for a banana. Plantains are a fruit Ready to heat & serve in minutes! consumed as a vegetable and are a good source of Potassium and Vitamin A. A+ For Taste • Pre-Cooked And Frozen, Ready-To-Use A favorite side dish in mainstream and ethnic • Consistent Quality And Taste menus, the plantain has a natural sweet flavor that kids enjoy. • No Messy Peeling Or Chopping • Year-Round Availability Trusted Supplier • Long Shelf-Life MIC Food has been serving school districts • through- out the nation since 1991. Our plants are No Waste, Use Only What You Need food safety certified and third-party audited.* • 100% Yield = Controlled Costs *GFSI compliant with FSSC 22000 food safety certification. 800.788.9335 | 786.507.0540 Bringing Cultures Together™ [email protected] | micfood.com NATURALLY SWEET PLANTAIN SLICES PLANTAINPLANTAIN Add Variety to Your Menu A delicious, sweet alternative to any other starchy vegetable SB010 - Ripe Plantain Slices Plantains are a delicious side dish alternative to any pork, steak or chicken entree. They are also used in breakfast, desserts and snacks. Nutrition Facts 36 Servings per container Serving size 2 slices(76g) -
Farmers' Knowledge of Wild Musa in India Farmers'
FARMERS’ KNOWLEDGE OF WILD MUSA IN INDIA Uma Subbaraya National Research Centre for Banana Indian Council of Agricultural Reasearch Thiruchippally, Tamil Nadu, India Coordinated by NeBambi Lutaladio and Wilfried O. Baudoin Horticultural Crops Group Crop and Grassland Service FAO Plant Production and Protection Division FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2006 Reprint 2008 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to: Chief Publishing Management Service Information Division FAO Viale delle Terme di Caracalla, 00100 Rome, Italy or by e-mail to: [email protected] © FAO 2006 FARMERS’ KNOWLEDGE OF WILD MUSA IN INDIA iii CONTENTS Page ACKNOWLEDGEMENTS vi FOREWORD vii INTRODUCTION 1 SCOPE OF THE STUDY AND METHODS -
Caracterización Reológica De Almidón Y Evaluación Morfológica De 20
Agroindustria y Ciencia de los Alimentos / Agroindustry and Food Science Acta Agron. (2016) 65 (3) p 218-225 ISSN 0120-2812 | e-ISSN 2323-0118 doi: http://dx.doi.org/10.15446/acag.v65n3.48029 Caracterización reológica de almidón y evaluación morfológica de 20 variedades de musáceas (Musa sp.), del banco de germoplasma Fedeplátano, Chinchiná - Caldas, Colombia Starch rheological characterization and morphological evaluation of 20 varieties of Musaceae (Musa sp.), from Fedeplatano Germplasm Bank, Chinchiná - Caldas, Colombia Juan Carlos Lucas Aguirre* y Víctor Dumar Quintero Castaño Facultad de Ciencias Agroindustriales, Programa Ingeniería de Alimentos. Universidad del Quindío, Armenia, Quindío. *Autor para correspondencia: [email protected] Rec.:28.12.2014 Acep.: 26.05.2015 Resumen Se caracterizaron veinte variedades de musáceas de diferente composición genética del banco de germoplasma de Fedeplátano (AA, AAA, AAB, ABB, AAAA y AAAB). La caracterización incluyó propiedades físicas como peso, diámetro, longitud, materia seca y porcentaje de cáscara del fruto y propiedades funcionales de almidones (cur- vas de empastamiento). Las variedades Cachaco Pelipita, Fougamou, Kelong Mekintu y SH-3436-9 presentaron porcentajes de materia seca superiores al 35% lo cual indica que estas variedades serian de gran importancia para el sector de las frituras ya que al contener menos agua el proceso se agilizara incrementando el rendimiento y disminuyendo la absorción de aceite. Las variedades que presentaron mejores comportamientos frente a las propiedades de viscosidad máxima, breakdown, facilidad de cocción y consistencia fueron FHIA-23, Guineo Enano, Banano Gran Enano, Pompo Comino, lo cual indica que estas variedades tenían gran capacidad para resistir los procesos de retrogradación y la sinéresis. -
Chemical and Nutrient Composition of Selected Banana Varieties of Kerala Siji S*, Nandini P.V
International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-3, Issue-4, Apr- 2017] https://dx.doi.org/10.24001/ijaems.3.4.21 ISSN: 2454-1311 Chemical and Nutrient Composition of Selected Banana Varieties of Kerala Siji S*, Nandini P.V College of Agriculture, Vellayani, Thiruvananthapuram, India Abstract— Banana is the common name for herbaceous The banana is of great nutritional value. It is a good source plants of the genus Musa and for the fruit they produce. of calories, vitamins and minerals. People of South India, Many studies shows that banana is richest source of various traditionally use banana as a wholesome food. nutrients which having the health beneficial for humans. Banana is nutritious and easily digestible than any other The chemical and nutrient compositions of eight banana fruits. Bananas are popular for their aroma and texture varieties were studied. TSS was found to be more in Kadali besides rich in potassium and calcium and low in sodium (23.900 Brix) followed by Rasakadali (23.830 Brix) and content (Sharrock and Lustry, 2000). Hence, the present Nendran (220 Brix). Maximum Acidity was noticed in study is an evaluation of chemical and nutrient composition Poovan (1.28%). The variety Nendran exhibited highest present in selected banana varieties mostly consumed in carbohydrate content (41.33g/100g) where as protein Kerala. content was found to be higher in variety Poovan (1.37g/100g). Total mineral content of banana varieties II. MATERIALS AND METHODS ranged between 0.17g- 0.70g/100g and varieties such as Eight ripe banana varieties used for table purpose were Rasakadali (260 mg/100g) and Nendran ( 546.66 mg/100g) selected for the study. -
Sigatoka Diseases Control
1 /4 SIGATOKA DISEASES CONTROL Yellow and Black Sigatoka are banana leaf diseases caused by fungi. They cause significant drying of the leaf surface. The fungi spread in two ways: - by water which carries the conidia (asexual form CONTROL of reproduction) from the upper to the lower leaves S E and suckers, S Conidia - yellow and black Sigatoka - by wind which carries the ascospores (sexual form EA of reproduction) in all directions. S The control of Sigatoka(s) enables the plant to conserve a sufficient number of healthy leaves up to harvest to ensure the normal growth of the fruit. The disease reduces the leaf surface and causes disturbances in the functioning of the plant, leading to a reduction in yield and quality DI SIGATOKA (particularly a higher risk of fast ripening). 1. YELLOW SIGATOKA OR LEAF STREAK DISEASE 2. BLACK SIGATOKA OR BLACK LEAF STREAK DISEASE (Mycosphaerella musicola) (Mycosphaerella fijiensis): A MORE VIRULENT FUNGUS The development of the fungus occurs in five stages: Black Sigatoka is present in almost all tropical banana producing FOR YELLOW SIGATOKA zones but its arrival in the Lesser Antilles is very recent (2009- Stage 1: A tiny yellow spot or light green streak on the upper surface of 2010). leaves. > Hardly observable. YELLOW SIGATOKA BLACK SIGATOKA Upper surface Lower surface 2.1-Description of symptoms and differentiation with Yellow Stage 2: The spots stretch out Sigatoka into yellow streaks of 3-4mm; this is the optimal stage for treatment. The symptoms of Black Sigatoka are sometimes not distinguishable from those of Yellow Sigatoka, especially in > Streaks 1 to 5 mm. -
The Diversity of Wild Banana Species (Genus Musa) in Java
Makara Journal of Science Volume 20 Issue 1 March Article 6 3-20-2016 The Diversity of Wild Banana Species (Genus Musa) in Java Lulut Dwi Sulistyaningsih Herbarium Bogoriense, Botany Division, Research Center for Biology, Lembaga Ilmu Pengetahuan Indonesia, Bogor 16911, Indonesia, [email protected] Follow this and additional works at: https://scholarhub.ui.ac.id/science Recommended Citation Sulistyaningsih, Lulut Dwi (2016) "The Diversity of Wild Banana Species (Genus Musa) in Java," Makara Journal of Science: Vol. 20 : Iss. 1 , Article 6. DOI: 10.7454/mss.v20i1.5660 Available at: https://scholarhub.ui.ac.id/science/vol20/iss1/6 This Article is brought to you for free and open access by the Universitas Indonesia at UI Scholars Hub. It has been accepted for inclusion in Makara Journal of Science by an authorized editor of UI Scholars Hub. The Diversity of Wild Banana Species (Genus Musa) in Java Cover Page Footnote The author would like to give thanks to Herbarium Bogoriense’s keeper and staffs especially to Ridha Mahyuni for assistance some sample collections. This article is available in Makara Journal of Science: https://scholarhub.ui.ac.id/science/vol20/iss1/6 Makara Journal of Science, 20/1 (2016), 40-48 doi: 10.7454/mss.v20i1.5660 The Diversity of Wild Banana Species (Genus Musa ) in Java Lulut Dwi Sulistyaningsih Herbarium Bogoriense, Botany Division, Research Center for Biology, Lembaga Ilmu Pengetahuan Indonesia, Bogor 16911, Indonesia E-mail: [email protected] Received January 28, 2015 | Accepted December 8, 2015 Abstract The diversity of wild banana species (genus Musa , listed in Flora of Java ) has been revised. -
Boiled Plantain
State Of Knowledge Report Template For SoK Of WP2: Boiled Plantain Douala, December 2018 Gérard NGOH NEWILAH, CARBAP, Douala, Cameroon Cédric KENDINE VEPOWO, CARBAP, Douala, Cameroon Agnès ROLLAND-SABATÉ, INRA, Avignon, France 0 This report has been written in the framework of RTBfoods project. To be cited as: Gérard NGOH NEWILAH, Cédric KENDINE VEPOWO, Agnès ROLLAND-SABATÉ. 2018. Template For SoK Of WP2: Boiled Plantain. Douala (Cameroon). RTBfoods Project Report, 14p. Image cover page © Dufour D. for RTBfoods. 1 CONTENTS Table of Contents 1 Composition and structure of raw material ........................................................................ 4 1.1 Composition ................................................................................................................ 4 1.2 Structure ..................................................................................................................... 8 2 Processing condition ......................................................................................................... 8 3 Sensory analysis and consumer preference ..................................................................... 8 4 Product characterization and relationship with sensory evaluation ................................... 9 4.1 Evolution of composition and structure with processing ............................................. 9 4.2 Instrumental Texture assessment and relationship with sensory evaluation............... 9 4.3 Relationship between composition and sensory evaluation ..................................... -
Energy and Carbon Footprints of Ethanol Production Using Banana
1 Energy and carbon footprints of ethanol production using banana and 2 cooking banana discard: a case study from Costa Rica and Ecuador 3 4 Authors: 5 Sophie Graefea,*, Dominique Dufoura,b, Andrés Giraldoa, Luis Armando Muñoza, Paola 6 Moraa, Hortensia Solísc, Hernán Garcésd, Alonso Gonzaleza 7 8 aInternational Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, Cali, 9 Colombia 10 bCentre de Coopération Internationale en Recherche Agronomique pour le Développement 11 (CIRAD), UMR Qualisud, 73 Rue Jean-François Breton, 34398 Montpellier, France 12 cCooperativa de Caficultores de Dota (Coopedota), Santa María de Dota, Costa Rica 13 dEscuela Superior Politécnica del Litoral (ESPOL), Km 30.5 Via Perimetral, Guayaquil, 14 Ecuador 15 16 *Corresponding author. Tel.: +57 2 4450000 ext. 3308; Fax: +57 2 4450073. 17 E-mail address: [email protected] 18 19 20 Abstract 21 Banana and cooking banana (Musa spp.) production systems accumulate a considerable 22 quantity of discard due to high quality demands of markets. Ripe fruits have high sugar 23 contents, which can be easily processed to ethanol. The present study aimed to quantitatively 24 assess the production potential of ethanol from Musa spp. discard and to analyze the energy 25 and carbon (C) footprints of this production system using a life cycle approach. The study 26 compared three case studies differing in management practices, which were (I) a coffee 27 producer's cooperative in Costa Rica using Musa spp. as shade trees, (II) organic banana 28 producers from Ecuador, and (III) conventional banana producers from Ecuador. It was found 29 that banana and cooking banana discard accumulated at a rate of 1.4-3.4 t ha-1, of which 30 around 118-266 l ethanol could be produced on a yearly basis.