<<

TurkJBiol 31(2007)59-66 ©TÜB‹TAK

LifeintheAbsenceof:AlternativeElectronAcceptorsfor AnaerobicMicroorganismsinaPetroleumEnvironment

MelikeBALK LaboratoryofMicrobiology,WageningenUniversity,HesselinkvanSuchtelenweg4,6703CT,Wageningen,TheNetherlands

Received:01.12.2006

Abstract: Anaerobicmicroorganismsderivebytransferringelectronsfromanexternalsourceordonortoanexternal electronsinkorterminalacceptorandoftenhavethecapacitytoreduce2ormoreterminalelectronacceptors.Thewell-knowntype ofmicrobialrespiration,inwhichoxygenservesasanelectronacceptorfortheoxidationoforganiccarbonand/orhydrogen,h as beenstudiedelsewhereindetail.Anaerobicmicroorganismsarewidelydistributedinoil-producingvents,hydrothermalvents, volcanichotsprings,non-volcanicgeothermallyheatedsubsurfaceaquifers,andsoil.Inthisstudy,anaerobic,thermophilic,a nd fermentingmicroorganismsinapetroleumsamplefromtheAd›yamanregionofTurkeywereexaminedfortheirabilitytouse differentelectronacceptors.Thetemperaturerangeforgrowthoftheenrichmentculture(TP1)wasbetween40and65°Cand theoptimumpHrangedfrom4.5to8.0.TP1hadtheabilitytouseawidevarietyofmono-,di-,andpolysaccharidestoform

acetate,lactate,ethanol,H 2,andCO 2.No-reducingormethanogenicmicroorganismswerefound.Asanelectronacceptor,

TP1reducesthiosulfate,elemental,sulfite,Fe(III),anthraquinone-2,6-disulfonate(AQDS),arsenake,andMnO 2,butnot sulfate,nitrate,(per)chlorate,orselenate.Herein,weshowthattheenrichmentculturefromthepetroleumenvironmentwasab le toreducemultipleelectronacceptors.TheutilizationoftheseelectronacceptorsbyTP1alsoindicatedtheirpresenceinthis area. TheresultspresentedsuggestthatTP1mayoccupyanicheasanenvironmentalopportunistbytakingadvantageofdiverseelectron acceptors.

KeyWords: Anaerobic,electronacceptorutilization,petroleumenvironment,degradationoforganiccompounds

OksijensizYaflam:BirPetrolBölgesindekiAnaerobikMikroorganizmalar IçinAlternatifElektronAkseptörleri

Özet: Anaerobikmikroorganizmalarenerjilerinielektronlar›nbirbaflkakaynaktanveyabirdonördenbirterminalelectron akseptörünetransferedilmesiyoluylakazanmaktad›rlarveço¤unluklaikiveyadahafazlaelektronakseptörünüindirgemeözelli¤ ine sahiptirler.Oksijeninelektronakseptörüolarakkullan›ld›¤›veböyleceorganikkarbonunyadahidrojeninoksideedildi¤itür olan mikrobiyelaerobikmetabolizmakonusundapekçokçal›flmabulunmaktad›r.Anaerobikmikroorganizmalarpetrolüretimiyap›lan bölgelerde,hidrotermalkaynaklarda,volkanikveyajeotermalbölgelerdekisuveyatopraklardayayg›nolarakbulunmaktad›rlar.B u araflt›rmadaTürkiye’ninAd›yamanilindebulunanbirpetrolbölgesindenörnekal›nm›flveanaerobik,termofilik,fermentasyon yapabilenmikroorganizmalar›nçeflitlielektronakseptörlerinikullanmayetenekleriincelenmifltir.Zenginlefltirilenkültürün(TP 1) optimumgeliflmeiçins›cakl›karal›¤›40-60°CvepHoptimumuise4,5-8,0aral›¤›ndabulunmufltur.TP1oldukcafarkl›mono-,di -

vepolisakkaritlerikullanmayetene¤indeolupasetat,laktat,etanol,H 2 veCO2 oluflturmaktad›r.Kültürdesülfatindirgeyenvemetan oluflturanmikroorganizmalarbulunmam›flt›r.TP1elektronakseptörüolaraktiyosulfat,elementelsülfür,sülfit,Fe(III),antraki non-

2,6-disülfonat(AQDS),arsenatveMnO 2’iindirgeyebiliyorken,sülfat,nitrat,(per)kloratveselenat›kullanamad›¤›gözlenmifltir.Bu çal›flmailebirpetrolbölgesindeneldeedilenzenginlefltirilmiflkültürüncokfarkl›özelliklerdekielektronakseptörlerinikul lanabilme yetene¤indeolduguortayaç›kar›lm›flt›r.ElektronakseptörlerininTP1taraf›ndankullan›lmas›,buminerallerinsözkonusubölge deki varl›¤›n›daiflaretetmektedir.Buradakisonuçlar,TP1kültürününbulundu¤uortamdade¤iflikelektronakseptörlerikullanabilmes i aç›s›ndanavantajl›veoportunistolabilece¤inigöstermektedir.

AnahtarSözcükler: Anaerobikbakteriler,elektronakseptörkullan›m›,petrolbölgesi,organikbilefliklerinparçalanmas›

Introduction fromtheirchemicalenvironmentsbytransferring RespiringmicroorganismsinhabitmuchoftheEarth’s electronsfromreducedtooxidizedchemicalspecies. hydrosphereandlithosphere.Suchmicroorganisms Anaerobicmetabolismoftenoccursintheabsenceof derivetheenergytheyneedtolive,grow,andreproduce oxygenandthenorganiccontaminantscanbetransferred

59 LifeintheAbsenceofOxygen:AlternativeElectronAcceptorsforAnaerobicMicroorganismsinaPetroleumEnvironment

orbiodegradedanaerobically.Someanaerobicbacteria remineralizing organiccarbon.Mostremarkably,they usenitrate,sulfate,,manganese,andcarbondioxide performthesefunctions ineverynookandcranny,from astheirelectronacceptorsforthebreakdownoforganic theEarth’snearsurfacetoitsdepths, includingeventhe chemicals,andcarbondioxideandmethanearethemain mostextremeenvironments(18). finalproducts.Anaerobicmicroorganismshave Manyaquifersandsedimentaryenvironments dominatedlifeonEarthforperhapsmorethan2billion contaminatedwithhydrocarbonshavelimitedoxygen. yearsbeforetheincreasingoxygencontentofthe Thus,theresidentmicroorganismsmustusealternative atmosphereforcedthemtoretreatintonicheshostileto electronacceptorswhenoxidizingthereducedmolecules. oxygenicorganisms.Theseenvironmentswereprovided Microbialcommunitiesassociatedwithpetroleum bygeologicalconditions(1). environmentshaveattractedbroadinterestbecauseof In1926,thefirstbacteriawereisolatedfromoil theuniquepropertiesoftheconstituentorganisms. fields(2).Moderatetoextremethermophilicanaerobes However,littleattentionhasbeengiventopetroleum belongingtoBacteriaandinhabitoilreservoirs environmentcommunitiesascompletemicrobial andhavebeenisolatedfromorbeendetectedinoilfield ecosystems.Inthisresearch,inordertoaddressthe samples(3-8).Thepresenceofcloselyrelatedbacteriain relativecontributionsofdifferentgeochemistriestothe remoteoilfields(9,10)supportstheexistenceofawide- energydemandsoftheseecosystems,anenrichment spreadanaerobicbiosphereinoilreservoirs.Temperature culturefromapetroleumenvironmentintheAdıyaman isthemainlimitingfactorformicrobialgrowthinoil regionofTurkeywasinvestigated.Asarelativelysimple reservoirsbecausetemperatureincreaseswithdepthata andconfinedecosystemsetting,apetroleumenvironment meanrateof3°Cper100m.Differenttypesofdata wasconsideredandasimplequestionwasposed:what suggestthatthepresenceofindigenousbacteriainoil arethemainelectronacceptorsformetabolicenergythat fieldscouldbelimitedtoathresholdtemperatureof80- drivesuchcommunities? 90°C(8).Thermophilicandhyperthermophilic fermentativemicroorganismsalsoconstitutean MaterialsandMethods importantmicrobialcommunityofoilfieldenvironments. Themembersoftheorder Thermotogales (11-13), Studysiteandsamplecollection family Thermoanaerobiaceae,whichincludethegenera Theanaerobicsamplewasobtainedfromthe Thermoanaerobacter and Thermoanaerobacterium formationwaterproducedfromthepetroleumwell, (9,14),andfermentative Archaea (15),wereisolatedin Ikizce-2,whichislocatedintheAdıyamanregionof differentmicrohabitatswithinoilreservoirs.Natural southeastTurkey(lat38°11’0”N,long38°29’0”E)and environmentsforthermophilicmicroorganismsare operatedbytheTurkishPetroleumCorporation(TPAO), widespreadonEarth’ssurface.Theexistenceof inMay2005.Theculture wasenrichedfromthe microorganismsinthedeepterrestrialsubsurfacehas formationwaterbyserialdilution.Samplingdepthwas beennotedforalongtime,butonlyinthepastdecade 2398-2443m. hastherebeenanincreasinginterestinexploring anaerobicconsortia(16). Enrichment MicroorganismshavechangedEarthinanumberof ways.Theyhavealteredtheoftheatmosphere Thesample(5ml)wastransferredto50-mlsterilized (17)andmodifiedthecompositionsofoceans,rivers, bicarbonate-bufferedmediumina117-mlserumvial petroleumenvironments,andporefluids throughcontrol sealedwithabutylrubberstopperunderagasphaseof ofmineralweatheringratesorbyinducingmineral N2/CO2 (80/20,v/v).Pyruvate(20mM)wasusedasthe precipitation.Theyhavechangedthespeciationofmetals electrondonor.Theenrichmentculturewasgrownat20- and metalloidsinwater,soils,andsedimentsbyreleasing 90°Candaftergrowth,culturesweretransferredto complexing agentsandbyenzymaticallycatalyzing liquidmediacontaining20mMofpyruvateasa reactions.Theyhave shapedthephysicalworldbybinding substrate. sediments,precipitating oredeposits,andweathering Thecompositionofbasalmediumusedforroutine rocks,andhavesustainedcommunities ofhigher growthandsubstrateutilizationexperimentscontained organismsthroughprimaryproductionandby -1 thefollowing(gl );Na2HPO4.2H2O:0.53;KH2PO4:0.41;

60 M. BALK

NH4Cl:0.3;CaCl 2.2H2O:0.11;MgCl 2.6H2O:0.10;NaCl: at60°C.Hydrogenandmethaneweremeasuredona

0.3;NaHCO 3:4.0;Na 2S.9H2O:0.48.Additionally,the ChrompackCP9001gaschromatographfittedwitha basalmediumcontainedacidandalkalinetraceelements TCDdetector.Theinjectoranddetectortemperatures (1mll-1)andvitamins(0.2mll-1).Theacidtraceelement were60and130°C,respectively(19,20).Benzene, solutioncontainedthefollowing(millimolar):FeCl 2:7.5; toluene,andxyleneweredeterminedwithgas

H3BO4:1;ZnCl 2:0.5;CuCl 2:0.1;MnCl 2:0.5;CoCl 2:0.5; chromatographybyinjecting0.2mlofheadspacegasinto a436Chrompackgaschromatograph(GC)equipped NiCl2:0.1;HCl:50.Thealkalinetraceelementsolution withaflameionizationdetector(FID)connectedtoaSil wascomposedofthefollowing(millimolar):Na 2SeO3: 5CBcolumn(25m× 0.32mm× 1.2µm)andwithsplit- 0.1;Na 2WO4:0.1;Na 2MoO4:0.1;NaOH:10.0.The vitaminsolutionhadthefollowingcomposition(gl -1): injection(ratio:1:50).Operatingtemperaturesofthe biotin:0.02;niacin:0.2;pyridoxine:0.5;riboflavin:0.1; injectoranddetectorwere250and300°C,respectively. thiamine:0.2;cyanocobalamine:0.1;p-aminobenzoic Theoventemperaturewas70°C.CarriergaswasN 2 acid:0.1;panthothenicacid:0.1.Themediumwas withaninletpressureof50kPa.Thiosulfate,nitrate, supplementedwith0.01%BBLyeastextract. (per)chlorate,arsenate,selenate,andsulfatewere analyzedbyanHPLCsystemequippedwithanIonpac Thesamplesweremaintainedbyweeklytransferofa AS9-SCcolumnandanED40electrochemicaldetector 1%(v/v)inoculumtofreshmedium.Bottleswere (Dionex,Sunnyvale,USA).Theeluentconsistedof1.8 incubatedinthedarkwithoutshaking. mMNa2CO3 and1.7mMNaHCO3 ataflowof1ml/minat ThepHwasadjustedtothedesiredpHwithKOH.The roomtemperature.Theanionsweredetectedwith mediumwasboiledandcooledtoroomtemperature suppressedconductivity(21).Sulfidewasanalyzedas underastreamofO 2-freeN 2 gas.Themediumwas describedbyTrüperandSchlegel(22). anaerobicallydispensedinto120-mlserumvialswith50 mlofmediumanda1.7-atmgasphaseofN2/CO2 (80/20, v/v).Thebottleswereclosedwithbutylrubberstoppers Results sealedwithcrimpseals.Themediumwasautoclavedfor Enrichment 20minat121°C.Priortoinoculation,themediumwas Thesampleobtainedfromtheformationwater reducedwithsterilestocksolutionsofNa 2S.7-9H2Oand producedfromthepetroleumwellwasenrichedand NaHCO3 toobtainfinalconcentrationsof0.04%and directlyusedtoexaminethemetabolicdiversityofthe 0.2%,respectively.Thevitaminsolutionwasfilter cultureattemperaturesrangingfrom20to90°Cina sterilizedandothercompoundsweresterilizedbyheat. bicarbonate-bufferedmediumwithpyruvateasthe Unlessstatedotherwise,substrateswereaddedfrom1M growthsubstrate. stocksolutionstogiveafinalconcentrationof20mM. Routinely,pyruvatewasusedasthecarbonandenergy source. pH,temperature,andsodiumchloride concentrationrangesforgrowth Thefinalopticaldensityat600nmafter24-h Microscopy incubationwasusedtodeterminetherangeandoptimum Cellmorphologywasroutinelyexaminedundera temperature,pH,andNaClconcentrationforgrowthof phase-contrastLeicaDC250microscope(Rijswijk,The theenrichmentculture,TP1.ThepHofthemediumwas Netherlands)equippedwithadigitalcamerasystem. adjustedbyinjectingcalculatedamountsofsterileNa 2CO3 orHClfromthesterile,anaerobicstocksolutions.The effectsofpHandNaClconcentrationweredeterminedat Analyticalmethods theoptimaltemperatureforgrowth.Underthese Organicacids,sugars,glycerol,ethanol,andmethanol conditions,TP1grewat40-65°Cwithoptimumgrowth wereanalyzedbyHPLCusingaPolyspherOAHYcolumn around50°C,whilenogrowthwasdetectedat30and (300-6.5mm,Merck,Darmstadt,Germany)andRISE- 80°C.GrowthwasobservedbetweenpH4.5and9,with 61refractiveindexdetector(Shodex,Tokyo,Japan).The optimumgrowtharoundpH6.5(pH6.3-6.5).Growth mobilephasewas0.01NH 2SO4 ataflowof0.6ml/min occurredatNaClconcentrationsrangingfrom0to20g

61 LifeintheAbsenceofOxygen:AlternativeElectronAcceptorsforAnaerobicMicroorganismsinaPetroleumEnvironment

l-1,withoptimumgrowthat5gNaCll -1.Nogrowthwas observedat30gl -1.Undertheoptimalconditionsof growthandinthepresenceofthiosulfate(20mM), maximumcelldensity(OD 600)wasabout1.20.

Morphology Intheexponentialgrowthphase, thecellsgrownina bicarbonate-bufferedmediumsupplementedwith0.1% (w/v)yeastextractandlactateat50°Cappearedtobe mostlyrod-shapedcells(Figure1).Terminalspore formationwasobservedinsomeofthecells.

(A) Physiologicalstudies TheabilityofTP1tometabolizesolublesubstrates wastestedinabicarbonate-bufferedmedium.The growthwasdeterminedbymeasuringtheopticaldensity at600nm.TP1grewonthefollowingsubstrates(ata concentrationof20mM,unlessindicatedotherwise)in thepresenceorabsenceofthiosulfateastheelectron acceptor:yeastextract,peptone,formate,H 2/CO2, lactate,fructose,pyruvate,glucose,galactose,lactose, maltose,mannose,ribose,sucrose,xylose,starch,pectin, cellobiose(10mM),fumarate,andmalate.Inthe presenceofthiosulfate,veryslowgrowthwasalso observedonpropionateandbenzoate(5mM).Nogrowth occurredwithacetate,glycine,ethanol(5mM), methanol,propanol,butanol,succinate, carboxymethylcellulose,cellulose,arginine,orlichenan becauseBTEXcompounds[benzene(50µM),toluene(50 µM)ando-,m-,andp-xylenes(0.8mM)]werenot utilized. Althoughyeastextractwasnotrequiredforgrowth ofTP1,itdidaffectproductformation.Whentheyeast (B) extractconcentrationwasraisedto ≥ 0.1%,glucose Figure1. PhasecontrastmicrographofcultureTP1.(A)Vegetative cellsfromtheculturegrowingonlactateandthiosulfate.(B) wasshiftedinfavoroflactateandacetate Vegetativecellsandsporulatedcellsfromtheculture insteadoflactateandethanol. growingonlactateandsulfite. Inadditiontothiosulfate(20mM),elementalsulfur detectionofsulfideproduction(forsulfate,thiosulfate, (2%,w/v),sodiumsulfite(5mM),FeCl3 (10mM),Fe(III)- sulfite,andelementalsulfur),changeofcolor(forAQDS), NTA(10mM),Fe(III)-citrate(10mM),MnO 2 (5mM), anthraquinone-2,6-disulfonate(AQDS)(20mM),and andmeasurementofthereductionofFe(III)orformation ofwhiteprecipitates(forMnO )inthemedium. arsenate(5mM)servedaselectronacceptorswithlactate 2 astheelectrondonor.Sulfate(20mM),nitrate(20mM), TheoxygensensitivityofTP1wastestedunderagas perchlorate(10),andselenate(5mM)couldnotbeused. phasereplacedwith80%H 2,19%CO2,and1%O2.TP1 Theuseoftheelectronacceptorswasdeterminedinthe grewonlyunderstrictlyanaerobiccultureconditionsand presenceof20mMoflactatebygrowthoftheculture, wassensitivetooxygen.

62 M. BALK

Discussion otherhand,hydrocarbonsmaynotbethesolesourceof Theenrichmentculture,TP1,wasobtainedfroma electrondonorsformicroorganismsinpetroleum petroleumwellintheAdıyamanregionofTurkey.TP1 reservoirs,andhydrogenordifferentorganicacidsmight wasabletogrowat50°CandoptimumpHforgrowth alsoserveaselectrondonorsinproductionwaters(26). was7.0.Usingdifferentsugarsandpyruvate,products Utilizationofsugarswithouttheneedofelectron formedbyTP1weremainlyacetate,ethanol,lactate, acceptorsinTP1alsoshowedthepresenceoffermenting hydrogen,andcarbondioxide,butnomethanewas microorganisms.Fermentationoccurswhenanorganic formed. chemicalactsasanelectronacceptor.Although Microorganismscapableofexploitingallthemajor fermentativebacteriahavebeenidentifiedinpetroleum terminalelectronacceptingprocesses,suchasaerobic reservoirs,thereisasyetnoevidencethatanyofthe respiration,nitrate-,iron-,andsulfatereduction, fermentativemicroorganismsinpetroleumreservoirs methanogenesis,andfermentation,havebeenobtained serveasdefinitiveproofofhydrocarbondegradation frompetroleumreservoirsandincludeisolatesthatrange (27).TP1wasabletousethiosulfate,elementalsulfur, frommesophilictohyperthermophilic(8).These andsulfite(Table).Thiosulfate-andsulfur-reducing reactionsareofinterestnotonlybecausetheyallow thermophilicfermentativebacteriahavebeenreportedto microorganismstoobtainenergy,butalsobecausethey existinoilfieldwaters.Theabilitytoreducethiosulfate areinvolvedinthenaturalbiodegradationoforganic tosulfideissharedbyalargenumberoffermentative contaminants(23).However,theinvolvementof bacteriafrompetroleumreservoirs(11,14).Sulfur(S)is biochemicallyandgeochemicallyanimportantelement. microorganismsinpetroleumenvironmentsisstillpoorly -1 understood.Mostofthecommonterminalelectron Theaveragecrustalabundanceofsulfuris260mgg and acceptorsthatbacteriauseforrespiration,suchas mostsulfuronEarthispresentasmetalsulfide,gypsum, oxygen,nitrate, andsulfate,aresoluble.Thismeansthey anhydrite,anddissolvedsulfate.Thereareseveral canfreelydiffuseto thecelltoreceiveelectronsfromthe intermediatevalenceformsofsulfurthatcanserveas membrane-boundmolecules oftherespiratorychain. bothelectrondonorsandacceptorsforbacteria, Remarkably,inthebatchculturesusedinthepresent dependingonenvironmentalconditions;themost study,potentialacceptorsincludingsulfate,thiosulfate, importantonesareelementalsulfurandthiosulfate(28). sulfur,sulfite,andreducedmetalssuchasAs(III),Fe(II), Thermophilicsulfidogenswerefrequentlyfoundat andMn(II)areusedbyTP1(Table). temperaturesrangingfrom70to85°Candappeartobe widespreadinhightemperaturepetroleumsystems(14); Theprevailingphysicochemicalconditionsand however,thereasonforthepresenceofthiosulfateinoil relativelyhightemperaturesinthissamplemeanthat reservoirshasnotbeeninvestigatedindetail.Thiosulfate novelmicroorganismsarelikelytobepresent.Although wasreducedcompletelytosulfidebyTP1.Theabilityto cultureTP1wasabletouseawiderangeofdifferent reducethiosulfatetosulfideisapropertyofalarge substrates,BTEXcompoundswerenotdegraded.There numberoffermentativebacteriafrompetroleum arefewreportsonculturesofputativehydrocarbon reservoirs(8).Althoughsulfate-reducingbacteriawere degradersfrompetroleumreservoirs(24,25).Onthe alsofoundtobedominantindifferentoilfields(7),

Table.CoupledreactionsinvolvinglacticacidandelectronacceptorsbytheenrichmentcultureTP1.

2- → 2Lacticacid+S 2O3 +2H+ 2H2S+2aceticacid+2CO 2 +H2O → Lacticacid+2S+H 2O 2H2S+aceticacid+CO 2 2- + → 1.5Lacticacid+SO 3 +2H 1.5aceticacid+1.5CO 2 +H2S+1.5H2O 3+ → 2+ + Lacticacid+4Fe +H2O 4Fe +aceticacid+CO 2 +4H 2- + → Lacticacid+2HAsO 4 +4H aceticacid+2HAsO 2(aq)+CO2 +3H2O

63 LifeintheAbsenceofOxygen:AlternativeElectronAcceptorsforAnaerobicMicroorganismsinaPetroleumEnvironment

sulfatewasnotreducedbyTP1.Theamountofelemental Inconclusion,thepresenceofthermophilic sulfurwasnotquantified,buttheconcentrationofsulfide microorganismsinasamplefromthepetroleum increasedduringthegrowth,indicatingtheutilizationof environmentextendstheknownecologicalhabitatsof elementalsulfur. suchgroupsoforganisms.Thequestionthatinspiredthis Inadditiontothiosulfateandsulfur,TP1wasalso investigationwaswhatkindsofmineralscanbeusedina abletoreduceAQDS,Fe(III),andMn(IV).Inanaerobic petroleumenvironmentbymicroorganisms.LifeonEarth environments,Fe(III)reductionpredominatesandFe(III) mayhavefirstevolvedinasubterrestrialfashionandthen isthemostabundantalternativeacceptorforanaerobic migratedtothesurfaceastheenvironmentbecamemore respirationinmanysedimentaryenvironments(29,30). favorable.Ifso,thestudyofdeep,subsurfacemicrobial MicroorganismsreduceextracellularFe(III)orMn(III,IV) communitiesmayprovideanotherkeytoexploringour tosupporttheirmetabolismorgrowth,andforthe distantpast.Thesubsurfacemicrobialcommunity partialorcompleteoxidationoforganiccompoundsor constitutesalargeportionoftheEarth’sbiomass,yet hydrogen(31,32).About35%oftheironand75%of onlyasmallfractionofithasbeencharacterized.Some themanganeseinsoilsandsedimentsisintheformof subsurfacemicroorganismsmaybesurvivorsorprogeny freeoxides(33-35).Ironandmanganeseoxidesand ofbacteriaincorporatedaroundthetimethesedimentary hydroxidesarecommoninthesubsurfaceenvironment strataweredeposited(45). Persistenceovermillionsof andcanbepresentinoil-bearingrock(36).Electron yearswouldrequireadaptationsforlong-termsurvivalin transferviahumicacidsisespeciallyimportantduring low-nutrientenvironmentsorthedevelopmentof iron-reduction,andstronglyenhancestherateofthe communitiesthataresustainedthroughcomplementary redoxprocess(37). interactionsamongmembers.Therefore,thewidespread occurrenceofTP1-likethermophilicmicroorganismsin ThemetalloidcontaminantsAs(V)andSe(VI)canalso deep-seatedhigh-temperaturepetroleumreservoirs serveaselectronacceptorsforanaerobicrespiration suggeststhepotentialforcloselycoupled,active (38,39).CultureTP1wasabletouseonlyAs(V).Arsenic biogeochemicalcyclingofcarbonanddifferentelectron andseleniumare2elementswhosepotentialtoxicand acceptorsinhotsubsurfacepetroleumhabitats,and teratogeniceffectsoutweightheirrelativelylowcrustal thereforemayhavesignificantimpactsonreservoir abundances(40).Arsenate-andselenate-respiring geochemistry. bacteriahavebeenshowntooccurinawiderangeof environmentsandarenotconfinedtoanyspecificgenus. Arsenateconcentrationinpetroleumisrelativelylow, Acknowledgments rangingfrom0.0024to1.63 mgkg –1 (41)withamean TheauthorwassupportedbytheDarwinCenterfor ofconcentrationof0.26 mgkg –1 (42). BiogeologyofNWOintheNetherlands.Theauthor

CultureTP1wasabletouseH2/CO2 inthepresenceof thanksProf.Dr.TanjuMehmeto¤lufromthePetroleum 0.1%(w/v)yeastextractandacetatewastheend EngineeringDepartmentofMiddleEastTechnical product;however,whenanyelectronacceptorwas UniversityandtheTurkishPetroleumCorporationin provided,theconcentrationofacetatedidnotdecrease, Adıyamanforprovidingthesamplethatwasusedinthis indicatingthatacetatewasnotconsumedduringgrowth. study. Althoughmethane-producingmicroorganismsfrom thebiodegradationofhydrocarbonshavebeen Correspondingauthor: demonstrated(43,44),methanewasnotformedduring MelikeBALK thegrowthofTP1ondifferentsubstrates.Asyntrophic LaboratoryofMicrobiology, partnershipthatrequirestheinteractionofhydrocarbon- degradingfermentativebacteriathatproducehydrogen WageningenUniversity, andshortchainfattyacidsforthegrowthofthe HesselinkvanSuchtelenweg4, methanogenicpartnermightbeasignificantprocessin 6703CT,Wageningen, petroleumenvironments;however,thereisasyetno TheNetherlands clearevidencetosupportthistypeofgrowth. E-mail:[email protected]

64 M. BALK

References 1. MadiganMT,MartinkoJM,ParkerJ.Brockof 17. KastingJF,SiefertJL.LifeandtheEvolutionofEarth’s Microorganisms,the10 th edition.PearsonEducation,Inc.JN. Atmosphere.Science296:1066,2002. USA;2003:pp.151-156. 18. ReysenbachAL,ShockE.MergingGenomeswithGeochemistryin 2. BastinE.Microorganismsinoilfields.Science63:23-24,1926. HydrothermalEcosystSci296:1077,2002. 3. AdkinsJP,CornellLA,TannerRS.Microbialcompositionof 19. BalkM,WeijmaJ,FriedrichMWetal.Methanolconversionby carbonatepetroleumreservoirfluids.GeomicrobiolJ10:87-97, novelthermophilichomoacetogenicbacterium Moorellamulderi 1992. sp.nov.isolatedfromabioreactor.ArchMicrobiol179:315- 4. NazinaTN,IvanovaAE,MityushinaLLetal.Thermophilic 320,2003. hydrocarbon-oxidizingbacteriafromoilstrata.Microbiology 20. HenstraAM,StamsAJ.Novelphysiologicalfeaturesof (EnglishTranslationofMikrobiologiya)62:359-365,1993. Carboxydothermushydrogenoformans and 5. ZvyagintsevaIS,BelyaevSS,BorzenkovIAetal.1995.Halophilic Thermoterrabacteriumferrireducens.ApplEnvironMicrobiol70: archaebacteriafromtheKalamkassoilfield.Microbiology(English 7236-40,2004. TranslationofMikrobiologiya)64:83-87,1993. 21. ScholtenJC,StamsAJM.Theeffectofsulfateandnitrateon 6. VoordouwG,ArmstrongSM,ReimerMFetal.Characterization methaneformationinafreshwatersediment.Antonievan of16SrRNAgenesfromoilfieldmicrobialcommunitiesindicates Leeuwenhoek68:309-315,1995. thepresenceofavarietyofsulfate-reducing,fermentative,and 22. TrüperHG,SchlegelHG.SulphurmetabolisminThiorhodaceae.I. sulfide-oxidizingbacteria.ApplEnvironMicrobiol62:1623- Quantitativemeasurementsongrowingcellsof Chromatium 1629,1996. okenii.AntonieVanLeeuwenhoek 30:225-238,1964. 7. TelangAJ,EbertS,FoghtJMetal.Effectofnitrateinjectionon 23. AmendJP,ShockEL.Energeticsofoverallmetabolicreactionsof themicrobialcommunityinanoilfieldasmonitoredbyreverse thermophilicandhyperthermophilicArchaeaandBacteria.FEMS samplegenomeprobing.ApplEnvironMicrobiol63:1785-1793, MicrobiolRev25:175-243,2001. 1997. 24. MorikawaM,KanemotoT,ImanakaT.Biologicaloxidationof 8. MagotM,OllivierB,PatelBKC.Microbiologyofpetroleum alkanetoalkeneunderanaerobicconditions.JFermBioeng82: reservoirs.AntonievanLeeuwenhoek77:103-116,2000. 309-311,1996. 9. GrassiaGS,McLeanKM,GlenatPetal.Asystematicsurveyfor thermophilicfermentativebacteriaandarchaeainhigh 25. StetterKO,HuberR.Theroleofhyperthermophilicprokaryotes temperaturepetroleumreservoirs.FEMSMicrobiolEcol21:47- inoilfields,in:BellM,BrylinskyM,Johnson-GreenP.eds. th 58,1996. MicrobialBiosystems:NewFrontiers,Proceedingsofthe8 InternationalSymposiumonMicrobialEcology,Halifax,Canada; 10. MagotM.Similarbacteriainremoteoilfields.Nature379:681, 2000:pp369-375. 1996. 26. BarthT,RiisM.Interactionsbetweenorganicacidanionsin 11. RavotG,OllivierB,MagotMetal.Thiosulfatereduction,an formationwatersandreservoirmineralphases.OrgGeochem19: importantphysiologicalfeaturesharedbymembersoftheorder 455-482,1992. Thermotogales.ApplEnvironMicrobiol 61:2053-2055,1995. 27. RolingWF,HeadIM,LarterSR.Themicrobiologyofhydrocarbon 12. JeanthonC,ReysenbachAL,L’HaridonSetal. Thermotoga degradationinsubsurfacepetroleumreservoirs:perspectivesand subterranea sp.nov.,anewthermophilicbacteriumisolatedfrom prospects.ResMicrobiol154:321-8,2003. acontinentaloilreservoir.ArchMicrobiol164:91-97,1995. 28. OdomJM,SingletonR.TheSulfate-ReducingBacteria: 13. FardeauML,OllivierB,PatelBKCetal. Thermotogahypogea sp. ContemporaryPerspectives.NewYork:SpringerVerlag,1993. nov.,axylanolytic,thermophilicbacteriumfromanoil-producing well.IntJSystEvolMicrobiol47:1013-1019,1997. 29. LovleyDR,ChapelleFH.Deepsubsurfaceprocesses.RevGeophys 14. OrphanVJ,TaylorLT,HafenbradlDetal.Culture-dependentand 33:365-381,1995. culture-independentcharacterizationofmicrobialassemblages 30. LovleyDR,CoatesJD.Novelformsofanaerobicrespirationof associatedwithhigh-temperaturepetroleumreservoirs.Appl environmentalrelevance.CurrOpinMicrobiol3:252-6,2000. EnvironMicrobiol 66:700-711,2000. 31. LovleyDR,PhillipsEJ.Competitivemechanismsforinhibitionof 15. StetterKO,HoffmannA,HuberR.MicroorganismsAdaptedto sulfatereductionandmethaneproductioninthezoneofferric HighTemperatureEnvironments.In:GuerrreroR,Pedros-AlioC. ironreductioninsediments.ApplEnvironMicrobiol53:2636- eds.TrendsinMicrobiologyEcology.SpanishSocietyfor 2641,1987. Microbiology,1993:pp.25-28. 32. LovleyDR,CoatesJD.ofmetalcontamination. 16. PedersenK.Explorationofdeepintraterrestrialmicrobiallife: CurrOpinBiotechnol8:285-9,1997. currentperspectives.FEMSMicrobiolLett185:9-16,2000.

65 LifeintheAbsenceofOxygen:AlternativeElectronAcceptorsforAnaerobicMicroorganismsinaPetroleumEnvironment

33. CanfieldDE.Thegeochemistryofriverparticulatesfromthe 40. OhlendorfHM,HoffmanDJ,SaikiMKetal.Embryonicmortality continentalUSA:majorelements.GeochimCosmochimActa61: andabnormalitiesofaquaticbirds:apparentimpactsofselenium 3349-65,1997. fromirrigationdrainwater.SciTotEnv52:49-63,1986. 34. CornellRM,SchwertmannU.TheIronOxides–Structure, 41. PacynaJM.Atmosphericemissionsofarsenic,cadmium,leadand Properties,Reactions,OccurrenceandUses.VCH,Weinheim, mercuryfromhightemperatureprocessesinpowergeneration 1996. andindustry.In:HutchinsonTC,MeemaKM.eds.Lead,mercury, cadmiumandarsenicintheenvironment.Wiley,NewYork;1987: 35. ThamdrupB,Rossello-MoraR,AmannR.Microbialmanganese pp69-87. andsulfatereductioninBlackSeashelfsediments. ApplEnviron Microbiol 66:2888-97,2000. 42. BowenHJM.Environmentalchemistryoftheelements.Academic Press,NewYork,1979. 36. NazinaTN,IvanovaAE,GolubevaOV.Occurrenceofsulfate. a n d iron-reducingbacteriainstratalwatersoftheRomashkinskoeoil 43. WiddelF,RabusR.Anaerobicbiodegradationofsaturatedand filed.Microbiology(EnglishTranslationofMikrobiologiya)64: aromatichydrocarbons.CurrOpinBiotechnol12:259-276, 203-208,1995. 2001. 37. HernandezME,NewmanDK.Extracellularelectrontransfer.Cell 44. ZenglerK,RichnowHH,Rosello-MoraRetal.Methaneformation MolLifeSci58:1562-71,2001. fromlon-chainalkanesbyanaerobicmicroorganisms.Nature 401:266-269,1999. 38. StolzJF,OremlandRS.Bacterialrespirationofarsenicand selenium.FEMSMicrobiolRev23:615-27,1999. 45. NewmanDK,BanfieldJF.Geomicrobiology:Howmolecular-scale interactionsunderpinbiogeochemicalsystems . Science296: 39. NewmanDK,KennedyEK,CoatesJD.Dissimilatoryarsenateand 1071-7,2002. sulfatereductionin Desulfotomaculumauripigmentum sp.nov. ArchMicrobiol168:380-8,1997.

66