<<

Combinatorial and Synthesis on Solid Support

Burkhard König University of Regensburg

Outline

I. Solid phase synthesis

1. Polymers, resins, supports 2. Linkers 3. Analytical techniques

Solid phase synthesis protocols and automatization

4. Synthesis

a) Protecting groups (- CO2H, -NH2, side chain= Special topic: Photoremovable protecting groups b) Coupling methods

5. Oligonucleotides 6. Sugars 7. Special topic: Immobilization of catalysts Outline

II. Liquid phase synthesis Polyethylenglycol, Linear Polymers, Isomerization reactions, Metathesis

III. Polymer supported

IV.

1. Library synthesis a) in solution, parallel synthesis b) on solid support c) split and combine, one bead one compound 2. Deconvolution and Tagging 3. Dynamic combinatorial Chemistry and virtual libraries

Outline

V. Diversity oriented synthesis (DOS) Principle and examples Molecular complexity

VI. Complexity Generating Reactions Tandem cycloadditions and rearrangements, radical cascade reactions, transition metal catalyzed reactions, mixed tandem reactions, mulit-component reactions

VII. Chemical Diversity Building blocks, functional groups, , molecular framework, examples of diversity from An incomplete list of relevant literature reviews

Current Opinion in (2000) 4, Issue 4 - available online. Bodanszky, M. (1993). Principles of Peptide Synthesis, 2nd Edition. Springer-Verlag: New York. Schreiber, S. L. (2000). Science 287, 1964-1968. Crowley, J. I., Rapoport, H. (1976). Solid-Phase : Novelty or Szostak, J. W. (1997). Introduction: Combinatorial Chemistry. Chemical Fundamental ConceptConcept.. Accounts of Chemical Research 9, 135 - 144. Reviews 97, 347-348. Fréchet, J. M. (1981). Synthesis and Applications of Organic Polymers As Pirrung, M. C. (1997). Spatially Addressable Combinatorial Libraries. Chemical Reviews 97, 473-488. Supports and Protecting Groups. Tetrahedron 37, 663 - 683.

Osborne, S. E., and Ellington, A. D. (1997). Nucleic Acid Selection and the Gait,Gait,M.J.,Ed. M. J., Ed.(1984). Oligonucleotide Synthesis: A Practical Approach. Challenge ooff Combinatorial Chemistry. Chemical Reviews 97, 349-370. IRL Press: Washington, D. C.

Nefzi, A., Ostresh, J. M., and Houghten, R. A. (1997). The Current Status of Letsinger, R. L. (1983). of Oligonucleotides: a Simplified Heterocyclic Combinatorial Libraries. Chemical Reviews 97, 449-472449-472.. Approach. Genetic Engineering 5,191-207.

Pinilla, C., Appel, J., Blondelle, S., Dooley, C., Dorner, B., Eichler, J., Leznoff, C. C. (1974). The Use of Insoluble Polymer Supports in Organic Ostresh, J., and Houghten, R. A. (1995). A Review Of the Utility Of Soluble Chemical Synthesis. Chemical Society Reviews 3,65-85. Peptide Combinatorial Libraries. Biopolymers 37, 221-240. Leznoff, C. C. (1978). The Use of Insoluble Polymer SupportsSupports in General Lam, K. S., Lebl, M., and Krchnak, V. (1997). The Organic Synthesis. Accounts of Chemical Research 11,327-333. ''One-Bead-One-Compound'' Combinatorial Library Method. Chemical Reviews 97, 411-448. Merrifield, B. (1986). Solid Phase Synthesis. Science 232, 341 - 347. Baldwin, J. J., and Henderson, I. (1996). Recent AdvancAdvanceses In the (This is a transcript of Merrifield's NobeNobell Award address.) Generation Of Small- Combinatorial Libraries - Encoded Split Synthesis and Solid-Phase Synthetic Methodology. Medicinal Research Neckers, D. C. (1978). Solid Phase Synthesis. Chemtech, 108 - 116 Reviews 16, 391-405. Overberger, C. G., Sannes, K. N. (1974). Polymeric Reagents in Organic Lowe, G. (1995). Combinatorial Chemistry.Chemistry. Chemical Society Reviews 24, Synthesis. Angewandte Chemie InternationInternational Edition in English 13, 99 - 104. 329-340. Patchornik, A., Kraus, M. A. (1975). The Use of Polymeric Reagents in Organic Terrett,N.K.,Gardner,M.,Gordon,D.W.,Kobylecki,R.J.,andSteele,J. Sythesis. Pure and Applied Chemistry 43, 503 - 526. (1995). Combinatorial Synthesis - the Design Of Compound Libraries and Their Application to . Tetrahedron 51, 8135-8173.

Gallop,M.A.,Barrett,R.W.,Dower,W.J.,Fodor,S.P.A.,andGordon,E. M. (1994). Applications Of Combinatorial Technologies to Drug DiscDiscoveryovery .1. Background and Peptide Combinatorial Libraries. Journal Of 37, 1233-1251.

Gordon, E. M., Barrett, R. W., Dower, W. J., Fodor, S. P. A., and Gallop, M. A. (1994). ApplicatiApplications Of Combinatorial Technologies to Drug Discovery .2. Combinatorial Organic Synthesis, Library Screening Strategies, and Future Directions. Journal Of Medicinal Chemistry 37, 1385-1401.

I. Solid phase synthesis

Synthesis on solid (polymer) support Why should you care about solid-phase synthesis ?

Even if it were the case that the only successful solid-phase chemistries ever performed were the synthesis of oligopeptides and oligonucleotides, it would be difficult to overstate their importance. These advances created entire new areas of research, and have served as the underpinning for almost all modern and .

Two other primary reasons for caring about solid-phase synthesis:

Its interesting!

It served as the basis for much of the early efforts in combinatorial chemistry.

A little history of solid-phase synthesis

1960's: Solid-phase peptide and oligonucleotide synthesis get started.

1970's: Continued development of 1970's: Synthetic organic solid-phase peptide and oligo begin to explore solid-phase organic synthesis, including the development synthesis. While interesting, no of effective apparati for automated compelling case is made for actually synthesis. bothering to do on solid support, and by 1980 most efforts have stagnated.

1980's (late): Interest in 1980's: Peptide chemists and solid-phase organic synthesis is biologists get interested in figuring out renewed, in both academia and the how to make truly huge numbers of pharmaceutical industry. (and screen them for Adaptation of "modern" synthetic ). This leads to the reactions to the solid-phase development of the firsfirst combinatorial begins. libraries.

1990's: Continued improvements in the rate at which potential drug candidates can be screened (high-throughput screening) lead virtually every major pharmaceutical company to delve into the combinatorialcombinato synthesis of non-peptide, non-oligonucleotide . Bruce Merrifield 1984 Born July 21, 1921 Benefits often associated with solid-phase synthesis

• Minimized Solubility Problems

• Simplified Purification

• Improved Reaction Yields

• Simplified Manipulation of Small Molar Quantities

• Site Isolation

Why Use Solid Phase Synthesis?

Purification of compounds bound to the solid support from those in solution is accomplished by simple filtration This allows the use of a large excess of reagents, improving the efficiency of many transformations The solid support can be used to compartmentalize library members, permitting the use of split-pool synthesis

S S S S

S S S S SSSS 1. Polymers, resins, supports

Book Chapters

Barany, G., Kempe, M. (1997). The Context of Solid-Phase Synthesis. In: A Practical Guide to Combinatorial Chemistry. Czarnik, A. W., DeWitt, S. H., Eds. (ACS: Washington, DD.. C.) Chapter 3.

Früchtel, J. S., Jüng, G. (1996). Polymer Supported Organic Synthesis: A Review. In: Combinatorial Peptide and Non-Peptide Libraries. Jüng, G., Ed. (VCH: New York) ChapterChapter 2.

Novabiochem (2001). The Combinatorial Chemistry Catalog.

Rapp, W. E. (1996). PEG Grafted Polystyrene Tentacle Polymers: Physico-Chemical Properties and Application to Chemical SynthesisSynthesis..In In Combinatorial Peptide and Non-Peptide Libraries. Jüng, G., Ed. (VCH: New York) Chapter 16.

Rapp, W. E. (1997). Macro Beads as Microreactors: New Solid-Phase Synthesis Methodology.Methodology. In Combinatorial Chemistry. Wilson, S. R.; Czarnick, A. W., Eds. (Wiley&Sons: New York) Chapter 4.

Review Articles

Vaino, A. R. and Janda, K. D. (2000). Solid-Phase Organic Synthesis: A CriCriticaltical Understanding of the Resin. Journal of Combinatorial Chemistry, 2,579-596.

Guillier,F., Orain, D. and Bradley, M. (2000). Linkers and Cleavage Strategies in Solid-Phase Organic Synthesis and ComCombinatorial Chemistry. Chemical Reviews, 100, 2091-2157.

1. Polymers, resins, supports

Typical loading: 1 mmol / g of resin

or 200 pm / bead (for 100 μm aminomethylpolystyrene ~ 5 x 106 beads / g)

1.1 g 1.25 g 1.4 g

(9 wt % substrate) (20 wt % substrate) (29 wt % substrate)

X Y Z

first resin-bound second resin-bound final resin-bound intermediate, MW = 100 intermediate, MW = 250 intermediate, MW = 400 1. Polymers, resins, supports

Polystyrene Resins

= polystyrene/DVB copolymer Cheap; excellent chemical stability; (0.5 - 5% cross-linking) good to ca. 110 - 130 °C at 1% DVB; slightly higher at 2% DVB.

= polystyrene/DVB copolymer Cheap; excellent chemical stability; (8 - 50% cross-linking) remarkable thermal and mechanical stability; very poor swelling characteristics → low loadings. Often called "macroreticulate" resin.

= polystyrene/Kel-F

= PEPS film Polystyrene grafted onto polyethylene film. Improved thermal, mechanical stability, but lower loading.

1. Polymers, resins, supports

Polyamide Resins

= Pepsyn polyamide, Very polar resins; excellent swelling in acopolymerof: DMF, H2O; essentially no swelling in CH2Cl2.

O H NH2 N CH2 H C H C N 2 2 H O O

O H N BocHN N CH H 2 O

==PepsynK Pepsyn K Pepsin occluded in keiselguhr (silica) matrix. Excellent longevity; used in continuous flow SPPS. 1. Polymers, resins, supports

Polyamide resins (continued)

= Sparrow amide resin, a copolymer of:

CH3 H H N N N H2N H2C CH3 H2C CH2 CH2 O O O

= Polyhipe, a copolymer of the following in a macroreticulate polystyrene/DVB matrix

CH3 CH3 O N N H2C CH3 H2C OCH3 O O

1. Polymers, resins, supports

Poly(ethylene glycol) - containing resins

= PEG-PS, PEG covalently grafted Lower mechanical and thermal stability onto preformed polystyrene/ than polystyrene, but much better 1% DVB copolymer solvent spectrum. (Resin swells in anything but hexanes.)

= POE-PS (Tentagel), PEG polymerized onto polystyrene/1% DVB copolymer

A couple other resins you might see OH = Polyethylene pins, with a grafted crown of:

n O O

O CH3 HO OH n 1. Polymers, resins, supports

Cellulose

Spot synthesis on paper

Inorganic support materials

Controlled pore glass (CPG); oligonucleotide synthesis

controlled pore ceramics (CPS); high thermal stabilty

1. Polymers, resins, supports

+

2-20mol%

Cl CH3OCH2Cl

SnCl4

Merrifield JACS 1963, 85,2149. Effects of Crosslinking

• Cross-Linking imparts mechanical stability and improved diffusion and swelling properties to the resin

Without cross-linking, each polymer chain can dissolve under thermodynamically favored conditions

Cross-linking can induce some sites of ‘permanent entanglement’ maintaining structural integrity

Introduction of functional groups

Br2, Tl(III) Br

n-BuLi, n-BuLi TMEDA better p- vs o- more convenient regioselectivity

Li Introduction of functional groups

CO2H SCH3

i. CO2 CH3SSCH3 ii. H+

Li

i. O2 – ClPPh2 ii. H

PPh2 OH

For leading references on resin preparations, see the review by Fréchet: Tetrahedron 1981, 37,663.

Structure of resins

Schematic representation of a macroporous solid-phase support Structure of a resin bead......

OH

CH2Cl2

CH2Cl2 OH

CH2Cl2 OH CH2Cl2

10 - 200 μm CH2Cl2 CH2Cl2 Resin Bead

HO Commercially available functional groups grafted onto PS resins OH CH2Cl2 CH2Cl2

Cl NH2 OH

a few Angstroms O O Bead Section Br OH H Mesh size

Tentagel

PEG-Polystyrene graft polymers Swelling of Polymer by Solvent

‘Shrunken’ state

‘Swollen’ state : Permeable to solvent and

Swelling properties

Swelling properties of resins Practical Considerations in Choosing a Solid Support

• Mode of attachment and cleavage of materials from the resin (linker) • Compatibility of the chemistry planned for the library synthesis • The amount of material desired (loading level) • Size - affects efficiency of diffusion within the polymer (reaction rates!)

90 μm (TentaGel) 200 μm (PS) 500 μm (PS) 0.75 mmol/ g 1.05 mmol/ g 1.05 mmol/ g 350 pmol/ bead 4 nmol/ bead 60 nmol/ bead Ca. 180 ng/ bead Ca. 2 μg/ bead Ca. 30 μg/ bead Diffusion Efficiency

2. Linkers

• A linker covalently connects to the solid support, and should provide a means for their chemical attachment and cleavage • Stability of the linker affects the scope of the chemistry that can be employed in the library synthesis

• Many linkers are adapted from protecting group chemistry

Synthetic Steps X Attachment Resin Linker Resin Linker Molecule

Cleavage

Resin Linker Molecule Molecule General structure

Cleavage conditions

Acid-labile benzyl alcohol anchors

Amide linkers Linkers

Benzylic linkers

Acid Labile Linkers

• Many historically important resins (Merrifield, Wang, Sasrin, Sieber, Rink resins) have linkers that are cleaved under acidic conditions • Acidic conditions were intended to prevent racemization of amino acids during solid phase peptide synthesis

X O

X= H, Wang linker: OR O O 50% TFA X= OMe, Sasrin linker: HO R CH2Cl2

O O

N R H 1-3% TFA O Sieber linker: O H NR CH2Cl2 2 Linkers

Cleavage by nucleophiles

Catch and release

Nucleophile Labile Linkers

Kaiser Oxime linker • Advantage: Introduction of diversity in cleavage step

NO2

R NH 1 2 H N R O R R1 N O O

• Difficulty: Often too reactive for common nucleophilic reaction conditions Linkers

Internal nucleophilic cleavage

Linkers

„Traceless“ linkers Traceless Linkers

• This type of linker creates a C-C or a C-H bond at the site of cleavage – C-H bond generation : Si-Ge linker (protonolysis or radical reduction)

Si H TFA

r.t.

NHBn NHBn

Ellman J. et al. JOC, 1995, 60, 6006.

– C-C bond generation

cat. O PCy Cl 3 Ru S S Cl PCy Ph 3 HO N HO N Olefin metathesis OORO OORO

Nicolaou KC et al. ACIEE, 1997, 36, 2097.

Safety-catch linker

Kenner’s sulfonamide linker • A “safety-catch” linker can solve the reactivity problem with a two step cleavage • 1) An activation step that is orthogonal to common functional groups • 2) Cleavage of the activated linker under mild conditions

OO O OO O dilute N O S Br S BnNH2 N R' NR' Bn H R' N i H Pr2NEt, DMSO CN Very stable activation cleavage

Ellman J. et al. JACS, 1996, 118, 3055. Alkylsilyl Linker - Fluoride Labile

• Mild cleavage conditions compatible with various functional groups • Designed for attachment through an alcohol • Compatibile with strong anionic, cationic, oxidative, and reductive conditions

Me Me Me Me B Si * OMe * Tl(OAc) * 3 cat. Pd(PPh3)4 Me Me Me Br / CH Cl Me 2 2 2 NaOH, THF, 40 h Si 1 % Br 96 % 98 % DVB-CL-PS OMe 500- 560 um 127 nmol/ bead 124 nmol/ bead

1. HF-pyr. 6.0 eq. TfOH * THF 2.0 eq. 2,6-lutidine Me Me Me HO NHFmoc Me 2. TMSOMe 1.5 eq. Si O NHFmoc HO NHFmoc 114 nmol/ bead 90 %

Ellman J. et al. JOC, 1997, 62, 6102. Foley MA et al. J. Comb. Chem. 2001, 3, 312.

Photo-labile linker

• Photolytic conditions can be very mild and selective • Dimerization of the support-bound nitroso by-product sometimes hampers further cleavage • Aryl nitro group is incompatible with some

Me O Me MeO MeO O R O O hν, 350 nm HO R + O NO2 O N O

Krafft GA et al. JACS, 1988, 110, 301. 2. Linkers - overview

Linkers Cleaved by Moderate Acid Linkers Cleaved by Strong Acid Rink Amide resin (X = NH) Merrifield Resin Rink Acid resin (X = O) O OCH O 3 HF O R HO R

H3CO O O TFA/CH Cl Carbamate resin X R 2 2 O HX R R O N HF H RNH2 PAL resin O

PAM resin O O OCH3 N moderate O H H O O O R HF, CF SO H N R acid 3 3 H2N R N HO R OCH O H 3

Wang resin O BHA resin

O R O O 95% TFA O O CF3SO3H N R HO R H H2N R

DHPP resin Thioester resin O O O O S R O O strong acid moderate O O R N HS R H acid HO R H3C CH3 O

2. Linkers - overview

Linkers Cleaved by Moderate Acid Silicon-based Resins PAB resin SAL resin (X = NH) SAC resin (X = O)

O O O O moderate acid O N N O H HO R H moderate O R X R acid HX R or F– O O (H3C)3Si

Acid-labile carbamate resin O Silyl ether resin R O O N H moderate R R RNH2 Si R' N O acid O moderate acid H R'OH (R, R = Ph, iPr) or F–

Dihydropyran resin Ramage resin O Si(CH ) O O 3 3 O R ArSO3H ROH N F– O CH OH, Δ H 3 O R HO R O

CHA resin Pbs resin

O O O N O tBu H R H Si O O O N N O R m oderate H O F– acid O O

H2N R HO R 2. Linkers - overview

Linkers Cleaved by Weak Acid Linkers Cleaved by Base or Nucleophiles XAL resin (Sieber amide resin) Weinreb amide resin O O R'MgCl O O O N N R H OCH3 R' R O N R H O O O 1% TFA LAH O

CH2Cl2 H N R 2 H R NPE resin

O

SASRIN resin N O H O piperidine O R O HO R NO2 O R 1% TFA O Fm resin O OCH3 CH2Cl2 HO R

R O O O piperidine N O H HO R

Trityl resin (X = H) 2-Chlorotrityl resin (X = Cl)

HMFA resin

O AcOH O O X CH Cl O O 2 2 HO R N piperidine H R O R O HO R

2. Linkers - overview

Photocleavable Linkers α-Methylphenacyl ester resin Linkers Cleaved by Base or Nucleophiles O O Let's not forget Merrifield resin... O R hν HO R O CH3 O R'OH, base O X R R'O R ONb resin (X = O) Nonb resin (X = NH) LAH X=O,S O HO R' O N H hν X R HX R wet CH3CN

NO2 O

Holmes resin (X = O, NH) Finally, a couple derived from early oligo work

O OCH 3 O O O hν N OR H HX R N S NH OH X R H 4 O O ROH NO2 CH3 O

O Geysen resin OR NH OH N 4 H ROH O O O NO2 hν N NH H2N R H wet CH3CN O R

Brown, B. B., Wagner, D. S., and Geysen, H. M. (1995). Molecular Diversity 1,4-12. 2. Linkers - overview

"Traceless" Linkers Ellman's resin Kenner's "safety catch" resin O R O O N O O H strong acid S iCH2N2 O Si N R O H3C H – CH3 R ii HO HO R

Veber's resin SCAL resin O O

O strong acid S S R R H3C CH3 or F– O Si O H3C CH3 O HN R N H O Showalter's resin

i i O Pr Pr (CH ) SiCl, PPh Si 3 3 3 TFA O or H N R R strong acid 2 R (EtO)2P(S)SH or F–

DSB resin

Janda's resin O O CF3 O R N i(CH3)3SiCl, PPh3 H O HO R H3C O Bu3SnH, AIBN, Δ ii TFA O HR N H or Raney Ni, H2 S CH3 R S H3C O Janda, et al. (1996). Tetrahedron Letters 37, 6491-6494.

3. Analytical techniques

Off bead analysis

• Cleavage, then use of conventional analytical techniques (e.g. LC, MS, NMR) • Requires high sensitivity and high throughput format

Example: LC-UV/ MS OH OH S O Ph HO N Ph Kaiser test

On bead analysis

1) Colorimetric methods, Kaiser test

Kaiser test

On bead analysis

1) Colorimetric methods, Kaiser test NMR

On bead analysis

2) MAS-NMR ( Magic angle spinning NMR )

Magic angle rotor (left), rotor spinning at the magic angle (right)

MAS- NMR spectrum (600 MHz)

Si O OMe O

O O O O O

O

Single bead IR

On bead analysis

3) Single-bead FT-IR microspectrometry

OO OO H O HO O O O DIC, DMAP, DMF

Beads in IR cell

Wavelength (cm-1) 4. Peptide Synthesis

Insulin

Protecting groups for -NH2

Benzoyloxycarbonyl group Carbobenzoxy (Cbo) or Z (Zervas) group

Introduction Protecting groups for -NH2

Benzoyloxycarbonyl group Carbobenzoxy (Cbo) or Z (Zervas) group

Cleavage

Protecting groups for -NH2

Tert-Butoxycarbonyl group (Boc)

Introduction

Di-tert-butyl-biscarbonate Pyrocarbonate Protecting groups for -NH2

tert-Butoxycarbonyl group (Boc)

Cleavage

TFA

Protecting groups for -NH2

Fluorenyl-9-methoxycarbonyl group (Fmoc) Introduction: Fmoc-Cl, Fmoc-Suc

Cleavage Protecting groups for -COOH

cleavage All kinds of esters

Protecting groups for -COOH

Carboxyl protecting groups which can be activated for coupling

hydrazide carbamate

transform into Protecting groups for side chain functional groups

Guanodinium group

Di-acylation or nitration; No perfect protecting group available

Protecting groups for side chain functional groups

Imidazole H Amino protecting groups Protection often necessary to increase solubility.

cleavage Protecting groups for side chain functional groups

Thiole

Strong nucleophile, easily oxidized – must be protected in peptide synthesis.

cleavage

Protecting groups for side chain functional groups

Hydroxy groups

Protection usually not necessary in peptide synthesis. Exceptions: Large excess of used; solubility reasons

cleavage Protecting groups for side chain functional groups

Indole, thioether

Protection usually not necessary in peptide synthesis. Caution: Alkylation of thioether by carbenium possible

Protecting groups for side chain functional groups

Amides

Protection usually not necessary in peptide synthesis. Exception: Amides with solubility problems; cyclization as side reaction Protecting groups for side chain functional groups

ϖ-Amino- and carboxy groups

Differentiation between α-and ϖ-functional groups necessary

Protecting groups for side chain functional groups

ϖ-Amino- and carboxy groups Special topic: Photocleavable protecting groups and linkers

Norrish-type II: ortho-nitrobenzyl alcohols

C. G. Bochet, J. Chem. Soc., Perkin Trans. 1 2002, 125 - 142.

Photocleavable protecting groups

Norrish-type II: ortho-nitrobenzyl alcohols

C. G. Bochet, J. Chem. Soc., Perkin Trans. 1 2002, 125 - 142. Photocleavable protecting groups

Norrish-type II: ortho-nitrobenzyl alcohols

Different reaction pathway if functional group to be protected is linked in β-position

C. G. Bochet, J. Chem. Soc., Perkin Trans. 1 2002, 125 - 142.

Photocleavable protecting groups

Norrish-type II: ortho-nitrobenzyl alcohols

Protecting group for ketones: Photocleavable protecting groups

Norrish-type II: ortho-nitrobenzyl alcohols Array synthesis:

Photocleavable protecting groups

Norrish-type II: Phenacyl esters

OH

O R

Protection of acids. Fast release trigger for biological stimulants.

C. G. Bochet, J. Chem. Soc., Perkin Trans. 1 2002, 125 - 142. Photocleavable protecting groups

Norrish-type II: Phenacyl esters

Photolabile linkers and resins

F. Guiller, D. Orain, M. Bradley, Chem. Rev. 2000, 100, 2091 - 2157. Photocleavable linkers

F. Guiller, D. Orain, M. Bradley, Chem. Rev. 2000, 100, 2091 - 2157.

Current developments

Selective deprotection by light of different wavelength

C. G. Bochet, J. Chem. Soc., Perkin Trans. 1 2002, 125 - 142. Current developments

M. Kessler, R. Glatthar, B. Giese, C.G. Bochet, Org. Lett. 2003, 5, 1179 - 1181.

Current developments

Selective deprotection by light of different wavelength

M. Kessler, R. Glatthar, B. Giese, C.G. Bochet, Org. Lett. 2003, 5, 1179 - 1181. Current developments

M. Kessler, R. Glatthar, B. Giese, C.G. Bochet, Org. Lett. 2003, 5, 1179 - 1181. Coupling methods

Azide coupling: No racemization, but very slow

Coupling methods

Anhydride and mixed anhydride method

Wrong way ! Coupling methods

sym anhydride method

Maximum yield: 50 % !

Coupling methods

N-Carboxylic acid anhydride method

1,3-Oxazolidin-2,5-dione

Peptide synthesis in aqueous solution

Repeat steps Coupling methods

Carbodiimide method (DCC, EDC)

DCC in situ active Ester formation with additives

Coupling methods

Active esters Synthesis of cyclic peptides

PFP ester ring closure

Coupling methods

Active ester: 8-Chinolyl ester as internal base Coupling methods

In situ formation of active esters

Expensive reagents !

Coupling methods

Segment coupling – native chemical ligation Coupling methods

Segment coupling – native chemical ligation

Synthesis of interleukin 8 (IL-8)

Solution synthesis of large peptides

Sakakibara strategy: Pac = Phenylacyl ester; WSCI = water soluble carbodiimide Solution synthesis of large peptides

Sakakibara strategy: How far can we go?

Purification and characterisation of peptides

Typical analytical methods Solid phase synthesis protocols

Merrifield synthesis

PAM anchor group

PAM anchor Automated peptide synthesis

Protecting group tactics

Boc/Bzl

MBHA = p-methyl benzhydrylamide anchor Protecting group tactics

Fmoc/tBu

Anchor groups in solid phase peptide synthesis

cleavage Racemization during peptide synthesis

Enol formation

Racemization during peptide synthesis

Oxazolon mechanism Racemization during peptide synthesis

Coupling reagents

Biochemical peptide synthesis

Transformation of mRNA into DNA Biochemical peptide synthesis

Schematic procedure for preparation of recombinant proteins

Biochemical peptide synthesis

Recombinant proteins In medicinal chemistry 5. Oligonucleotides

Nucleotides

Nucleosides

Phosphorylated Nucleosides Oligonucleotide

DNA double strand – B DNA DNA double strand – A DNA

Physical parameters of nucleobases Tautomeres ?

Watson – Crick Basenpairing

C - G T - A

Reversed Watson – Crick Basepairing

T - A Wooble Basenpairing

Shifted by one position

U - G Hoogsteen Basenpairing

Watson-Crick hydrogen bond acceptor site

A - T A - T

Oligonucleotide Synthesis

Synthesis of nucleosides Route A

Route A – Hilbert Johnson reaction Route A – Hilbert Johnson reaction

Route A – Silyl Hilbert Johnson reaction Route A – Silyl Hilbert Johnson reaction

reactions at different positions possible

Route A – Silyl Hilbert Johnson reaction (2nd example) Route B

Route C – assembly of the nuclobase

Route to a non-natural Flavin nucleobase Route C

Pseudo-Uridine

Wyosine

Stereoselective synthesis of α-and β-nucleosides

Selective β-nucleoside synthesis Stereoselective synthesis of α-and β-nucleosides

β-nucleoside

Stereoselective synthesis of α-and β-nucleosides

Selective α-nucleoside synthesis Synthesis of nucleotides and oligonucleotides

Chemistry of phosphoric and phosphinic acid esters

Hydrolysis of phosphoric acid triesters Hydolysis of phosphoric acid triesters

Synthesis of phosphoric acid esters Phosphoramidite route

H-Phosphonate route Automated DNA synthesis

First nucleotide in DNA synthesis

Automated DNA synthesis

Each nucleotide addition requires four steps 1. Detritylation 2. Activation and Coupling 3. Capping 4. Oxidation

Repeat steps for next nucleotide Phosphoramidite

Detritylation

The dimethoxy-trityl protecting group of the 5´-OH group needs to be removed, so that the next base can be added. Trichloroacetic acid (TCA) is used as reagent for cleavage. Activation and coupling

Protonation activates the leaving group

Activation and coupling Capping To prevent uncoupled nucleotides from reacting in the next step, which leads to wrong sequence

Oxidation How far can we go ?

Commercial suppliers

DNA synthesis: 100 nanomole scale*

Customer's Price per base** Shipping and handling country (no setup fee!) US $ 0.29 per base, no From US $ 1.00 to US $ USA setup fee 18.00 (see "S&H") CAN $ 0.39 per base, From CAN $ 1.00 to Canada no setup fee CAN $ 18 (see "S&H") Nominal charge, could US $ 0.29 per base, no All other countries be as low as US $ 3.00 setup fee (see "S&H")

*Only customers with accounts in good standing are eligible for this scale. All orders at the 100 nmole scale must be placed using our special order form in Microsoft Excel format, please e-mail us your request. 100 nmole (0.1 micromole) synthesis scale will yield typically 0.040-0.150 micromole (40-150 nmole) final product for a regular size, standard purity oligo. Guaranteed minimum 40 nmole for regular size (up to 25-mer) oligos, standard purity (desalted). For longer oligos, 9 OD260 guaranteed minimum (standard purity). Standard purity includes free desalting. All oligos are quantified and three different units of measure are provided to the customer. The relation between these three units is calculated by a computer, but as an approximation for a 20 base long oligo, 50 nmole equals approx. 10 OD260 units or 300 microgram. **Oligos longer than 35 bases, which are ordered without additional purification, will be supplied with no replacement warranty. Synthesis of a synthetic gene

Synthesis of a synthetic gene Synthesis of a synthetic gene

Washington Post, July 17, 2002

Synthesis of phosphate monoesters Pyrophosphates of biological relevance

Synthesis of pyrophosphates Biochemical methods - The principle of PCR

The three major steps:

Denaturation at 94°C Annealing at 54°C Extension at 72°C

Biochemical methods - The principle of PCR Biochemical methods - The principle of PCR

Use of PCR in in vitro random selection

SELEX = systematic evolution of by experimental enrichtment

DNA strand known sequence random sequence Use of PCR in in vitro random selection

Aptamere Intramere Ribozyme

Aptamere Didesoxy DNA sequencing

DNA strand to be sequenced

template strand, labeled with 32P

reaction vessel with didesoxythymidine-5´-triphosphate

reaction vessel with didesoxycytidine-5´-triphosphate

Didesoxy DNA sequencing

Long oligo´s 5´

Yellow = C Green = G Red = T Blue = A

Short oligo´s 3´ Didesoxy DNA sequencing

DNA chips

in complex mixture 6. Sugars

Protecting groups in carbohydrate synthesis Protecting groups in carbohydrate synthesis

Transglycosylation Transglycosylation

OR

OR

Trichloroacetamidate activation

Thermodynamic controlled reaction: α-anomere; anomeric effect

Kinetically controlled reaction: β-anomere

R.R. Schmidt, W. Kinzy, Adv, Carbohydr. Chem. Biochem. 1994, 50, 21. Thioglycosides

Activation of a protected glycoside

Oligosaccharide synthesis

Segement synthesis and coupling Oligosaccharide synthesis

Examples of Solid phase oligosaccharide synthesis

Danishefsky's Strategies for SPS of Oligosaccharides - Cartoon Form HO O Danishefsky, et al. (1995). A Strategy for a Convergent Synthesis of N-Linked O O PO Glycopeptides on a Solid Support. Science 169,202-204. O O PO Danishefsky, et al. (1995). Major Simplifications in OligosaccharideOlig Syntheses Arising from a Solid-Phase Based Method: An Application to the Synthesis of PO PO the Lewis b Antigen. Journal of the American Chemical Society 117,5712- O 5719. PO PO

O O

O O PO O PO O O O PO HO PO PO HO PO O PO PO

PO O O OP PO O O HO PO O PO Etc. O PO HO PO O

PO OH iPr iPr Si OH O i O O Pr O iPr O Si O 1) DMDO, DCM O O i Si( Pr)2Cl O O O i O 2) ZnCl ,THF CH2Cl2, Pr2NEt HO O 2 Home-made DMAP O O O Ph O polystyrene O O derivative O O O O HO HO O O O OH O O iPr O i O Pr O O H3C Si CH O i 3 O Pr iPr O ZnCl ,THF Si O O 2 H O 1) DMDO, DCM O O H O 2) ZnCl ,THF O O 2 O O OH HO O BnO OBn O O iPr O iPr iPr O O BnO O O iPr Si Si HO O OBn BnO O O O Ph O O O O H3C O i O O O O Pr O O O CH3 iPr O Si O O O OH O O O O O HO O HO O O O O H O O O O H O O O HO O O O O O OH HO O O O O Ph O O O O O H3C O O O O O O CH3 BnO OH HO OBn ZnCl2,THF O BnO O O Cleaved from resin by treatment with TBAF/AcOH in MeOH OBn BnO

An example utilizing thioglycoside donors...... The Monomers OTBDPS Solid-Phase Synthesis of a Heptasaccharide Phytoalexin Elicitor BnO O A OAc Nicolaou, et al. (1997). A General and Highly Efficient Solid Phase Synthesis of FmocO SPh Oligosaccharides. of a Heptasaccharide Phytoalexin Elicitor. OBz OTBDPS Journal of the American ChemicalChemi Society 119, 449 - 450. AcO O AcO OAc BzO O C OAc HO OAc BzO SPh O O O O OBz O O AcO O OH O O OH HO OH O AcO SPh HO HO OH O HO OH OAc B O HO HO OH O HO HO The Iterative HPE Synthesis OH O HO HO HO OH HO HO OTBDPS HO NO2 O BzO O BzO i. HF•Py, THF OBz ii. DMTST, 4AMS, A OTDS O2N O O iii. NEt ,CH Cl I 3 2 2 O BzO O BzO O OTBDPS OH OBz CsCO ,DMF BnO O Home-made polystyrene 3 HO O derivative NO2 OBz i. DMTST, 4AMS, B O BzO O BzO ii. HF•Py, THF OBz OTDS NO2 O O O BzO O BzO hν,THF OBz OH

AcO BnO O O O AcO O > 90% by mass gain O O AcO NO2 OAc OBz i. DMTST, 4AMS, C O BzO O BzO ii. HF•Py, THF OTDS OBz

O O BzO OH 95% BzO OBz OH

BzO O BzO O OAc OBz i. DMTST, 4AMS, A AcO BnO O AcO O AcO O O O ii. NEt3,CH2Cl2 AcO NO O AcO 2 OAc OAc OBz O AcO BzO O BnO O BzO AcO O AcO O O OTBDPS OBz OBz OAc i. hν,THF BzO O O BnO O BzO O ii. Ac O, NEt HO 2 3 O OBz OBz AcO BnO O AcO O BzO O O O AcO NO BzO O 2 i. DMTST, 4AMS, B OAc OBz O OBz OAc BzO O AcO BnO O ii. HF•Py, THF BzO AcO O OBz O O AcO O AcO NO 2 AcO O OAc OBz O OAc O BzO O AcO BzO BnO O AcO O OBz O O AcO OBz OAc O BzO O OH BzO O OAc ca. 20% overall from OBz first resin-bound sugar! BnO O AcO BnO O AcO O AcO O O O O O AcO OBz AcO OAc OAc OBz BzO O O DMTST, 4AMS, B BzO OAc BzO O BzO OBz OBz AcO BnO O AcO O O O AcO NO2 OAc OBz O i. hν,THF BzO O protected solid-phase 95% for two steps BzO oligosaccharide OBz ii. NaOCH3,CH3OH iii. H2,Pd,CH3OH O

2) Strategies Utilizing Support-Bound Acceptors

Glycosyl sulfoxides OTr OH PivO PivO O O O PivO S PivO S Ph PivO PivO O Tf2O, DTBMP o OTr -78 to -60 C PivO O PivO O PivO PivO 1. TFA O PivO S 2. OTr PivO PivO O O O OTr PivO S PivO Ph PivO O PivO O Tf2O, DTBMP o PivO PivO -78 to -60 C O PivO O PivO PivO Cleavage from resin O achieved with: PivO S Hg(OCOCF3)2, water, > 50 % overall yield RT, 5 h PivO O > Coupling efficiency believed to exceed 90%; resin cleavage ~70-75%

Yan, L.; Taylor, C. M.; Goodnow, R.; Kahne, D. J. Am. Chem. Soc. 1994, 116, 6953. Combinatorial Synthesis of a Disaccharide Library Ph Ph Kahne, D., et al. (1996). Parallel Synthesis and Screening of a Solid Phase Ph O O O Carbohydrate Library. Science 274, 1520 - 1522. O O O O AcO O O AcO Ph AcO N3 OPMB OH OH SAr SAr OH OH O O N N3 SAr N3 O 3SAr O Ph O AcO The known antigen for Bauhinia purpurea lectin: O O O OPMB HO O OH AcO SAr O AcO SAr OH NHAc OPMB N3 Ph O O Glycosyl donors: O OPiv AcO S O CO2H PivO OPiv OPiv OPiv NH N3 H NNH O O 2 PEG-PS 2 2 PivO O PivO PivO SOPh PivO PivO SOPh (Tentagel) PivO PivO HOBt, HBTU, NMP DMF SOPh

PivO H3C O SOPh H3C O SOPh OPiv OPiv O SOPh N OPiv PivO OPiv PivO 3 PivO PivO Ph PivO OPiv SOPh SOPh O O OPiv O O CH O O 3 H3C O H3C O OO O H PivO S O N3 OPMB Ph O SOPh O O O O N PivO O O HO S O OPMB N3SOPh TfOH, THF, –65 °C O O O N3 OPiv PivO OPiv OPiv O PivO OPiv O PivO PivO O O SOPh PivO O PivO PivO O PivO PivO SOPh Ph PivO

OPiv i. P(CH3)3,THF PivO OO H ii. AcCl, NEt3, Acylation agents: O O N CH2Cl2 PivO O S O Ac O, iBuCOCl, BuCOCl, PhCOCl, D-Ac-Ala-OH, L-Ac-Ala-OH, MeOCO Cl iii. 20% TFA/CH Cl 2 2 PivO N O 2 2 F 3 iv. LiOH, THF, I O– COCl COCl N CO H S 2 + CH3OH COCl COCl N CO2H

O2N

NO2 OH OH OH OH O H O O O O O O O N OCNCH SCNCH HO O S O 3 H3CSC Cl 3 O H2C OH NHAc O

3) Bidirectional Glycosylation Strategy BnO Generation of a small carbohydrate library...... O O O Monomers H BnO N BnO O O O O BnO H BnO O CCl3 N O O O O HO BnO HO O acceptor bound SEt NH O BnO BnO OMe HO O BnO OH BnO TMSOTf BnO SEt O BnO O BnO OMe O BnO NH O OH OBn O Couple with HO O O each monomer BnO O O O BnO BnO O BnO O O OBn BnO O O BnO H O O N O O donor bound BnO SEt NIS/TMSOTf BnO O 1. AcOH/H O O 2 THPO O products obtained as O O mixture of anomers BnO OBn OMe BnO OBn O BnO O NH 6 compounds total BnO SEt O OBn O BnO O NIS/TMSOTf OBn O BnO O BnO BnO O O BnO O BnO O O 1. NaOMe O O BnO O BnO OBn OBn OMe 2. H2/Pd BnO BnO O O HO OBn OH O O O O HO O O BnO O NaOMe, MeOH HO O O OH OMe BnO HO OH BnO HO BnO O O Boons and Zhu in "Solid Support Oligosaccharide Synthesis and BnO O Combinatorial Carbohydrate Libraries," P. Seeburger, ed.; Wiley BnO O Interscience, New York, pp. 201-211. O O O O Solid-Phase Chemical/Enzymatic Oligosaccharide Synthesis Wong, C.-H., et al. (1994). Solid-Phase Chemical Enzymatic Synthesis of Glycopeptides and Oligosaccharides. Journal of the American Chemical H H Society 116,1135-1136. N N NHBoc O N H O Bn O O α-chymotrypsin OH HO OH H H O NH O NH2 O N (Gly)6NHBoc OH OH Si Si HO HO2C O O O O O O AcHN HO NHAc controlled-pore glass HO O OH 65% O O H H N N NHBoc O N H O O NH2 O O O OH H N NHBoc O NH HO N H HO Bn O O α-1,3-fucosyltransferase HO NHAc OH HO OH H GDP-Fucose OH OH O NH HO HO2C O O AcHN HO NHAc O O HO O OH H H >95% N N NHBoc β-1,4-galactosyltransferase O N H O Bn O O O O O O– O– NH OH H OH O O N NHBoc OH P P 55% OH O NH O O O O N O OH HO N O O HO OH O H HO NHAc Bn O O OH UDP-Gal HO OH HO OH HO OH H OH OH O NH HO HO2C O O AcHN O NHAc α-2,3-sialyltransferase HO O OH H3C O NH HO OH 2 OH H HO C O– N HO OH HO 2 O AcHN P O O N O HO O 35% CMP-NeuAc + 20% des-NeuAc HO OH +45% starting material 7. Special topic: Immobilization of catalysts

SEPARATION OF CATALYST? R P R HOMOGENEOUS P P C CATALYST P C P PURITY OF PRODUCTS P R P R

BIPHASIC SYSTEMS EASIER RECYCLING

P P R • Hydrophylic P P R • Hydrophobic NON-MISCIBLE R P P LIQUID PHASES • Fluorinated C • Ionic liquids C • Supercritical fluids

SEPARATION OF CATALYST? R P R HOMOGENEOUS P P C CATALYST P C P PURITY OF PRODUCTS P R P R

BIPHASIC SYSTEMS EASIER RECYCLING

P P R P P P R P R R NON-MISCIBLE R SOLID P P P LIQUID PHASES CATALYST P C C P P C C R P R IMMOBILIZATION METHODS

STRONG INTERACTION WEAK INTERACTION *LM ML* [ML*]

COVALENT ADSORPTION SUPPORT SUPPORT BOND [ML*]

[ML*] ML*

+ [ML*]

ELECTROSTATIC ENTRAPMENT [ML*] INTERACTION SUPPORT + [ML*]

+ [ML*]

TYPES OF SUPPORTS

highly cross-linked linear cross-linked inorganic polymer polymer polymer

example polystyrene (PS) PS-DVB (0.5-3%) PS-DVB (>5%) silica

solubility soluble swellable insoluble insoluble solvent dependent dependent independent? independent

mass transport no little potential potential problems

separation difficult filtration filtration filtration

number of high high high high anchoring points IMMOBILISATION BY COVALENT BOND FORMATION (I) ORGANIC POLYMERS

Grafting

P XY+ C* P Z C* R R L*(C*) M

P XY+ L* P Z L*

Polymerisation P X P Precursor

Ligand synthesis in solid phase

SOLUBLE POLYMER SUPPORTS

HOMOGENEOUS SOLUBILIZATION IN ULTRAFILTRATION REACTION A NON-MISCIBLE PHASE Price of membranes

CHANGE OF INSOLUBILIZATION OF CHANGE OF SOLVENT TEMPERATURE THE SUPPORTED CATALYST

O N COOH 1. Anionic polymerisation H O H2CCH2 H(CH2CH2)nCH2OH N COOPE 2. CO2 H 3. Me2SBH3 polymeric (PL) Run %yield %ee

(PL)4Rh2 1 58 98 OCOCHN2 toluene reflux O 3 58 83 7 58 61 O RECOVERING BY CENTRIFUGATION AT ROOM TEMPERATURE IMMOBILISATION OF HYDROGENATION CATALYSTS: POLYMERISATION

CH CH3 3 CH CH CH C CH2CH CH2C 2 2 NaPPh 0,92 [Rh(C2H4)Cl]2 0,08 0,92 2 0,08 CATALYST O O O O 86% e.e. OO OO OH OH (homog. 81% e.e.) reusable in the absence of air Ph PCH CH2PPh2 TsOCH2 CH2OTs 2 2

CH3 CH3 CH2CH CH2C CH2C 0,05 0,85 0,10 TEST REACTION O O Ph2P N O O O COOH COOH H2 R O MeOH OH O Ph NHCOMe Ph NHCOMe Ph2P 90% e.e. ACA

IMMOBILISATION OF HYDROGENATION CATALYSTS: GRAFTING

Ph2 Tentagel (n= 60) P ACA HYDROGENATION spacer + - Rh (cod)BF4 H MeOH: no reaction O N N PPh2 EtOH: 90% ee, no reusable PS O n O O Benzene/MeOH: 97% ee, reusable once

TEST REACTION H PS N O COOMe O PPh2 + THF/MeOH Ru (cod) H2

PPh2 97% ee OH (rec. 90% ee) COOMe R EXAMPLES OF GRAFTING ONTO POLYMERS: AMINOALCOHOLS

Ph TEST REACTION Me OH CHO N OH PS ZnEt2 S Me 5-10% cat. 80-89% e.e. (R)

PS

N P Me MeN Me OH 92% e.e. (S) R Ph O 1 R2 OH

Merrifield (R1=R2=H): Synthesis in solid phase PS N Ph up to 69% ee Ph HO Barlos (R1=Ph, R2=o-Cl-Ph): Grafting 96% e.e. 94% ee

EXAMPLES OF GRAFTING ONTO POLYMERS: Mn(salen)

TEST REACTIONS O O O NN Mn M-CPBA, NMO P O O O O Cl 4% catal. -78ºC-rt

O MeO OH n n m MeO-PEG Ph P styrene dhnapht yield %ee yield %ee NCPS MeOPEG 62 57 70 76 (non-cross-linked PS) OH NCPS 76 51 69 73

cross-linker JandaJel 81 51 71 79 in JandaJel Merrifield 61 35 69 78 OO Me 82 52 75 84 SYNTHESIS OF THE LIGAND IN SOLID PHASE

CHO NNH2 NN OH OH O t P P O OH HO Bu tBu tBu P O tBu But

TEST REACTION Ph Ph O M-CPBA, NMO NN Mn O O tBu P O OAc tBu But Porous PS 61% ee Gel-type PS 66% ee Porous polymethacrylate 91% ee

POLYMERISATION OF TADDOLS

Ar Ar TEST REACTION O O O OH H Catalyst in the NO main chain O OH COR Ar Ar 1) styrene/DVB i CATALYSTS Ph Ph 2) Ti(O Pr)2Cl2

O OH

conv. endo/exo %ee O OH Catalyst in the cross-linking points Ar=Ph 63 87/13 30 Ar=2-napht 92 87/13 56 30 81/19 6 OTHER CATALYSTS FOR HYDROGEN TRANSFER

O TEST REACTION NH2 P N H N i H Ph O PrOH OH SO2 Ph Ph KOH Ph Grafting

[Ru(p-cymene)Cl2]2 H NH2 N Support method conv. %ee SO2 Ph Ph PS grafting 88 91 Polymerisation tentagel grafting 955 + PS polym. 23 84 PS polym. 73 91

[Ir(cod)Cl]2

IMMOBILISATION BY COVALENT BOND FORMATION (II) INORGANIC SOLIDS

O O O Si(OR)4 Si L*-M-L (RO)3Si L*-M-L M L* O O

O O Si(OR) OH 4 O L-M-L* (RO)3Si L* Si L* OH O O

O Grafting (ligand or catalyst) L*-M-L O Ligand synthesis in solid phase “Polymerisation” (sol-gel synthesis) INORGANIC SUPPORTS FOR COVALENT IMMOBILIZATION

SILANOL O SiO quartz GROUPS Si 2 O O OH O OH Si OH Si O O O OH O Si OH isolated geminal O silicaS O O vicinal Si OSiMe O 3 O • Precipitation (hydrolysis) "end-capped"

• Pyrolysis SiCl4 (vapour) MESOPOROUS CRYSTALLINE SILICAS

• Surface area • Porosity (size and distribution) • Silanol density

Surfactant Control of pore size (template) (25-100 Å, narrow distribution)

GRAFTING THROUGH THE METAL CENTRE

Cl Cl Al Al Et2AlCl SILICA + Et O O O (-)-menthol

TEST REACTION Enantioselectivity similar to that obtained with the analogous in CHO -50OC + CHO homogeneous phase. < 15% cat. (2 equivalents of menthol are needed for better selectivities) 31% ee POSSIBILITIES FOR SILICA FUNCTIONALIZATION

OR OH O Si + (RO)3Si-R' OH O R' functionalized group

-(CH2)3-NHR Alkylation Imine or amide formation NH2 -(CH ) -SH Alkylation 2 3 Radical addition -(CH2)3-X (Cl, Br, I) -(CH2)11-Br Reaction with amines or alcohols CH2Cl (formation of secondary amines, O O ethers, ureas, carbamates, sulfonamides) -(CH2)3-NCO

SO2Cl Radical addition -(CH2)n-CH=CH2 (0 ≤ n ≤ 6) -(CH2)2-Ph Aromatic electrophilic substitution

HYDROGENATION CATALYSTS ON SILICA

Ph2 PPh2 P OEt + - H a) silica/toluene O H Rh (cod)BF4 (EtO)3Si N N Si N N b) [Rh(cod)2]BF4 O PPh2 PPh2 O O

TEST REACTION S D loading conv (min) % e.e. (m2/g) (nm) (μmol/m2) COOMe H COOMe 2 S 310 14 0.18-0.63 100 (20-30) 91.7-93.5 100 (14-23) 92.1-94.5 Ph NHCOCH3 Ph NHCOCH3 370 10 0.22 99 (26) 92.5 590 4.4 0.31 99 (90) 89.3 No interactions between cationic species 33 (114) 86.8

Deactivation with small pores (pore blocking?) DIHYDROXYLATION CATALYSTS ON SILICA

O O Si S S Si O O OMe N MeO N N N OO

MeO OMe

N N + OsO4 Loss of Os

MeO

O OMe Si O N Problem of O N O N TEST REACTION N N OH N K3[Fe(CN)6]/K2CO3 O Ph Ph Ph t Ph O N BuOH/water N Si O OH O OMe 77-88% yield MeO 99% e.e.

EPOXIDATION CATALYSTS ON SILICA

Synthesis of the ligand TEST REACTION in solid phase O R MCPBA R Ph Ph Ph NMO Ph (-78ºC) N N Mn O O tBu Cl R cat. time conv (%) % e.e. N H homog. 45 min 97 84 heterog. 4 h 92 89 OMe Me homog. 45 min 81 43 Si O O heterog. 4 h 74 56

MCM-41 IMMOBILIZATION WITH FORMATION OF THE SUPPORT

SILICA O O Si Si(OEt)3 O x = 0-3 NH NH x Si(OEt) Low surface area 4 Rh(cod)Cl Rh(cod)Cl (3-11 m2g-1) H O NH 2 NH O Si Si(OEt)3 O O SILICA

TEST REACTION x time (d) conv (%) % e.e. O OH homog. 5 95 26 iPrOH 0 5 75 58 S KOH 1 7 60 10 3 8 20 15 3 7 30 98 Npht-COCH3

IMMOBILIZATION BY ELECTROSTATIC INTERACTION

L L + - CATIONIC L* M L* X + + L* M L* - EXCHANGE + X L L

SOLID SOLUTION SOLID SOLUTION

CHARGE SITUATION H2

G+ L + M M + H + L* M L*

L

metal ligand neutral TYPES OF INORGANIC SUPPORTS

CLAYS MICROPOROUS MESOPOROUS ZEOLITES CRYSTALLINE Pores: 4-10 Å ~ 10 Å SILICAS

Pores: 25-100 Å Supermicropores by partial destruction Interlamellar space AlO6 of the structure octahedra SiO4 tetrahedra Isomorphous substitutions: Al

T HYDROTALCITES - - O T [Mg0.75Al0.25(OH)2](CO3)0.125 exchangeable + + + octahedral cations + layer - exchangeable anions - - +

TYPES OF ORGANIC SUPPORTS

HYBRID MATERIALS

POLYMERS Grafted organic groups SO3Na

X m (RO)3Si 1) Grafting p n Si + 2) Transformation OOO Silica (X SO3Na) SILICA SO3Na Composites

CF2 CF2 Variations: CF2 SO3H CF2 CF2 CF2 Silica CF CF • Main chain: -(CF2)n- SO3H 2 2 CF SO H + 2 3 • Cross-linking: nature and degree synthesis CF2 CF2 + Si(OR)4 CF2 SO3H • Charged group: -COONa, -NR3 nafion-silica nanocomposite THE EXCHANGE PROCESS

+ - + [L*-M] X + support Na+ support [L*-M] +Na+X-

+ - L* +M+X- + support Na+ L* + support M+ +NaX

• Complex and leaving salt in solution IMPORTANCE • Possible coordination to M: deplacement of chiral ligand OF SOLVENT • Compatible with support: swelling

HYDROGENATION WITH CLAY-IMMOBILIZED CATALYSTS

HECTORITE COOH R = H COOH H2 + 70% e.e. Ph 100% conv (1-6 h) EtOH R NHCOCH3 R NHCOCH3 5 cycles N PPh2 Rh(cod) R = Ph EFFECT OF hectorite 49% e.e. PPh2 N SUPPORT nontronite 0% e.e.

Ph

HECTORITE

EFFECT OF % e.e. MeOH EtOH iPrOH H Me +

A SOLVENT AND Homog.: 15 32 56 NH 2 2

.

IMMOBILIZATION Heterog.: 64 88 84 7 PPh2 2 Fe Rh(cod) COOBu COOBu PPh2 H2

COOBu COOBu IMMOBILIZATION ON CATIONIC SUPPORTS

HYDROTALCITE AS SUPPORT

- OH H OH SO3 - 2 SO3 100% e.e.

P + Cl Ru Cl- P COOMe COOMe H 2 48% e.e. - SO3 COOMe COOMe - SO3

Big size of the complex Unclear points: Exchange on the external • Need for a MgAl hydrotalcite surface of the hydrotalcite • Possibility of reuse

IMMOBILISATION WITHOUT LIGAND-SUPPORT BOND

• Adsorption on the surface Hydrophylic or hydrophobic interactions Supported liquid phase

• Entrapment into the pore system “Ship-in-a-bottle” method Entrapment between polymer chains IMMOBILIZATION BY ADSORPTION

P CF3 COOCH H 3 HYDROGEN Rh(cod) S COOCH3 2 BOND O O O hexane NHCOCH3 P NHCOCH3 H H H 99% e.e. OOO

SILICA

O O 12 PPh H COOCH3 HYDROPHOBIC 2 COOCH3 2 A tBuCO N

C INTERACTION I L water Ph I Rh(COD)BF4 NHCOCH3 S Ph NHCOCH3 PPh2 93% e.e. O O 12

SUPPORTED LIQUID PHASE

Organic Porous

Glass catalyst particle COOH H2 COOH

MeO MeO (S)-naproxen

Glass

SO3Na H2O

P SO3Na Ru 2Cl Hydrophilic phase: ethyleneglycol P SO3Na Hydrophobic phase: CHCl3/cyclohexane (1:1) Results: tof 24 h-1, 88% e.e. (r.t.) SO3Na H2O 96% e.e. (3ºC) Organic Phase ENTRAPMENT INTO ZEOLITES “ship-in-a-bottle” synthesis

channel

Ligand components Mn2+ are small enough to enter the zeolite (zeolite supercage) channels

CHO

R2 OH H H

H2N NH2 R1

H H

N + N Mn Complex is too

R2 O O R2 large to leave And to be accommodated? R1 R1

ENTRAPMENT INTO MEMBRANES

Me Me cross-linked polysiloxane Si O Si (membrane Me Me form) n P "curing" P + Rh(cod) Rh(cod) "SWELLING" OSiMe H 2 OTf OTf P Si P OSiMe H 2 SOLVENT HMe2SiO OSiMe2H EFFECT

Entrapment of Mn(salen) solvent swelling solubility leaching OH PhCl 173 21 100 O H2 Et O 240 7 90 COOCH COOMe 2 3 acetone 15 90 62 90-93% e.e. MeOH 2 162 54 heptane 235 0.3 12 CONCLUSIONS

pro contra Ligand modification Versatility (effect on e.e.) COVALENT BOND Metal leaching Ligand retention (possible )

Ionic character ELECTROSTATIC Ligand leaching (possible )

Simplicity Leaching and ADSORPTION solubility Without ligand modification Complex size ENTRAPMENT

Swelling and leaching

References

BOOKS

• Chiral Catalyst Immobilization and Recycling; D. E. De Vos, I. F. J. Vankelecom, P. A. Jacobs, Eds.; Wiley- VCH: Weinheim, 2000. • Comprehensive Asymmetric ; E. N. Jacobsen, A. Pfaltz, H. Yamamoto, Eds.; Springer-Verlag: Berlin-Heidelberg, 1999; chapters 37 and 38. • D. C. Sherrington, P. Hodge. Synthesis and Separations using Functional Polymers; Wiley: New York, 1988. • W. T. Ford. Polymeric Reagents and Catalysts; ACS Symposium Series 308, American Chemical Society: Washington, 1986.

•H.-U. Blaser, Tetrahedron: Asymmetry 1991, 3, 843. • S. J. Shuttleworth, S. M. Allin, P. K. Sharma, Synthesis 1997, 1217. •L. Pu, Tetrahedron: Asymmetry 1998, 9, 1457. REVIEWS • L. Canali, D. C. Sherrington, Chem. Soc. Rev. 1999, 28, 85. • Y. R. de Miguel, J. Chem. Soc. Perkin Trans. 1 2000, 4213. • S. J. Shuttleworth, S. M. Allin, R. D. Wilson, Synthesis 2000, 1035. • Y. R. de Miguel, E. Brulé, R. G. Margue, J. Chem. Soc. Perkin Trans. 1 2001, 3085. • B. Clapham, T. S. Reger, K. D. Janda, Tetrahedron 2001, 57, 4637. II. Liquid phase synthesis

Dickerson, Tobin J.; Reed, Neal N.; Janda, Kim D. Chem. Rev. 2002, 102, 3325.

Polyglycerol

Haag, R. et. al. J. Comb. Chem., 2002, 4, 112; Haag, R. Chem. Eur. J., 2001, 7, 327 Soluble Polymers

Janda, K. D. Chem. Rev., 1997, 97, 489-509. Janda, K. D. Chem. Rev., 2002, ASAP.

LPS supported synthesis of Prostaglandins

Janda, K. D. JACS., 1997, 119, 8724-8725. PEG-Supported Sulfoxide for Swern Oxidations

Harris, J. M, etc. J. Org. Chem., 1998, 63, 2407.

Chemical Tagging Fluorous Method: A solution phase method

Luo, Z.; Zhang, Q.; Oderaotoshi, Y.; Curran, D. P. Science 2001, 291, 1766-1769.

Starter Library of Mappicine Analogs

Luo, Z.; Zhang, Q.; Oderaotoshi, Y.; Curran, D. P. Science 2001, 291, 1766-1769. Automated High Throughput Purification

www.biotage.com

Wilcox’s Precipitons

Bosanac, T.; Yang, J.; Wilcox, C. S. Angew. Chem. Int. Ed. 2001, 40, 1875-1879. Bosanac, T.; Wilcox, C. S. J. Am. Chem. Soc. 2002, 124, 4194-4195. ROM Polymerization

1st-G: Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 118, 100-110. 2nd-G Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953-956.

Features of Phase Trafficking via ROMP Impurity Trapping: Free Mitsunobu Reaction

Barrett, A. G. M., et. al. Org. Lett. 2000, 2, 2999. Barrett, A. G. M. Chem. Bev. 2002, ASAP.

Synthesis of ROMPgel Activated Esters

Barrett, A. G. M., et. al. Org. Lett. 2000, 2, 261-264. Acylation of Amines Using ROMPgel Supp. Esters

Barrett, A. G. M., et. al. Org. Lett. 2000, 2, 261-264.

Polymer supported Tosmic Reagent

NC

Barrett, A. G. M., et. al. Org. Lett. 2001, 3, 271-273. Polymer supported Tosmic Reagent

Barrett, A. G. M., et. al. Org. Lett. 2001, 3, 271-273.

Sequestration of Excess Amine

Barrett, A. G. M., et. al. Org. Lett. 2000, 2, 2663-2666. Bolm ROM-Polymer Catalyst

Bolm, C.; Dinter, C. L.; Seger, A.; Hocker, H.; Brozio, J. J. Org. Chem. 1999, 64, 5730-5731.

Radical Reactions on Soluble ROMP Supports

O O

OR Bu3SnH OR ZnCl , Et B, O Br 2 3 2 o CH2Cl2, -78 C >90:1 de n n Bu3Sn H O AIBN, PhH H O Ph Ph Ph Ph O O 80oC O O O R = N Br Br O O O O O H H O Precipitate from tin salts n with cold MeOH Precipitate from tin salts with cold MeOH

Enholm, E. J.; Gallagher, M. E. Org. Lett. 2001, 3, 3397-3399. Enholm, E. J.; Cottone, J. S. Org. Lett. 2001, 3, 3959-3962. Capture-ROMP-Release: Synthesis of Amino Acids

Mukherjee, S.; Poon, K. W. C.; Flynn, D. L; Hanson, P. R., Tetrahedron Lett. 2003, 44, 7187-7190. III. Polymer supported reagents

Reviews on polymer-bound reagents

Polymer-supported organic catalysts Benaglia, M.; Puglisi, A.; Cozzi, F. Chem. Rev. 2003, 103, 3401

Recent advances in asymmetric C-C- and C-heteroatom bond forming reactions using polymer-bound catalysts Bräse, S.; Lauterwasser, F.; Ziegert, R. E. Adv. Synth. Catal. 2003, 345, 869

Whole issue dedicated to polymer-bound reagents Chem. Rev. 2002, 102, No. 10

*New tools and concepts for modern organic synthesis Ley, S. V.; Baxendale, I. R. Nature Reviews: Drug Discovery 2002, 1, 573

Functionalized polymers – emerging versatile tools for solution-phase chemistry and automated parallel synthesis Kirschning, A.; Monenschein, H.; Wittenberg, R. Angew. Chem. Int. Ed. Engl. 2001, 40, 650

Multi-step organic synthesis using solid-supported reagents and scavengers: a new paradigm in generation Ley, S.V. et al. J. Chem. Soc., Perkin Trans. 1 2000, 3815

Solid-supported reagents in organic synthesis Drewry, D. H.; Coe, D. M.; Poon, S. Med. Res. Rev. 1999, 19, 97

Solution-phase chemical library synthesis using polymer-assisted purification techniques Parlow, J. J.; Devraj, R. V.; South, M. S. Curr. Opin. in Chem. Biol. 1999, 3, 320

Functionalized polymers: Recent developments and new applications in synthetic organic chemistry Shuttleworth, S. J.; Allin, S. M.; Sharma, P. K. Synthesis 1997, 1219.

III. Polymer supported reagents

„ Conventional synthesis

Reagent A +B AB

„ Solid phase synthesis

Reagent AAB+B

„ Synthesis using a solid-supported reagent

Reagent A +B AB Different types of polymer-bound reagents

„ Reagents „ Scavengers Reage nt „ Quenching reagents substrate product „ Capture-and-release reagents

Scav eng er + + + Scav eng er

substrates product product

Capturing rea gen t

Release Capturing rea gen t product

Solid Phase Reagent and Scavenger Resins

„ Attaching reagents to the solid phase instead of substrates provides similar advantages: - Ease of purification allows the use of excess reagents

Reagent + Reagent Filter Starting Product Clean Material Product

„ Excess reagents can be removed by use of a solid phase-bound “scavenger” that reacts with or binds the excess reagent

Excess + Reagent 1) Scavenger Reagent Starting Product Clean Material 2) Filter Product + Scavenger Reagent Advantages

Compared to solution phase chemistry

„ Easy workup / can be automated

„ Toxic or volatile reagents can be immobilized

„ Two incompatible reagents can be used at the same time (’wolf and lamb’)

„ Excess reagent can be used

Advantages

Compared to solid phase chemistry

„ Easier to develop chemistry „ Easier to analyze intermediates (solution) „ Convergent synthesis possible

A B

E C D Disadvantages

„ Slower reaction in some cases „ Leaching of metal „ More expensive

Solid supports

„ Polystyrene „ Other organic polymers (polyamides etc.) „ Soluble polymeric supports (PEG, dendrimers) „ Silica „ Zeolites „ Glass „ Graphite „ Cellulose Polystyrene

„ Microporous polystyrene (1-4% cross-linked) „ Macroporous polystyrene (30-50% cross-linked) „ Hybrids (PS/PEG)

O O OH n

„ Soluble polystyrene „ Plugs of microporous polystyrene

How are the reagents/scavengers attached to the resin?

„ Covalent binding by: LiPPh2 Cl PPh2 - reaction with a derivatized resin - co-polymerization of the Functionalized + + reagent with styrene and polymer divinylbenzene PPh2

NaCN „ NM e3 Forming an ion-pair NM e3 Cl CN

„ Entrapment, reagent enclosed in a polystyrene network Polymer-Bound Reagents

Reagent

substrate product

Some examples: „ Oxidation „ Reduction „ Nucleophilic reactions „ Carbon-carbon bond formation „ Amide bond formation

Resin-Supported Reagents

Review: Ley, S. V. et al. J. Chem. Soc., Perkin Trans. 1 2000, 3815-4195. Scavenger Resins

Reagents for Oxidation

NMe3 RuO 4

X N OsO4 O N Cl O Ph 2 PCoPPh3 Cl SiO2 CrO3

2- NMe3 Cr2O7 SiO2 KMnO4 2

NMe3 IO4 Reagents for Oxidation COH CO

PSP = polymer supported perruthenate

KRuO4 NMe3 RuO4 NMe3 Cl ultrasound PSP

H PSP, O2 toluene O OH > 99% 75 - 85 oC

as above H 83 % H15C7 OH H15C7 O

Hinzen, B., Lenz, R., Ley, S. V. Synthesis, 1998, 977

Reagents for Oxidation COH CO

Polymer-bound sulfoxide for Swern oxidation

O O O HO S t-BuOOH OH + O S DMAP, DIC O S H O

H Ph O sulfoxide Ph O OH O 71 % (COCl)2, Et3N

OH O as above 82 %

Cole, Stock, Kappel Bioorg. Med. Chem. Lett. 2002, 12, 1791 Liu, Y.; Vederas, J. C. J. Org. Chem. 1996, 61, 7856 Reagents for Oxidation COH CO

Poly(vinylpyridinium dichromate)

n n + CrO3

N NNN N 2- Cr2O7 cross-linking agent H

OH PDC O

98%

OH PDC O 93%

Fréchet, J. M. J.; Darling, P.; Farrall, M. J. J. Org. Chem. 1981, 46, 1728

Reagents for Oxidation HO OH CC CC

Dihydroxylation & oxidative cleavage of CO+ OC

L[OsO4]

OH N OsO4 HO C8H17 C8H17 Me3NO 90%

Cl O NNOsO4 H H NaIO4 65% O

Nagayama, S.; Endo, M.; Kobayashi, S. J. Org. Chem. 1998, 63, 6094 Cainelli, G.; Contento, M.; Manescalchi, F.; Plessi, L. Synthesis 1989, 45 Reagents for Oxidation O CC Epoxidation

O O O

CF3 PS or Tentagel

CO N N O O Ru N N C OOH O

S OOH O

Reagents for Oxidation O CC Epoxidation

Oxon O

SO4H

80%

O SO4H

80%

Pande, C. S.; Jain, N. Synth. Commun. 1989, 19, 1271 Reagents for Oxidation O O

n Epoxidation & oxidation of amines

O

oxirane

82%

NH2 NO2 oxirane

83%

oxirane

N N 83% O

Shiney, A.; Rajan, P. K. ; Sreekumar, K. Polymer International 1996, 41, 377

Reagents for Oxidation

N N Mn Asymmetric epoxidation OOCl O

Ph Ph O

Mn-salen

NaOCl, 4-PPNO O 37% (94% ee)

4-PPNO = 4-phenylpyridine-N-oxide

Smith, K.; Liu, H.-C. Chem. Commun. 2002, 886 Reagents for Reduction CO COH

NMe (CN)BH NMe3 BH4 3 3

BH BH4 4 DMF NH3 H N Pd H2 N

PPh3 BH4

NZn(BH4)2

Reagents for Reduction CO COH

BH4 BH4 O NH3 N H2 OH H MeOH 100%

O OH

NMe BH MeO 3 4 MeO H NiCl2, MeOH H N N MeO MeO 88% Epimaritidine

Rajasree, K.; Devaky, K. S. J. Appl. Polym. Sci. 2001, 82, 693; Ley, S. V. Schucht, O.; Thomas, A. W.; Murray, P. J. J. Chem. Soc., Perkin Trans 1 1999, 1251 Reagents for Reduction

CO CNH2 Reductive amination

O N NMe3 BH4 HN + H H2N H 94%

Yoon, N. M.; Kim, E. G.; Son, H. S., Choi, J. Synth. Commun. 1993, 23, 1595

Scavengers can be used to remove excess aldehyde or excess amine:

NH2 NCO

Reagents for Reduction CBr CH Dehalogenation

Bu Bu Sn H

NH2 NH2

N N N N Br N N SnH N N HO HO O O H H H H H H H H OH OH OH OH 87%

Gerlach, M.; Jordens, F.; Kuhn, H.; Neumann, W. P. Peterseim, M J. Org. Chem. 1991, 56, 5971 Applications

Reagents for oxidation and reduction O H NMe RuO Cl NMe3 BH4 OH 3 4 O

Cl N Cl N Cl N

OH TBDMSO 1) NMe3 OH NO2 NMe2 NO2

CH NO 3 2 Cl N CH3SO2Cl Cl N 2) TFA

O OH N OMs

NMe3 BH4 N

CH3SO2Cl NO Cl N 2 NO NO Cl N 2 Cl N 2

OMs Several steps and N Cl polymer-bound reagents. H NMe3 BH4 N

NH Cl N 2 Epibatidine, purity > 90% Habermann, J.; Ley, S. V.; Scott, J. S. J. Chem. Soc. Perkin Trans. 1 1999, 1253

Amide Formation O O + R' C H N C R OH 2 R NR' H

O O O O O OH O O OR1 HO R S N 1 S N R2R3NH R2 N N NR H N PyBrOP H N 1 N N R3

N PF PyBrOP = P 6 N Br N

Pop, I. E.; Deprez, B. P.; Tartar, A. L. J. Org. Chem. 1997, 62, 2594 ’Wolf and Lamb’

O 1) Ph Ph Li O H N O Ph Ph NO2 N

Ph Me 2) SO NH NH THF 3 3 2 Ph

Reagents that are incompatible in solution can be used together when bound to a solid phase.

Cohen, B. J.; Kraus, M. A.; Patchornik, A. J. Am. Chem. Soc. 1977, 99, 4165; J. Am. Chem. Soc. 1981, 103, 7620

Polymer-bound Nucleophiles

Nucleophilic substitution CX CNu

NMe3 Nu

Nu = OAr,CN,SAr, N3, NaCO3, NCO, SePh, NO2, NCS

Br NMe3 CN C N

72%

Gordon, M.; DePamphilis, M. L.; Griffin, C. E. J. Org. Chem. 1963, 28, 698 Carbon-Carbon Bond Formation

Horner-Wadsworth-Emmons CO CC

O O NMe OH CN H 3 P CN + EtO EtO Cl Cl 99% O O O NMe3 OH O P + EtO OEt H OEt EtO 93%

PASSflow reactor used:

Soledenko, W.; Kunz, U.; Jas, G.; Kirschning, A. Bioorg. Med. Chem. Lett. 2002, 12, 1833.

Metathesis

„ Cross Metathesis

R 1 R 2 catalyst R 1 + + CM

R 2 „ Ring Closing Metathesis

+ RCM

„ Ring Opening Metathesis Polymerization R [M] R R [M] ROMP R n R Metathesis Catalysts R1 R2 1 + +

R2

„ Schrock type „ Grubbs type

L R Cl Ru Cl N L

Mo RO Ph L = phosphine or carbene OR

Metathesis reactions are often difficult to purify as the catalyst (typical 10 – 20 mol%) contaminates the product.

Metathesis

Mechanism

R 1 [M ] CH 2

R2

R 1

[M] [M]

R R 1 2 R 1

[M] R2

R 1 Polymer-Bound Metathesis Catalysts

Barrett’s ”boomerang” catalysts

PC y3 PC y3 CH Cl Cl 2 2 Cl + Ru Ru + Cl reflux Cl Ph Ph L L

L1 = PCy3 L2 = IMes

P N N

PCy 3 IMes

Ahmed, M.; Arnauld, T.; Barrett, A. G. M.; Braddock, D. C.; Procopiou, P. A. Synlett 2000, 1007

Polymer-Bound Metathesis Catalysts

Barrett’s ”boomerang” catalysts

R PC y3 R PC y Cl 3 Ru + Cl Cl Ru L Cl L

PC y PC y3 Ph 3 R Cl Cl Ru Ru + Cl Cl Ph L L unstable Polymer-Bound Metathesis Catalysts

Recycling of Barrett’s catalyst

PC y3 Ru Cl Cl CO2Et IMes CO2Et

CO2Et 1-octene, PPh3 CO2Et

Cycle 123456

% Conversion 100 100 100 88 43 7

More Metathesis Catalysts

O

Blechert NN Mes Mes

Cl Ru Ph Cl PCy2 PCy Ph 3 Cl Ru Ph Cl

PEG PCy2 Grubbs O

Cl Ru Cl PCy3 Lamaty Enantioselective Olefin Metathesis

iPr tBu

N Hoveyda / Schrock O Mo iPr O

tBu

O O 5 mol% catalyst H benzene, RT, 24 h

meso compound 90% conversion, 95% ee

Suzuki Reaction

Palladium-catalyzed coupling of an aryl/alkenyl halide with a /ester.

B B Pd-cat. X + (RO)2B

A A or or or

X + (RO)2B A B B A or

B A Suzuki Reaction

1 2 R R 1 L2 R X Pd(0) Mechanism

L L2 2 1 R1 Pd R2 R Pd X

R'ONa

' R OB(OR")2 L2 R1 Pd OR' NaX

2 R B(OR")2

Carbon-Carbon Bond Formation

Suzuki coupling Pd cat. CX+ (HO)2B C CC sp2 sp2

LiPPh2 PdLn

Cl PPh2 Ph2P[Pd]

Pd source: Pd(PPh3)4 PdCl2 Pd(CH3CN)2Cl2 Pd(dba)2 Na2PdCl4

Jang, S. Tetrahedron Lett. 1997, 38, 1793; Fenger, I.; Le Drian, C. Tetrahedron Lett. 1998, 39, 4287 Suzuki Coupling Pd cat. CX+ (HO)2B C CC sp2 sp2

{Pd}

Na2CO3 B(OH)2 + Br N N toluene/water reflux 90 - 95 %

{Pd} Bu Bu Br Hex NaOEt + benzene Hex o B O 80 C O 84 %

Suzuki Coupling: Other Catalysts

Pd cat. CX+ (HO)2B C CC sp2 sp2

O Si Si O O O

PEG N H HN NH

Uozumi PPh2 S[Pd] Zhang Hayashi Pd Cl O Cy2 P [Pd] Buchwald Pd(OAc)2 or Pd2(dba)2 Stille Coupling

O O Br 1) cat. LiCl, NMP Pd cat. MeO O + R 2) NaOMe R SnBu 3

Ar 2 O O P Pd cat. = Pd Pd P O O Ar 2

Advantages: „ Tin reagents are toxic – easier to handle if bound to a solid support. „ Tin byproducts often contaminate product in solution reactions.

The Pauson-Khand Reaction

R 1 O

Co 2(CO )8 + R 1

R 2 R 2 The Pauson-Khand Reaction

On solid phase

O

O Co 2(CO) 8 benzene 80 oC, 6 h

ester O hydrolysis HO

Schore, N. E.; Najdi, S. D. J. Am. Chem. Soc. 1990, 112, 441

The Pauson-Khand Reaction

Mechanism

RL RL Co2(CO)8 - CO R RS RL RS S Co(CO) - 2 CO Co(CO)3 3 Co Co (CO)3 (CO)2

R R R L L RS insertion RS Co(CO)3 CO insertion Co(CO)3 CO Co(CO)2 CO Co(CO)3

R R

R L (CO)3Co(CO)3 R R reductive Co S L R RS RL S Co(CO)3 elimination -Co2(CO)6 Co(CO)3 O O

O R R The Pauson-Khand Reaction

Using polymer-bound cobalt carbonyl

Ph2 P Ph2 Co (CO )3 Co (CO )4 PCo(CO)3

P Co (CO )4 Ph THF, RT 2 1 + 2

Co (CO) PPh2 + 2 8

1,4-dioxane Ph2 P Co (CO ) 75 oC 3

P Co (CO )3 Ph2 3

Comely, A.C.; Gibson, S. E.; Hales, N. J. Chem. Commun. 2000, 305

The Pauson-Khand Reaction

Ph2 P Using polymer-bound cobalt carbonyl Co(CO)3 Co(CO) P 3 Ph2 3

CO 50 mbar, 3 TsN O TsN 70 oC, THF, 24 h

61%

Et O 2C Et O 2C as above O

Et O 2C Et O 2C 49% The Pauson-Khand Reaction

Using polymer-bound promotors

O

N + OSMe 1 O 2

O H 1, THF, RT R R + or 2, DCE, Δ Co2(C O)6 H R = Ph, tBu, Me2(OH)C 74 - 99% yield

Kerr, W. J. et al, Chem. Comm. 2000, 1467; 1999, 2551.

References

„ Reviews on polymer-bound organometallic reagents:

Recent advances in asymmetric C-C and C-heteroatom bond forming reactions using polymer-bound catalysts Bräse, Lauterwasser, Ziegert Adv. Synth. Catal. 2003, 345, 869-929

Preparation of polymer-supported ligands and metal complexes for use in catalysis Leadbeater, Marco Chem. Rev. 2002, 102, 3217-3273

Recoverable catalysts and reagents using recyclable polystyrene-based supports McNamara, Dixon, Bradley Chem. Rev. 2002, 102, 3275-3300

Soluble polymers as scaffolds for recoverable catalysts and reagents Dickerson, Reed, Janda Chem. Rev. 2002, 102, 3325-3344

Functionalized polymers – Emerging versatile tools for solution-phase chemistry and automated parallel synthesis Kirschning, Monenschein, Wittenberg Angew. Chem. Int. Ed. Engl. 2001, 40, 650-579

Multi-step organic synthesis using solid-supported reagents and scavengers: a new paradigm in chemical library synthesis Ley et al. J. Chem. Soc., Perkin Trans 1 2000, 3815-4195 Scavengers

+ +

substrates product

Scav eng er

+ Scav eng er

product

Scavengers

O O „ acidic S OH OH

CH3 „ basic N N CH3

NH2

„ nucleophilic NH2 N

NH2 O „ electrophilic NC O H Scavengers

Application

1) R1X 1) R2X HN N HN N NMe2 BEMP NH N Cl Cl R1 2) 2) NH2 NH2

R2 N N

N Cl R1

N N P BEM P = NN

Xu, W.; Mohan, R.; Morrissey, M. M. Bioorg. Med. Chem. Lett. 1998, 8, 1089

Capture and Release

Capturing reagent + Capturing reagent

substrates product Release + contaminants

product Capture and Release

Tamoxifen library

R1 O O B B R3 X O O R2 R1 R2 Pt(PPh ) Pd(dppf)Cl , base 3 4 O B B O 2 O O

R 1 R1 I R1 1) O N Si R R2 R 2 + H 2 B O 2) 30% TFA in CH2Cl2 O

R3 R3 R3 + R3 + regioisomer regioisomer 5 x 5 library

Brown, S. D.; Armstrong, R. W. J. Org. Chem. 1997, 62, 7076

Capture and Release

Synthesis of β-amino alcohols

OH O O O N Cl H O NH2 OH NaH

Impurities

OH O O OH

NH2 Capture and Release

Synthesis of β-amino alcohols using polymer-bound borane

OH O O 1) O N Cl O NH2 O BY 2 NaH 2) HBY2

HCl

O BH O N HBY2 = PEG H OH

2

Hori, M.; Janda, K. D. J. Org. Chem. 1998, 63, 889

Capture-Release Alkylation Utilizing Resin-Bound Sulfonyl Chloride

Rueter, J. K.; Nortey, S. O.; Baxter, E. W.; Leo, G. C.; Reitz, A. B. Tetrahedron Lett. 1998, 39, 975-978. Capture Activation-Release: Solid-Supported DCT for Amide Synthesis

Masala, S.; Taddei, M. Org. Lett. 1999, 1, 1355-1357.

An Example of Solid Phase Reagents and Scavengers

„ An extremely efficient three step reductive amination and triflation is accomplished by the use of solid phase reagents and scavengers

RuO OH 4 HO HO NMe O MeO 3 MeO H NH2 MeO MeO N MeO BH4 H

NMe3 MeO

HO

Tf2O, NN MeO N Tf MeO 98 % 3 steps

Ley SV et al. J. Chem. Soc. Perkins. Trans. I 1999, 63, 6625. Application: Sildenafil (Viagra™)

Pr OE t H2N O N O + H N S 2 N N O OH N O 1 2

OE t Pr O N S N N O HN N N O Sildenafil (ViagraTM)

Pr =

Baxendale, I. R.; Ley, S. V. Bioorg. Med Chem. Lett. 2000, 10, 1983

Sildenafil, building block 1

1) OEt OH HN N O O O O EtN(i- Pr)2 S S N O Cl 2) Et2SO4 OH O OH N crude 1 Sildenafil, building block 2

O Pr N OEt Pr O NH 2NH Me Pr N Br NH NH EtO 2 N H BEMP O + NM e3 CN cat. H+

H N O MnO2 N 1) BEMP Pr N OEt Pr N OEt N N 2) NH3/MeOH NC O Pr NH 2 CN O CN O NH 2 2

N N P BEMP = NN

Sildenafil (Viagra™)

OEt OEt O O O S O HOBt N 2 S O O N N O OH PyBrOP N N N NCO crude 1 N

OEt OEt Pr O O NH2 Pr N O EtOH/NaOEt S S N N N o O O HN N MW 10 min/120 C HN N N N N O O Sildenafil

PF 6Br PyBrOP = N P N HOBt = N N N N HO Natural Products via Supported Reagents

Baxendale, I. R.; Ley, S. V.; Piutti, C. Angew. Chem., Int. Ed. 2002, 41, 2194-2197 Baxendale, I. R.; Brusotti, G.; Matsuoka, M.; Ley, S. V. J. Chem. Soc., Perkin Trans. 1 2002, 143-154 Baxendale, I. R.; Lee, A.-L.; Ley, S. V. Synlett 2001, 1482-1484 Habermann, J.; Ley, S. V.; Scott, J. S. J. Chem. Soc., Perkin Trans. 1 1999, 1253-1255 Ley, S. V.; Schucht, O.; Thomas, A. W.; Murray, P. J. J. Chem. Soc., Perkin Trans. 1 1999, 1251-1252.

Epothilone

For a total synthesis of epothilone using S polymer-bound reagents, see: Storer, R. I.; Takemoto, T.; Jackson, P. N S.; Ley, S. V. Angew. Chem. Int. Ed. 2003, 42, 2521 H O O OH O

O OH