On Common Solutions to the Liar and the Sorites

Total Page:16

File Type:pdf, Size:1020Kb

On Common Solutions to the Liar and the Sorites On Common Solutions to the Liar and the Sorites Sergi Oms Sardans Aquesta tesi doctoral està subjecta a la llicència Reconeixement 3.0. Espanya de Creative Commons. Esta tesis doctoral está sujeta a la licencia Reconocimiento 3.0. España de Creative Commons. This doctoral thesis is licensed under the Creative Commons Attribution 3.0. Spain License. On Common Solutions to the Liar and the Sorites Sergi Oms Sardans Phd in Cognitive Science and Language Supervisor: Jose´ Mart´ınez Fernandez´ Tutor: Manuel Garc´ıa-Carpintero Sanchez-Miguel´ Department of Philosophy Faculty of Philosophy University of Barcelona CONTENTS Abstract iv Resum v Acknowledgements vi 1 Introduction 1 1.1 Truth . 1 1.2 The Liar . 3 1.3 The Formal Liar . 6 1.4 The Sorites ............................ 10 1.5 Forms of the Sorites ....................... 12 1.6 Vagueness . 17 1.7 This Dissertation . 18 2 The notion of Paradox 20 2.1 A Minor Point . 20 2.2 The Traditional Definition . 22 2.3 Arguments and Premises . 25 2.4 The Logical Form . 28 2.5 A First Attempt . 29 2.6 The Notion of Paradox . 31 2.7 Two Consequences . 35 2.8 Two Objections . 36 3 Solving Paradoxes 39 3.1 Solving One Paradox . 39 3.2 Solving more than One Paradox . 45 3.3 Van McGee: Truth as a Vague Notion . 47 i CONTENTS ii 3.3.1 The Sorites in Partially Interpreted Languages . 47 3.3.2 The Liar and vagueness . 49 3.3.3 Solving the Paradoxes . 54 4 Why a Common Solution 56 4.1 Why a Common Solution? . 56 4.2 Graham Priest: Inclosures and Contradictions . 61 4.2.1 The Inclosure Schema . 61 4.2.2 PUS . 63 4.2.3 Paraconsistency . 67 4.2.4 Solving the Paradoxes . 70 5 Jamie Tappenden: Truth-functional and Penumbral Intu- itions 72 5.1 Kripke and SK .......................... 72 5.1.1 Weakness of the Logic . 78 5.1.2 Revenge . 80 5.2 Intuitions and Sharpenings . 81 5.3 Gaps and Supervaluations . 83 5.4 Some Unsuccessful Objections . 86 5.4.1 The Penumbral Intuition . 86 5.4.2 Articulation and Implicatures . 87 5.4.3 The Sorites ........................ 88 5.5 Some Objections . 89 5.6 The Liar . 95 5.7 Solving the paradoxes . 99 6 Paul Horwich: Semantic Epistemicism 101 6.1 Vagueness . 101 6.2 Minimalism and Semantic Epistemicism . 104 6.2.1 Deflationism . 104 6.2.2 Minimalism . 106 6.3 The Generalization Problem . 111 6.3.1 The Generalization Problem and Minimalism . 111 6.3.2 Minimalism and the Liar . 117 6.4 Horwich’s Proposal . 120 6.4.1 The Construction . 120 6.4.2 Kripke and Supervaluations . 123 6.4.3 The Minimal Theory of Truth . 131 6.5 Some Objections . 134 6.6 Solving the Paradoxes . 137 CONTENTS iii 7 Hartry Field: Towards a conditional for the Liar and the Sorites 138 7.1 The Liar, the Sorites and Indeterminacy . 138 7.1.1 Rejecting LEM . 140 7.1.2 Paracomplete Logics . 142 7.2 The Construction . 147 7.2.1 The First Conditional . 147 7.2.2 The Second Conditional . 156 7.2.3 Validity . 158 7.3 Vagueness . 163 7.4 Solving the Paradoxes . 167 8 Conclusions 168 References 172 ABSTRACT In this dissertation I examine some of the most relevant proposals of common solutions to the Liar and the Sorites paradoxes. In order to do that, I present first a definition of what a paradox is so that, with this at hand, I can characterize in detail what should we expect from a common solution to a given collection of paradoxes. Next, I look into the reasons we might have to endorse a common solution to a group of paradoxes and some consequences are drawn with respect to Vann McGee’s and Graham Priest’s proposals to cope with both the Liar and the Sorites paradoxes. In the next chapters, three authors are examined in some detail. First, Jamie Tappenden’s account is judged inappropriate, specially in the case of the Liar paradox. With respect to the Sorites, it is showed to be at least as problematic as Supervaluational approaches. Second, Paul Horwich’s epistemicist proposal is examined with a special focus on the treatment of the Liar paradox. Horwich’s account about how to construct his theory of truth is formalized and critically discussed with the use of a fixed-point construction. In the last chapter, I introduce and discuss some logics based on the work of Hartry Field that use two conditionals in a language with a truth predicate and vague predicates. RESUM En aquesta tesi examino algunes de les propostes m´esimportants de soluci´oco- muna a les paradoxes del Mentider i la Sorites. Per tal de fer-ho, introdueixo, primer, una definici´ode la noci´ode paradoxa i, amb ella, caracteritzo en detall qu`ecal esperar d’una soluci´ocomuna a un grup de paradoxes. A continuaci´o, considero quines s´onles raons que podem tenir per tal d’adoptar una soluci´o comuna a una colecci´ode paradoxes i extrec algunes conclusions respecte les pro- postes de Vann McGee i Graham Priest per fer front al Mentider i la Sorites. En els tres cap´ıtolsseg¨uents, examino tres autors en detall. Primer, rebutjo la proposta de Jamie Tappenden per inapropiada, especialment en el cas del Men- tider. Pel que fa a la Sorites, mostro que la teoria que Tappenden defensa ´es,al menys, tan problem`aticacom les propostes superavaluacionistes. En segon lloc, examino la teoria epistemicista de Paul Horwich, amb especial atenci´oa la seva aplicaci´oal mentider. A trav´esd’una construcci´ode punt fixe, formalitzo i dis- cuteixo cr´ıticament la proposta de Horwich sobre com construir la seva teoria de la veritat. En l’´ultimcap´ıtol,introdueixo i discuteixo algunes l`ogiques,basades en les propostes de Hartry Field, que usen dos condicionals en llenguatges amb un predicat de veritat i predicats vagues. ACKNOWLEDGEMENTS First of all, I would like to express my deepest gratitude to my supervisor, Jos´eMart´ınez,for his excellent guidance, support, patience and for providing me with the best atmosphere for doing research. I would also like to express my gratitude to the members of my thesis committee: Dan L´opez de Sa, Gabriel Uzquiano and Elia Zardini. I would like to thank them for accepting to critically read my thesis. I would also like to express my sincere gratitude to my tutor, Manuel Garc´ıa-Carpintero. I had the opportunity to begin my PhD thanks to a FPU scholarship from the Spanish Ministry of Education and Science. I also enjoyed two visiting re- search grants from the same institution; the first at the University of Sheffield and the second at the New York University. This dissertation has been pos- sible thanks to a number of research projects: Reference, Self-Reference and Empirical Data (FFI2011-25626) from the Spanish Ministry of Education; PERSP—Philosophy of Perspectival Thoughts and Facts (CSD2009-00056) from the Spanish Ministry of Education and Science; Localism and Global- ism in Logics and Semantics (FFI2015-70707-P) from the Spanish Ministry of Economy and Competitiveness. I would like to thank all the people that, at one moment or another, were at Logos during the time I was working on this dissertation, specially Dan L´opez de Sa, Manuel Mart´ınez,Manuel P´erezOtero, Sven Rosenkranz and Elia Zardini for helping me with invaluable comments to earlier drafts of this thesis. At the University of Barcelona, I would also like to express my gratitude to Calixto Badesa and Joost Joosten for their comments and support. During these years at Barcelona I have made many friends, who helped me in many ways: Marc Artiga, Joan Bertran, Mar´ıaEsteban, Marta Jorba, Paco Murcia, Chiara Panizza,Umberto Rivieccio, Gon¸caloSantos, Luz Sabina, Pilar Terr´esand, of course, Oscar Cabaco, whose friendliness and help has been invaluable. At Sheffield, I would like to thank, first, my supervisor, Rosanna Keefe, who helped me and provided me with extremely helpful discussions. Also, at Sheffield, I want to thank Kathy Puddifoot, Kate Harrington, Paniel Reyes, Bernardo Aguilera, Inga Vermeulen, Julien Murzi and Jonathan Payne. I would like to specially thank, at Barcelona, London Ontario, Sheffield and everywhere, Cristina Roadevin. At New York, I am grateful to my supervisor, Hartry Field, for sharing with me some of his time and providing me with extremely helpful discus- sions. I would also like to thank Paul Horwich, for his patience and help, and David Samsundar, for his friendliness and warm farewell. Per acabar, vull agrair a tota la meva fam´ılial’esfor¸cque, durant aquests anys, han fet per ajudar-me a acabar aquest treball. En especial, a l’Oriol Oms, per animar-me a acabar; al Josep Maria Sardans, per les seves preguntes i, sobretot, als meus pares, el Ramon i la Magda, per la seva paci`encia. Deixo, tamb´e,un record i tot el meu agra¨ıment pel Pepito i la Llu¨ısa. Per`oel meu agra¨ıment m´esprofund ´esper la Cristina, sense la qual aquesta tesi no hauria estat possible, i pel Guillem i l’Al´ıcia,sense els quals aquesta tesi s’hauria acabat tres anys abans. CHAPTER ONE INTRODUCTION 1.1 Truth The investigation on the notion of truth is one of the main problems in philosophy and also one of the oldest ones. At least since Pilate asked ‘what is truth?’ (John, 18:38), human beings have tried to look into the nature of truth. As Russell (1950) sensibly stated, looking at the question ‘What is truth?’ —so as to obtain a general definition of truth— is not the same as asking ‘Which beliefs, or sentences, are true?’ —so as to obtain a general criterion for truth.
Recommended publications
  • Dialetheists' Lies About the Liar
    PRINCIPIA 22(1): 59–85 (2018) doi: 10.5007/1808-1711.2018v22n1p59 Published by NEL — Epistemology and Logic Research Group, Federal University of Santa Catarina (UFSC), Brazil. DIALETHEISTS’LIES ABOUT THE LIAR JONAS R. BECKER ARENHART Departamento de Filosofia, Universidade Federal de Santa Catarina, BRAZIL [email protected] EDERSON SAFRA MELO Departamento de Filosofia, Universidade Federal do Maranhão, BRAZIL [email protected] Abstract. Liar-like paradoxes are typically arguments that, by using very intuitive resources of natural language, end up in contradiction. Consistent solutions to those paradoxes usually have difficulties either because they restrict the expressive power of the language, orelse because they fall prey to extended versions of the paradox. Dialetheists, like Graham Priest, propose that we should take the Liar at face value and accept the contradictory conclusion as true. A logical treatment of such contradictions is also put forward, with the Logic of Para- dox (LP), which should account for the manifestations of the Liar. In this paper we shall argue that such a formal approach, as advanced by Priest, is unsatisfactory. In order to make contradictions acceptable, Priest has to distinguish between two kinds of contradictions, in- ternal and external, corresponding, respectively, to the conclusions of the simple and of the extended Liar. Given that, we argue that while the natural interpretation of LP was intended to account for true and false sentences, dealing with internal contradictions, it lacks the re- sources to tame external contradictions. Also, the negation sign of LP is unable to represent internal contradictions adequately, precisely because of its allowance of sentences that may be true and false.
    [Show full text]
  • Semantical Paradox* Tyler Burge
    4 Semantical Paradox* Tyler Burge Frege remarked that the goal of all sciences is truth, but that it falls to logic to discern the laws of truth. Perceiving that the task of determining these laws went beyond Frege’s conception of it, Tarski enlarged the jurisdiction of logic, establishing semantics as truth’s lawyer.1 At the core of Tarski’s theory of truth and validity was a diagnosis of the Liar paradox according to which natural language was hopelessly infected with contradiction. Tarski construed himself as treating the disease by replacing ordinary discourse with a sanitized, artificial construction. But those interested in natural language have been dissatisfied with this medication. The best ground for dis­ satisfaction is that the notion of a natural language’s harboring contradictions is based on an illegitimate assimilation of natural language to a semantical system. According to that assimilation, part of the nature of a “language” is a set of postulates that purport to be true by virtue of their meaning or are at least partially constitutive of that “language”. Tarski thought that he had identified just such postulates in natural language as spawning inconsistency. But postulates are contained in theories that are promoted by people. Natural languages per se do not postulate or Tyler Burge, “Semantical Paradox", reprinted from The Journal of Philosophy 76 (1979), 169-98. Copyright © 1979 The Journal of Philosophy. Reprinted by permission of the Editor of The Journal of Philosophy and the author. * I am grateful to Robert L. Martin for several helpful discussions; to Herbert Enderton for proving the consistency (relative to that of arithmetic) of an extension of Construction C3; to Charles Parsons for stimulating exchanges back in 1973 and 1974; and to the John Simon Guggenheim Foundation for its support.
    [Show full text]
  • The Liar Paradox As a Reductio Ad Absurdum Argument
    University of Windsor Scholarship at UWindsor OSSA Conference Archive OSSA 3 May 15th, 9:00 AM - May 17th, 5:00 PM The Liar Paradox as a reductio ad absurdum argument Menashe Schwed Ashkelon Academic College Follow this and additional works at: https://scholar.uwindsor.ca/ossaarchive Part of the Philosophy Commons Schwed, Menashe, "The Liar Paradox as a reductio ad absurdum argument" (1999). OSSA Conference Archive. 48. https://scholar.uwindsor.ca/ossaarchive/OSSA3/papersandcommentaries/48 This Paper is brought to you for free and open access by the Conferences and Conference Proceedings at Scholarship at UWindsor. It has been accepted for inclusion in OSSA Conference Archive by an authorized conference organizer of Scholarship at UWindsor. For more information, please contact [email protected]. Title: The Liar Paradox as a Reductio ad Absurdum Author: Menashe Schwed Response to this paper by: Lawrence Powers (c)2000 Menashe Schwed 1. Introduction The paper discusses two seemingly separated topics: the origin and function of the Liar Paradox in ancient Greek philosophy and the Reduction ad absurdum mode of argumentation. Its goal is to show how the two topics fit together and why they are closely connected. The accepted tradition is that Eubulides of Miletos was the first to formulate the Liar Paradox correctly and that the paradox was part of the philosophical discussion of the Megarian School. Which version of the paradox was formulated by Eubulides is unknown, but according to some hints given by Aristotle and an incorrect version given by Cicero1, the version was probably as follows: The paradox is created from the Liar sentence ‘I am lying’.
    [Show full text]
  • Philosophy 1
    Philosophy 1 PHILOSOPHY VISITING FACULTY Doing philosophy means reasoning about questions that are of basic importance to the human experience—questions like, What is a good life? What is reality? Aileen Baek How are knowledge and understanding possible? What should we believe? BA, Yonsei University; MA, Yonsei University; PHD, Yonsei University What norms should govern our societies, our relationships, and our activities? Visiting Associate Professor of Philosophy; Visiting Scholar in Philosophy Philosophers critically analyze ideas and practices that often are assumed without reflection. Wesleyan’s philosophy faculty draws on multiple traditions of Alessandra Buccella inquiry, offering a wide variety of perspectives and methods for addressing these BA, Universitagrave; degli Studi di Milano; MA, Universitagrave; degli Studi di questions. Milano; MA, Universidad de Barcelona; PHD, University of Pittsburgh Visiting Assistant Professor of Philosophy William Paris BA, Susquehanna University; MA, New York University; PHD, Pennsylvania State FACULTY University Stephen Angle Frank B. Weeks Visiting Assistant Professor of Philosophy BA, Yale University; PHD, University of Michigan Mansfield Freeman Professor of East Asian Studies; Professor of Philosophy; Director, Center for Global Studies; Professor, East Asian Studies EMERITI Lori Gruen Brian C. Fay BA, University of Colorado Boulder; PHD, University of Colorado Boulder BA, Loyola Marymount University; DPHIL, Oxford University; MA, Oxford William Griffin Professor of Philosophy; Professor
    [Show full text]
  • A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability and Statistics
    FLORENTIN SMARANDACHE A UNIFYING FIELD IN LOGICS: NEUTROSOPHIC LOGIC. NEUTROSOPHY, NEUTROSOPHIC SET, NEUTROSOPHIC PROBABILITY AND STATISTICS (fourth edition) NL(A1 A2) = ( T1 ({1}T2) T2 ({1}T1) T1T2 ({1}T1) ({1}T2), I1 ({1}I2) I2 ({1}I1) I1 I2 ({1}I1) ({1} I2), F1 ({1}F2) F2 ({1} F1) F1 F2 ({1}F1) ({1}F2) ). NL(A1 A2) = ( {1}T1T1T2, {1}I1I1I2, {1}F1F1F2 ). NL(A1 A2) = ( ({1}T1T1T2) ({1}T2T1T2), ({1} I1 I1 I2) ({1}I2 I1 I2), ({1}F1F1 F2) ({1}F2F1 F2) ). ISBN 978-1-59973-080-6 American Research Press Rehoboth 1998, 2000, 2003, 2005 FLORENTIN SMARANDACHE A UNIFYING FIELD IN LOGICS: NEUTROSOPHIC LOGIC. NEUTROSOPHY, NEUTROSOPHIC SET, NEUTROSOPHIC PROBABILITY AND STATISTICS (fourth edition) NL(A1 A2) = ( T1 ({1}T2) T2 ({1}T1) T1T2 ({1}T1) ({1}T2), I1 ({1}I2) I2 ({1}I1) I1 I2 ({1}I1) ({1} I2), F1 ({1}F2) F2 ({1} F1) F1 F2 ({1}F1) ({1}F2) ). NL(A1 A2) = ( {1}T1T1T2, {1}I1I1I2, {1}F1F1F2 ). NL(A1 A2) = ( ({1}T1T1T2) ({1}T2T1T2), ({1} I1 I1 I2) ({1}I2 I1 I2), ({1}F1F1 F2) ({1}F2F1 F2) ). ISBN 978-1-59973-080-6 American Research Press Rehoboth 1998, 2000, 2003, 2005 1 Contents: Preface by C. Le: 3 0. Introduction: 9 1. Neutrosophy - a new branch of philosophy: 15 2. Neutrosophic Logic - a unifying field in logics: 90 3. Neutrosophic Set - a unifying field in sets: 125 4. Neutrosophic Probability - a generalization of classical and imprecise probabilities - and Neutrosophic Statistics: 129 5. Addenda: Definitions derived from Neutrosophics: 133 2 Preface to Neutrosophy and Neutrosophic Logic by C.
    [Show full text]
  • Leibniz and the Sorites
    Leibniz and the Sorites Samuel Levey, Dartmouth College Abstract The sorites paradox receives its most sophisticated early modem discussion in Leibniz's writings. In an important early document Lcibniz holds that vague terms have sharp boundaries of application, but soon thereafter he comes to adopt a form of nihilism about vagueness: and it later proves to be his settled view that vagueness results from semantical indeterminacy. The reason for this change of mind is unclear, and Leibniz does not ap­ pear to have any grounds for it. I suggest that his various treatments of the sorites do not spring from a single integrated view of vagueness, and that his early position reflects a mercenary interest in the sorites paradox-an interest to use the sorites to reach a conclu­ sion in metaphysics rather than to examine vagueness as a subject to be understood in its own right. The later nihilist stance rei1ects Leibniz's own (if undefended) attitude to­ wards vagueness. term that is vague in the philosopher's sense-such as 'rich', 'poor', A 'bald', 'heap' -characteristically admits of borderline cases, lacks a clearly defined extension, and is susceptible to the sorites paradox or "paradox of the heap.'" Take 'poor' for example. Someone with only a small amount of money may appear to be neither poor nor not poor, but on the borderline, even in the estimation of a competent language user fully informed about the amount of money the person has, the relative distributions of wealth in the community, and so on. The term 'poor' imposes no clear boundary between the poor and the not poor-it fails to single out a least number n such that anyone with at least 11 pennies is not poor while anyone with fewer than n pennies is poor-with cases seeming instead to fall into a spectrum across which poverty shades off gradually.
    [Show full text]
  • Alethic Fictionalism, Alethic Nihilism, and the Liar Paradox
    Philos Stud (2017) 174:3083–3096 DOI 10.1007/s11098-016-0847-4 Alethic fictionalism, alethic nihilism, and the Liar Paradox 1 2 Bradley Armour-Garb • James A. Woodbridge Published online: 23 December 2016 Ó Springer Science+Business Media Dordrecht 2016 Abstract Recently, several philosophers have proposed fictionalist accounts of truth- talk, as a means for resolving the semantic pathology that the Liar Paradox appears to present. These alethic fictionalists aim to vindicate truth-talk as a kind of as if dis- course, while rejecting that the talk attributes any real property of truth. Liggins (Analysis 74:566–574, 2014) has recently critically assessed one such proposal, Beall’s (The law of non-contradiction: new philosophical essays. Oxford University Press, New York, pp 197–216, 2004) constructive methodological deflationist (henceforth, ‘CMD’), offering objections to Beall’s proposed alethic fictionalism that potentially generalize to other alethic fictionalist accounts. Liggins further argues that CMD supports a classically consistent response to the Liar Paradox—one that can be extracted from CMD, while leaving its putatively problematic fictionalist elements behind in favor of alethic nihilism. In this paper, after establishing that Liggins’s criticisms of CMD are off base, we show that the classical resolution of the Liar Paradox that he proposes is unworkable. Since his resistance to alethic fictionalism turns out to be unmotivated, we conclude that this approach is still worth considering as a framework for a resolution of the Liar Paradox. Keywords Truth Á Liar Paradox Á Fictionalism Á Pretense & Bradley Armour-Garb [email protected] James A. Woodbridge [email protected] 1 Department of Philosophy, University at Albany—SUNY, Albany, NY, USA 2 Department of Philosophy, University of Nevada, Las Vegas, NV, USA 123 3084 B.
    [Show full text]
  • The Sorites Paradox
    The sorites paradox phil 20229 Jeff Speaks April 17, 2008 1 Some examples of sorites-style arguments . 1 2 What words can be used in sorites-style arguments? . 3 3 Ways of solving the paradox . 3 1 Some examples of sorites-style arguments The paradox we're discussing today and next time is not a single argument, but a family of arguments. Here are some examples of this sort of argument: 1. Someone who is 7 feet in height is tall. 2. If someone who is 7 feet in height is tall, then someone 6'11.9" in height is tall. 3. If someone who is 6'11.9" in height is tall, then someone 6'11.8" in height is tall. ...... C. Someone who is 3' in height is tall. The `. ' stands for a long list of premises that we are not writing down; but the pattern makes it pretty clear what they would be. We could also, rather than giving a long list of premises `sum them up' with the following sorites premise: For any height h, if someone's height is h and he is tall, then someone whose height is h − 0:100 is also tall. This is a universal claim about all heights. Each of the premises 2, 3, . is an instance of this universal claim. Since universal claims imply their instances, each of premises 2, 3, . follows from the sorites premise. This is a paradox, since it looks like each of the premises is true, but the con- clusion is clearly false. Nonetheless, the reasoning certainly appears to be valid.
    [Show full text]
  • The Liar: an Essay in Truth and Circularity, by Jon Barwise and John Etchemendy, Oxford University Press, New York and Oxford, 1987, Xii + 185 Pp., $19.95
    216 BOOK REVIEWS BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 20, Number 2, April 1989 ©1989 American Mathematical Society 0273-0979/89 $1.00 + $.25 per page The Liar: An essay in truth and circularity, by Jon Barwise and John Etchemendy, Oxford University Press, New York and Oxford, 1987, xii + 185 pp., $19.95. ISBN 0-19-505072-x Consider the classic Liar sentence: "This sentence is false." It claims that it is false. So if we assume that a sentence is true if and only if what it claims is the case, then the Liar is true if and only if it is false. People have thought about this paradox for centuries. Despite this, there is no single standard "solution." An attempted resolution of the paradox would tell us which of our intuitions are sound and which need further clarification. It would point out where and why our naive reasoning leads us to a contradiction. Modern logic applies mathematical methods to the modeling and study of truth, proof, computation, and infinity. The paradoxes of semantics and set theory were important in the development of the field. The reason for working on the paradoxes of any field is not only to secure a foundation. The deeper reason is that by introducing, discarding, and clarifying the concepts that lead to paradox we are lead to the central ideas and questions of the field. We see from The Liar that the paradoxes are still a source of inspiration in logic. The book is a new, exciting contribution to the study of truth.
    [Show full text]
  • Kierkegaard and the Funny by Eric Linus Kaplan a Dissertation
    Kierkegaard and the Funny By Eric Linus Kaplan A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Philosophy in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Alva Noë, co-chair Professor Hubert Dreyfus, co-chair Professor Sean D. Kelly Professor Deniz Göktürk Summer 2017 Abstract Kierkegaard and the Funny by Eric Linus Kaplan Doctor of Philosophy in Philosophy University of California, Berkeley Professor Alva Noë, co-chair Professor Hubert Dreyfus, co-chair This dissertation begins by addressing a puzzle that arises in academic analytic interpretations of Kierkegaard’s Concluding Unscientific Postscript. The puzzle arises when commentators try to paraphrase the book’s philosophical thesis “truth is subjectivity.” I resolve this puzzle by arguing that the motto “truth is subjectivity” is like a joke, and resists and invites paraphrase just as a joke does. The connection between joking and Kierkegaard’s philosophical practice is then deepened by giving a philosophical reconstruction of Kierkegaard's definition of joking as a way of responding to contradiction that is painless precisely because it sees the way out in mind. Kierkegaard’s account of joking and his account of his own philosophical project are used to mutually illuminate each other. The dissertation develops a phenomenology of retroactive temporality that explains how joking and subjective thinking work. I put forward an argument for why “existential humorism” is a valuable approach to life for Kierkegaard, but why it ultimately fails, and explain the relationship between comedy as a way of life and faith as a way of life, particularly as they both relate to risk.
    [Show full text]
  • Vagueness and Precisifications
    Vagueness and Precisifications Mats Grimsgaard Master’s Thesis in Philosophy Supervisor: Olav Asheim Department of Philosophy, Classics, History of Art and Ideas UNIVERSITY OF OSLO Spring 2014 Abstract The aim of this thesis is to explore the role of precisifications of vague predicates. Basically, the idea is that vague predicates can be, and are in fact, made more precise without altering their underlying concepts or truth-conditions. Vague terms and their precisifications are conceived as more or less precise instances of the same lexical entities. Precisifications are employed in several leading views on how we interpret and understand vague language, and how we utilize and reason with partial concepts and inexact knowledge—which covers most, if not all, human thinking and speaking. Although precisifications play important roles in the semantics of vagueness, they are not as straightforwardly understood as they might appear. There is more than one way to cash out the notion of precisifications, which have important im- plications for what extent various theories might be seen as a sufficient analysis of vagueness itself, as opposed to mere simulations of vagueness. Yet, many authors seem to have little concern for this issue. As a result, a term that is cen- tral to some of the most popular responses to vagueness might turn out to be ambiguous, if not vague. In chapter 1 I present and discuss the most vicious feature of vagueness: its tendency to generate paradoxes. This provides a general overview of the topic and introduces some important terms and concepts. Chapter 2 is a discussion of how to cash out the notion of precisifications, and not least ‘admissible precisi- fications’.
    [Show full text]
  • The Liar Paradox: Tangles and Chains Author(S): Tyler Burge Source: Philosophical Studies: an International Journal for Philosophy in the Analytic Tradition, Vol
    The Liar Paradox: Tangles and Chains Author(s): Tyler Burge Source: Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition, Vol. 41, No. 3 (May, 1982), pp. 353-366 Published by: Springer Stable URL: http://www.jstor.org/stable/4319529 Accessed: 11-04-2017 02:26 UTC JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms Springer is collaborating with JSTOR to digitize, preserve and extend access to Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition This content downloaded from 128.97.244.236 on Tue, 11 Apr 2017 02:26:37 UTC All use subject to http://about.jstor.org/terms TYLER BURGE THE LIAR PARADOX: TANGLES AND CHAINS (Received 20 March, 1981) In this paper I want to use the theory that I applied in 'Semantical paradox' to the Liar and Grelling paradoxes to handle some subtler versions of the Liar.! These new applications will serve as tools for sharpening some of the pragmatic principles and part of the underlying motivation of the theory. They also illustrate the superiority of our theory to previous ones in the hier- archical tradition. The heart of the theory is that 'true' is an indexical-schematic predicate.
    [Show full text]