Paradoxes: Feature Part 2 of 2
Of Art and Mathematics Paradoxes: feature Part 2 of 2 This is not the first sentence of this article. Punya Mishra & Gaurav Bhatnagar sentence of this sentence!The above But sentence because can this be isboth part true 2 of and our false. article It onis clearly Paradoxes, the first if we regard both parts article. as one So article, it is false, it is becausetrue! We it leave says it isto notyou the to resolvefirst this paradox. mathematicalIn the first part truth, of this the two-part problems exposition with circular on paradoxes proofs and in explored Zeno’smathematics, Paradox. we In introduced this part we the delve idea deeperof self-reference, into the challenges the nature of of visual paradoxes and more. determining the 'truth value' of pathological self-referential statements, Self - Reference and Russell’s Paradox There is a class of paradoxes that arise from objects referring to themselves. The classic example is Epimenides Paradox (also called the Liar Paradox). Epimenides was a Cretan, who famously remarked “All Cretans are liars.” So did Epimenides tell the truth? If he did, then he must be a liar, since he is a Cretan, and so he must be lying! If he was lying, then again it is not the case that all Cretans are liars, and so Keywords: Paradox, Circular proof, Zeno's paradoxes, Russell's paradox, Epimenides liar paradox, Self-reference, Contradiction, Escher, Penrose, Jourdain's paradox, Triangle, Necker's Cube Vol. 4,4, No.No. 2,2, JulyJuly 20152015 || AtAt RightRight AnglesAngles 9 Figure 2: Rotational ambigram that reads “False” one way and “True” the other.
[Show full text]