<<

Institute of Food and Agricultural Sciences (IFAS) Biogeochemistry of Wetlands SiScience an dAd App litilications

Electrochemical Properties

Wetland Biogeochemistry Laboratory Soil and Water Science Department University of Florida

Instructor K. Ramesh Reddy [email protected]

6/22/20086/22/2008 WBL 1 1

Chemical Reactions in Natural Systems ¾ Reactions in which neither protons nor electrons are exchanged

¾ Fe2O3 + H2O = 2 FeOOH ¾ Reactions involving protons + - ¾ H2CO3 = H + HCO3 ¾ Reactions involving electrons ¾ Fe2+ =Fe= Fe3+ +e+ e- ¾ Reactions in which both protons and electrons are transferred + - 2+ ¾ 2Fe(OH)3 + 3H + e = 2Fe + 3H2O

6/22/2008 WBL 2

1 Institute of Food and Agricultural Sciences (IFAS)

Electrons and Protons

- - - + - - - - e e e - -H + e e e e H+ H+ - H+ e - + e - H + - + H+ e e H e + - H - e H - e- - e- - H+ H e e - e e e- e - - e- e + - - - e e - He H+ e - + e - e H+ - e H e + e- e - e- H+ H e e-

6/22/2008 WBL 3

Electrochemical Properties Topic Outline

‰ Introduction ‰ Oxidation-reduction reactions ‰ Nernst Equation ‰ Eh - pH relationships ‰ Buffering of potential ‰ Measurement of redox potentials ‰ Soil and water column pH ‰ Redox couples in wetland soils ‰ Redox g rad ie nts in w etla nd so il s Walther Nernst ‰ Specific conductance The Nobel Prize in 1920 ‰ Soil demand http://www.corrosion-doctors.org/Biographies/Nernst.htm

6/22/2008 WBL 4

2 Electrochemical Properties

Learning Objectives

‰ Basic concepts related to oxidation- reduction reactions ‰ Use of Nernst Equation to calculate redox potential (Eh) ‰ Relationship between redox potential (Eh) and pH ‰ Laboratory and field measurements of redox potentials ‰ Diel changes in water column pH ‰ Redox couples and microbial metabolic activities in wetlands ‰ Redox gradients and aerobic/anaerobic interfaces in wetlands Source: D. R. Lovley, 2006. Nature Reviews 4:497-508 ‰ Soil oxygen demand and nutrient fluxes

6/22/2008 WBL 5

Oxidation-Reduction Reductant Oxidant + e- Reductant =

+ 2+ 2+ 2- [Organic matter, NH4 , Fe , Mn , S , CH4, H2, H2O]

Oxidant + e- Reductant Oxidant =

- 2- [O2, NO3 , MnO2, Fe(OH)3, SO4 , CO2, and some organic compounds]

6/22/2008 WBL 6

3 OxidationOxidation--Reduction [Aerobic Respiration] Oxidation + - C6H12O6 + 6H2O = 6CO2 + 24H + 24 e Reductant Oxidant Reduction + - 6O2 + 24H + 24 e = 12H2O Oxidant Reductant

C6H12O6 + 6O2 = 6CO2 + 6H2O Oxidation - Reduction

OxidationOxidation--Reduction [Nitrate Respiration – Dentrification] Oxidation + - 5C6H12O6 + 30H2O = 30CO2 + 120H + 120 e Reductant Oxidant Reduction - + - 24NO3 + 144H + 120e = 12N2 + 72H2O Oxidant Reductant

- + 5C6H12O6 + 24NO3 + 24H = 12N2 + 30CO2 + 42H2O Oxidation - Reduction

4 OxidationOxidation--Reduction [ Respiration] Oxidation + - C6H12O6 + 6H2O = 6CO2 + 24H + 24e Reductant Oxidant Reduction 22-- + - 22-- 3SO4 + 24H + 24e = 3S + 12H2O Oxidant Reductant

22-- 22-- C6H12O6 + 3SO4 = 3S + 6CO2 + 6H2O

Oxidation - Reduction

OxidationOxidation--Reduction

UPLAND SOILS FLOODED SOILS

O2 H2O - + NO3 N2 NH4 Mn4+ Mn2+ Reduction Fe3+ Fe2+

2- 2- SO4 S

CO2 Oxidation CH4 3- PO4 PH3

H2O H2

6/22/2008 WBL 10

5 Nernst Equation m (OXIDANT) + m H+ + n e- = m (REDUCTANT)

Eh = Eo - [0.059/n] log [Reductant/Oxidant] - 0.059 [m/n] pH E = Electrode potential (volts) Eo= Standard electrode potential (volts) F = Faraday’s constant (23.061 kcal/volt mole or 96.50 kJ/volt mole R = Gas constant (0.001987 kcal/mole degree or 0.008314 kJ/mole degree T = Temperature (298.15 K (273.15 + 25 oC)) n = number of electrons involved in the reaction

6/22/2008 WBL 11

Wetland Soil

Drained Soil

Anaerobic Aerobic

Highly Reduced Moderately Oxidized Reduced Reduced

-300 -100 0100 300 500 700 Oxidation-Reduction Potential (mV)

6/22/2008 WBL 12

6 OxidationOxidation--ReductionReduction ure

Strongly Strongly

Electron Press reduced oxidized

-300 -100 0100 300 500 700 Oxidation-Reduction Potential (mV)

6/22/2008 WBL 13

Electron donors + 2+ 2+ 2- [Organic matter, NH4 , Fe , Mn , S , CH4, H2, H2O] - - - - - e e + - - + - - e e e - -H + e e - H - e e H+ H+ - H+ e - + e - H + e - e - + H+ e e H e + H e e H - e- - e- - H+ H - - e e e- e e- e e- e O2 - NO3 Electron acceptors Mn4+ Fe3+ 2- SO4 CO2 H2 O

600 300 200100 0 -100 -300 -400 OxidationOxidation--ReductionReduction Potential (mV) 6/22/2008 WBL 14

7 How much energy is released during oxidation -reduction reactions?

[+]

O2 NN--OxidesOxides Mn (IV) ergy Yield trode Potentials Fe (III) n c 22-- E SO4 [-] Ele CO2 Ease of Reduction

6/22/2008 WBL 15

OxidationOxidation--Reduction

Mn4+ Mn2+ CO CH SeO 2- Se(0); Se2- 2- 2- 2 4 3 SeO4 SeO3 2- 2- 3+ 2+ - SO4 S Fe Fe NO3 N2 O2 H2O

-200 -100 0 +100 +200 +300 +400 Redox Potential, mV (at pH 7)

6/22/2008 WBL 16

8 Redox Couple and EhEh--pHpH

1200 Fe3+ l (mV) 800

O2 Fe2O3 400 H O Fe2+ 2

FeCO 0 H2O 3

dox Potentia H2

e FeS2 R -400 Fe2+ FeCO3 Fe3O4 0 2 4 6 8 10 12 14 pH

OxidationOxidation--ReductionReduction

Wetlands and Uplands Aquatic Systems ¾Electron ¾Electron acceptor non- acceptor limiting limiting ¾Electron donor ¾Electron donor non-limiting limiting

6/22/2008 WBL 18

9 Sequential Reduction of Electron Acceptors Organic Substrate [e- donor] ation r 2+ S2- 2- Fe SO4

- CH NO3 4 Mn2+ lative Concent

e O2 R

Oxygen Nitrate Iron Methanogenesis

Manganese Sulfate Time or Soil Depth 6/22/2008 WBL 19

Redox Zones with Depth

WATER OxygenOxygen ReductionReduction ZoneZone SOIL Oxygen Reduction Zone Aerobic I Eh = > 300 mV Nitrate Reduction Zone Facultative II Mn4+ Reduction Zone Eh = 100 to 300 mV Fe3+ Reduction Zone III

epth Eh = -100 to 100 mV D Sulfate Reduction Zone Anaerobic IV Eh = -200 to -100 mV

V Methanogenesis Eh = < -200 mV 6/22/2008 WBL 20

10 Regulators of Eh

¾Water-table fluctuations . ¾Activities of electron acceptors. ¾Activities of electron donors. ¾Temperature ¾pH

6/22/2008 WBL 21

Field Redox Electrodes

Copper wire VoltVo l t meter

Heat shrinking tube

Calomel Reference

Water Eppyoxy Soil Platinum wire Platinum electrodes

6/22/2008 WBL 22

11 Laboratory Redox Electrodes

Copper wire Platinum Glass Electrode Saturated KCl

Heat shrinking tube

Glass tube Glass tube

Calomel + Mercury

Mercury Platinum wire Salt bridge Epoxy Mercury Platinum wire Calomel Reference Electrode 6/22/2008 WBL 23

Okeechobee Basin Wetland Soils and Stream Sediments

6/22/2008 WBL 24

12 Flooded Organic Soils: Everglades Agricultural Area

6/22/2008 WBL 25

Flooded Paddy Soils: Louisiana

Aerobic V m

Anaerobic edox Potential, R

Time, days

6/22/2008 WBL 26

13 Electron Acceptors - Redox Potential

700 600 Oxygen 500 400 300 Nitrate 200

Eh (mV) 100 Sulfate 0 -100 -200 Bicarbonate -300 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Time (wk)

6/22/2008 WBL 27

Electron Donor [Organic Matter] – Redox Potential

V) 300 m 200 Low Organic Matter Soil 100 0

-100 High Organic Matter Soil edox potential ( edox potential

R -200

Time after flooding

6/22/2008 WBL 28

14 Redox Gradients in Sediments

0 -20 Aerobic Layer -40 Anaerobic Layer -60 -80 -100

epth (mm) -120 D -140 -160 0 100 200 300 400 500 600 700 Redox Potential (mV) 6/22/2008 WBL 29

Sediment

Source: D. R. Lovley, 2006. Nature Reviews 4:497-508

6/22/2008 WBL 30

15 Redox Potential and pH

1000 800 600 400 200 Eh mv] 0 -200 -400 -600 0 2 4 6 8 10 12

Baas Becking et al. 6/22/2008 WBLpH 31

Limitations of Redox Potentials ¾Most of the redox couples are not in equilibrium except in highly reduced soils. ¾In biological systems, electrons are added and removed continuously. ¾Platinum electrodes respond favorably to reversible redox couples. ¾Redox potential is closely related to pH. ¾Platinum electrode surface can be contaminated by coatings of oxides, sulfides and other impurities.

6/22/2008 WBL 32

16 Soil and Water Column -pH- pH

¾ Reactions involving protons

¾ CO2 + H2O = H2CO3 + - ¾ H2CO3 = H + HCO3 - + 2- ¾ HCO3 = H + CO3

¾ Reactions in which both protons and electrons are transferred + - 2+ ¾ 2Fe(OH)3 + 3H + e = 2Fe + 3H2O

6/22/2008 WBL 33

Water Column pH: Experimental Ponds – Lake Apopka Basin

10

Algae 9

pH 8 Cattails and Egeria

7 Water hyacinth 6 8 12 16 20 24 4 8 Time, hundred hours 6/22/2008 WBL 34

17 Effect of Flooding on Soil pH

8 Clay loam [ pH = 8.7; OM = 2.2%; Fe = 0.63%] 7 6 Clay [ pH = 3.4; OM = 6.6%; Fe = 2.8%] pH 5

4 Clay [ pH = 3.8; OM = 7.2%; Fe = 0.1%] 3

0 2 4 6 8 10 12 14 Time after flooding

6/22/2008 WBL 35

Effect of Flooding on Soil Porewater Ionic Strength

Fe2+ Fe2+ A

Fe2+ Ca2+ Soil 2+ Fe + NH4 Mn2+ K+

Solid Phase Soil Solution th

g B Ionic Stren

6/22/2008Time after WBL flooding 36

18 Redox Couples in Wetlands

‰ C6H12O6/CO2 and O2/H2O - ‰ C6H12O6/CO2 and NO3 /N2 2+ ‰ C6H12O6/CO2 and MnO2 /Mn 2+ ‰ C6H12O6/CO2 and FeOOH/Fe 2- ‰ C6H12O6/CO2 and SO4 /H2S + ‰ H2/H and CO2 /CH4

6/22/2008 WBL 37

Aerobic Respiration and Energy Yield

C6H12O6 + 6O2 = 6CO2 + 6H2O

Gr = -686.4 kcals/mole

ADP + Pii = ATP

Gr =- 7.7 kcals/mole

6/22/2008 WBL 38

19 Institute of Food and Agricultural Sciences (IFAS) Biogeochemistry of Wetlands SiScience an dAd App litilications

Soil Oxygen Demand

Wetland Biogeochemistry Laboratory Soil and Water Science Department University of Florida

Instructor K. Ramesh Reddy [email protected]

6/22/20086/22/2008 WBL 39 39

Oxygen

™Oxygen is an electron acceptor ™Reduction [Electron acceptor] + - ™O2 + 4H + 4e = 2H2O : Oxidant ™Oxidation [Electron donor] + - ™C6H12O6 + 6H2O = 6CO2 + 24H + 24e Reductant

6/22/2008 WBL 40

20 Oxygen Consumption ™Heterotrophic microbial respiration

™C6H12O6 + 6O2 = 6CO2 + 6H2O ™Chemolithotrophic oxidation of reduced inorganic compounds + - + ™NH4 + 2O2 = NO3 + H2O + 2H ™Chemical oxidation of reduced inorganic compounds 2+ + ™4Fe + 10H2O + O2 = 4Fe(OH)3 + 8H

6/22/2008 WBL 41

OxidationOxidation--ReductionReduction Carbon Nitrogen

O2 O2

Floodwater Floodwater

CO2 O2 + CH4 NO3 O2 + NH4 Aerobic soil Aerobic soil Anaerobic soil Anaerobic soil

OM CH4 OM NH4

6/22/2008 WBL 42

21 OxidationOxidation--ReductionReduction Iron Manganese

O2 O2

Floodwater Floodwater

3+ 2+ 4+ 2+ Fe O2 + Fe Mn O2 + Mn Aerobic soil Aerobic soil Anaerobic soil Anaerobic soil 2+ 2+ FeOOH Fe MnO2 Mn

6/22/2008 WBL 43

OxidationOxidation--ReductionReduction Carbon

O2 O2

Floodwater Floodwater

CO2 O2 + OM SO4 O2 + H2S Aerobic soil Aerobic soil Anaerobic soil Anaerobic soil

SO4 H2S

6/22/2008 WBL 44

22 Oxygen Consumption

Low organic matter soil ]

o Consumption during chemical Consumption oxidation during biological [C/C oxidation

High organic matter soil Time (hours)

6/22/2008 WBL 45

Aerobic Respiration

700 Impacted Unimpacted ion, Everglades, FL t 600 Everglades, FL 500 Talladega, AL Houghton Lake 400 marsh, MI 300 Salt marsh, LA Belhaven, NC 200 mg/kg day mg/kg Lake Apopka marsh, FL y=-1036+200 ln(x) 2 ygen consump 100 Prairie pp,othole, ND R =0.84

x Crowley, LA

O 0 0 500 1,000 1,500 2,000 2,500 3,000 3,500 Dissolved organic C, mg/kg

6/22/2008 WBL 46

23 Impacted Unimpacted 10 12N 9 6P 8 12M WATER 7 6A

) 6 m FILAMENTOUS WATER 5 ALGAE 4 3 MACRO-LITTER

DEPTH (c 2 AND ALGAE 1 0 PERIPHYTON -1 Unconsolidated Peat Peat -2

0 20 40 60 80 100 0 20 40 60 80 100 DISSOLVED OXYGEN (% SATURATION) 6/22/2008 WBL 47

Oxygen - Periphyton

% O2 Saturation 0 50 100 150 200 250 -1 0 0 19 2 36 4 68 6 192

Depth (mm) 306 8 593 10 Irradiance (μmol m-2 s-1) S. Hagerty, SFWMD unpublished results

6/22/2008 WBL 48

24 Lake Apopka Marsh

Soluble P, mg L-1 Dissolved Fe, mg L-1 0 2 4 6 8 0 1 2 3

30 Phosphorus Iron 20 10 Water

pth, cm 0 e

D -10 Soil -20

6/22/2008 WBL 49

Mobile and Immobile Iron

0 Insoluble Fe 2+ Aerobic

rface Fe 2

4

Anaerobic 6 th below soil su th below p

De 8 0 123 % Fe

6/22/2008 WBL 50

25 OXYGEN: Sources and Sinks

Water Air Plants and Algae Release by Plant Roots Soil Oxygen

Oxidation of Chemical Reductants Respiration oxidation Chemolithotrophic oxidation

6/22/2008 WBL 51

Electrochemical Properties & Soil Oxygen Demand

Summary

‰ Oxidation-reduction reactions regulate several elemental cycles ‰ Wetland soils are limited by electron acceptors and have abundant supply of electron donors. ‰ Upland soils are usually limited by electron donors, and have abundant supply of electron acceptors (primarily oxygen). ‰ Nernst Equation is used to calculate redox potential (Eh) ‰ Redox potentials (Eh) are inversely related to pH (59 mV/pH unit) ‰ Redox potential of soils are affected by (i) activities of electron donors (ii) activities of electron acceptors and (iii) temperature ‰ Laboratory and field electrodes can be used to measure redox potentials of soils

6/22/2008 WBL 52

26 Electrochemical Properties & Soil Oxygen Demand

Summary

‰ Distinct Eh gradients are present at (i) the soil-floodwater interface, (ii) root-zone of wetland plants, and (iii) around soil aggregates in drained portions of wetlands during low water-table depths. ‰ Water column pH is affected by ‰ Soil pH is affected by reduction of electron acceptors ‰ The rate of oxygen consumption is related to the concentration of reductants ‰ Oxygen consumption at the soil-floodwater interface regulates nutrient fluxes

6/22/2008 WBL 53

http://wetlands.ifas.ufl.edu

6/22/2008http://soils.ifas.ufl.edu WBL 54

27