<<

Medicinal : -Parallel Synthesis Agenda

1. Introduction: The Process

2. Lead Discovery and Lead Optimization-Drugability

-Drug-like -the rule of 5 -Drug-like vs lead-like: the rule of 3 -Privileged scaffolds -Unwanted properties: frequent hitters-aggregate forming molecules

3. Combinatorial and Parallel Synthesis in

-Historical background-objective -Compound mixtures versus single compounds -Solid phase synthesis versus synthesis in solution

4. Combinatorial Synthesis of Biopolymers

-Polypeptides -Peptoids, Oligoureas, Oligocarbamates -Oligosaccharides -Oligonucletides, Oligonucleosides

winter semester 09 Daniel Obrecht, Polyphor Ltd 1 Medicinal Chemistry: Combinatorial Chemistry-Parallel Synthesis Agenda

4. Combinatorial synthesis of Biopolymers (cont.)

-Combinatorial synthesis-split-mixed synthesis -Tagging strategies

5. Strategies for the Synthesis of Small Libraries

-Library synthesis planning -Synthesis strategies -Classical multi-component reactions (MCR’s) -Sequential multi-component reactions (SMCR’s) -Fragment-based lead discovery -Dynamic Combinatorial Synthesis; Target-guided synthesis (TGS) -Disulfide thethering - -Building blocks -Parallel and/or combinatorial synthesis -Parallel work-up

winter semester 09 Daniel Obrecht, Polyphor Ltd 2 Medicinal Chemistry: Combinatorial Chemistry-Parallel Synthesis Agenda

6. Applications of Parallel Synthesis and Combinatorial Chemistry in Medicinal Chemistry: Case Studies -Drug targets

7. Appendix (Definitions; Reviews; Literature)

winter semester 09 Daniel Obrecht, Polyphor Ltd 3 Medicinal Chemistry: Combinatorial Chemistry-Parallel Synthesis 1. Introduction: The Drug Discovery Process

The value added chain of pharmaceutical R & D

-From 1960 to 1980 the development time of a new NCE () have quadrupled

-Since 1980 9-13 years have been necessary for the louching of a new drug

-Costs have gone up from 300-450 MioSFr (1987) to 600-800MioSFr in 2000

-Main reasons: higher degree of scientific knowledge of the drug required; regulations for clinical quality assurance; change in the professional regulations of physicians; increase for administrative work for health authorities

-It is of prime importance to reduce the development time and costs for the development of a new NCE in order to reduce the costs of new drugs while keeping the profitability: increase productivity of R & D

J. Kuhlmann, Int. J. Clinical Pharmacol. Ther. 1997, 35, 541-552 winter semester 09 Daniel Obrecht, Polyphor Ltd 4 Medicinal Chemistry: Combinatorial Chemistry-Parallel Synthesis

1. Introduction: The Drug Discovery Process

Drug Discovery Process

Assay Screening Parallel Medicinal development libraries chemistry chemistry capabilities

Establishing Hit Preclinical Hit Lead Target primary exploration, and clinical identification identification optimization screening hit-to-lead development

Screening PEM, small Molecular ADMET capabilities molecules, modeling properties fragments

Genomics; Proteomics; Phage display, Fragment screening; X-ray

winter semester 09 Daniel Obrecht, Polyphor Ltd 5 Medicinal Chemistry: Combinatorial Chemistry-Parallel Synthesis 1. Introduction: The Drug Discovery Process

Lead Clinical Candidate Selection Optimisation (CCS) from alternatives (Candidate Profiling)

Of 10 projects 5-12 m 12-36 months 3-6 m starting in Lead Identification Attrition in Discovery <3.5 will reach 1 2 . 0 0 >30% 1 0 . 0 0 CCS (..but 8 . 0 0 30% >50% 5 6 . 0 0 30% possible?) 4 . 0 0

2 . 0 0

0 . 0 0 Lead Identification Lead Optimisation CCS

Selecting Leads that Removing Selecting the candidate that provides are “drugable” the ADMET the best exposure (e.g. unbound Avoiding problematic concerns concentration at target ) without templates safety concerns winter semester 09 Daniel Obrecht, Polyphor Ltd 6 Medicinal Chemistry: Combinatorial Chemistry-Parallel Synthesis 1. Introduction: The Drug Discovery Process

Phase 1 Phase 2 Phase 3 Regulatory Proof-of- Approval Concept Long term Safety

6-9 m 12m 12-24m 24m 12-24m

Attrition in Development 30% 1 6 . 0 0 1 4 . 0 0 10% 40%* EIH Enabling 1 2 . 0 0 20% P h a s e 1 1 0 . 0 0 62%* P h a s e 2 8 . 0 0 50% P h a s e 3 6 . 0 0 45%* 13%* Registration 4 . 0 0 20% NDA 2 . 0 0 <5% 0 . 0 0 4% of EIH Enabling Ph a s e 1 P h a s e 2 Ph a s e 3 Registration NDA marketed cpds withdrawn

Ensuring PK, metabolism, exposure, Long term pre-clinical & clinical safety, half-life,, safety, in humans are as carcinogenicity studies. expected. Definition of possible human Final assessment of drug-drug interactions & safety issues and margins. of of the final marketed Reproductive formulation winter semester 09 Daniel Obrecht, Polyphor Ltd 7 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 1. Introduction: The Drug Discovery Process

Brain Various Tissues Dose Metabolism and biliary of Metabolism Tissue unchanged drug Dissolution distribution

Systemic Circulation Liver Metabolism and exhalation Gut Wall pH ranges by lung Gut stomach 1.5-6 upper g.i. tract Portal Lumen pH 4.4-7.8 Permeation colon 5 Vein effect of food, bile acids etc

Metabolism

Renal of drug Undissolved and/or metabolites dose winter semester 09 Daniel Obrecht, Polyphor Ltd 8 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis

1. Introduction: The Drug Discovery Process

winter semester 09 Daniel Obrecht, Polyphor Ltd 9 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis

1. Introduction: The Drug Discovery Process

winter semester 09 Daniel Obrecht, Polyphor Ltd 10 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis

1. Introduction: The Drug Discovery Process

winter semester 09 Daniel Obrecht, Polyphor Ltd 11 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 1. Introduction: The Drug Discovery Process

Absorption Conc vs Time Curves phase 12 t max Cmax 10 Distribution & Elimination 8 Phase L / g 6 m

C

4 -1 t ½ = 6h, k =0.693/t1/2= 0.12h 2 Cmin 0 0 5 10 15 20 25 30 Time (h) C mg/L_Oral C mg/L_IV winter semester 09 Daniel Obrecht, Polyphor Ltd 12 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 1. Introduction: The Drug Discovery Process

bioavailability of drugs

Plasma concentration

Drug injected AUC (oral) Bioavailability = AUC (injected) AUC Drug given orally (injected)

AUC (oral)

Time

winter semester 09 Daniel Obrecht, Polyphor Ltd 13 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 2. Lead Discovery and Lead Optimization-Drugability

Drug-like molecules-the rule of 5

What is a drug-like molecule?

leading references: [1] C. Lipinsky et al. Adv. Rev. 1997, 23, 2; [2] H. Kubinyi et al. J. Med. Chem. 1998, 41, 3325; [3] M. Murko et al. J. Med. Chem. 1998, 41, 3314; ¨[4] J. R. Proud- food, Bioorg. Med. Chem. Lett. 2002, 12, 1647

linezolid () Lipinski's rules of 5:

H-acceptor -logP < 5 -molecular weight < 500 (600) -not more than 5 H-bond donors F O -not more than 10 H-bond acceptors (or 10 hetero ) O O H-acceptor O N N -not more than 5 (10) rotatable bonds N H molecules which obey to Lipinski's H-acceptor rule of 5 have a high propensity for penetration into cells and for oral H-donor absorption

C15H18FN3O4 (323.33) winter semester 09 Daniel Obrecht, Polyphor Ltd 14 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 2. Lead Discovery and Lead Optimization-Drugability

Drug-like molecules-rule of 5

Ac-RGDSNH2 (fibrinogen antagonist) Lipinski's rules of 5:

+ -logP < 5 - H2N NH2 x Cl -molecular weight < 500 (600) -not more than 5 H-bond donors HN OH -not more than 5 H-bond acceptors O (or 10 hetero atoms) O O O -not more than 5 (10) rotatable bonds H H N N molecules which obey to Lipinski's N N NH2 H H rule of 5 have a high propensity for O O OH penetration into cells and oral absorption

C17H30N808 x HCl (511.03)

MG: ok; logP < 5 (ok); 13 H-donors (violation); 16 hetero atoms (violation); 17 rotatable bonds (violation)

-, proteins, oligonucleotides and oligosaccharides in general show violations of Lipinski's rules;

-these molecules have many H-bond donors and acceptors, which in physiological environment are surrounded by water molecules. They show generally low cell penetration, low passage through the blood brain barrier and low oral absorption. In addition these molecules are generally quickly degraded by various , which can also be an advantage.

-these molecules have to be administered by a topical, i.p. or i.v. route; in recent years significant progress has been made in administering biomolecules: liposomes, inhalation methods, direct injection techniques into the brain.. winter semester 09 Daniel Obrecht, Polyphor Ltd 15 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 2. Lead Discovery and Lead Optimization-Drugability

privileged fragments

NMR based screening of fragments binding towards a variety of proteins: Bcl-2 (an antiapoptotic protein), stromeolysin (MMP), VEGF-RBD, p56lck SH2, FK-506 BP and others. S. W. Fesik et al. J. Med. Chem. 2000, 43, 3443-47

O N

OH N N

N

O N N H

OH P OH O

winter semester 09 Daniel Obrecht, Polyphor Ltd 16 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 2. Lead Discovery and Lead Optimization-Drugability

Lead-like: the rule of 3

The properties of 40 fragment hits identified against a range of targets using high throughput X-ray crystallographic screening technology has been examined. The results indicated that on average fragment hits possessed properties consistent with a rule of three:

-MW <300 -Number of H-bond donors <3 -Number of H-bond acceptors <3 -clogP =3

In addition it was noted that:

-The number of rotatable bonds was on average <3 -Polar surface area was <60A2

M. Congreve et al. Drug Discov. Today 2003, 8, 876-77; M. Hann, T. I. Oprea, Curr. Opin. Chem.Biol. 2004, 8, 255-263 winter semester 09 Daniel Obrecht, Polyphor Ltd 17 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 2. Lead Discovery and Lead Optimization-Drugability

unwanted properties: frequent hitters

In order to exclude as early as possible compounds with undesired properties from compound libraries several selection criteria (filters) have been developed:

-chemically reactive compounds: alkylating agents, Michael acceptors etc. (G. M. Rishton, Drug Disc. Today, 1997, 2, 382-4) -toxic chemical groups (toxophores) -oral bioavailability -aqueous solubility -metabolic clearance -frequent hitters: (O. Roche et al. J. Med. Chem. 2002, 45, 137-142)

-the activity of the compound is not specific for the target (promiscuous) -the compound perturbs the or detection method (coloured or fluorescent molecules) -molecules prone to form polymers (e.g. catechols) -molecules have a high tendency to form aggregates

winter semester 09 Daniel Obrecht, Polyphor Ltd 18 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 2. Lead Discovery and Lead Optimization-Drugability

unwanted properties: reactive groups

O O O N O O S R X R O R' R X R X X N sulfonyl halides (X: Cl, Br) acyl halides (X: Cl, Br) alkyl halides (X: Cl, Br, I) anhydrides halopyrimidines

O N R' O O O O X R R R R H R R'' R R'O R' F3C aldehydes imines -halo-ketones (X: Cl, Br) aliphatic esters aliphatic ketones trifluoro-ketones

R R' O R R' O O O O O R' N S R P R R O R R'O R'' R'S R'O O

epoxides aziridines aliphatic thioesters sulfonate esters phosphonate esters 1,2-dicarbonyl compounds

R R' R OR' R NR'R''

O O O Michael acceptors

R'' R'' R'' O R' S R' O R' N R' N R' N R' R O R S R S R S R O R N H heteroatom-heteroatom single bond

Reactive compounds and in vitro false positives in HTS ( G. M. Rishton, Drug Disc. Today, 1997, 2, 382-4) winter semester 09 Daniel Obrecht, Polyphor Ltd 19 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 2. Lead Discovery and Lead Optimization-Drugability

unwanted properties: frequent hitters

examples of frequent hitters (Matthew correlation coefficient: >0.8)

O. Roche et al. J. Med. Chem. 2002, 45, 137-142 N H Cl N NH 2 OH OH H N Cl N OH N HO HO HO OH OH

diethylstilbestrol (1.00) dopamine(0.88) clofazimine(1.00) fenoterol(0.87)

molecules that form aggregates

SO3H

S N S N O NH2 NH2 N H Cl S N N N Cl

SO3H non-drug-like drug-like CO2H G. Müller, Drug Disc. Today, 2003, 8, 681-91 winter semester 09 Daniel Obrecht, Polyphor Ltd 20 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 2. Lead Discovery and Lead Optimization-Drugability

privileged structures

A single framework or fragments which can bind to different target families in a specific way

The term privileged structure was first used by Evans et al. (J. Med. Chem. 1988, 31, 2235- 46) on the development of potent, selective, orally active cholecystokinin antagonists

The benzodiazepin scaffold was the first scaffold termed as privileged. It occurs in valium, librium, in CCK-A antagonists and several more. F

Me O Me O O O HN N N N O F NH N Cl N N N F N H

Valium

winter semester 09 Daniel Obrecht, Polyphor Ltd 21 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 2. Lead Discovery and Lead Optimization-Drugability

privileged structures

Privileged structures include often favorable conformational arrangements of aromatic/ heteroaromatic groups. Planar arrangements of aromatic groups give raise to stacking Which results in unfavorable properties such as low solubility and aggragation.

non-planar arrangement of two aromatic rings avoids stacking F O O S Cl NH N N O S N Me O N N Cl NH2 COX-II inhibitor (Vioxx) p38 MAP kinase (SB-218655) dopamine transporter inhibitor winter semester 09 Daniel Obrecht, Polyphor Ltd 22 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 2. Lead Discovery and Lead Optimization-Drugability

privileged structures

S amino-thiazole scaffold NH2 OH N OH

NH H N O O N N S S S OH S N N NH N H N N H

CBS-113A (clinical) BMS-268770 (discovery) CP-146662 (discovery) COX, 5-lipoxygenase CDK-2 inhibitor 5-HT1A , dopamine uptake N O O S S S OMe NH2 N N O N Cl 2 N H OMe

Cl

CGS-2466(discovery) Ro 61-8048 (discovery) Adenosin A3 antagonist, Kynurenin-3-hydroxylase PDE-4, p38 MAP kinase winter semester 09 Daniel Obrecht, Polyphor Ltd 23 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 2. Lead Discovery and Lead Optimization-Drugability

privileged structures

2-aryl-indole scaffold N H OMe

N

N N HN O

Br

Br B r N N N H H H CCR5 (1.3M) NK1 antagonist (0.8nM) 5-HT6 (0.7nM) CCR3 (0.9M) 5-HT7 (0.3M)

C. A. Willoghby, Biiorg. Med. Chem. Lett. 2002, 12, 93-6

winter semester 09 Daniel Obrecht, Polyphor Ltd 24 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 2. Lead Discovery and Lead Optimization-Drugability

Questions

1. What are the Lipinski‘s rules of five and what do they stand for?

2. Please determine number of rotatable bonds, number of H-bond donors and acceptors of the following molecules? O N COOH COOH HO Cl N O O HO OH H-Lys-Glu-NH2 O HO

A B C D

3. Describe the difference between drg-like and lead-like

winter semester 09 Daniel Obrecht, Polyphor Ltd 25 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 3. Combinatorial and Parallel Synthesis in Medicinal Chemistry

1961: Ivar Ugi publishes his pioneering paper on his four component reaction: “If, for example, 40 of each different components are reacted with one another, the result is 2‘560‘000 raction roducts...“

3 R1COOH R CHO 3 1 3 Ugi 4MCR O R NHR4 R1 N 2 4 2 R NH2 R N=C R O 2 4 H+

2 3 3 R H R R 3 + irreversible O R R2 N N H O N NHR4 R1 N O R4 N 2 C R1 R O O R4

R1 O-

winter semester 09 Daniel Obrecht, Polyphor Ltd 26 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis

3. Combinatorial and Parallel Synthesis in Medicinal Chemistry

1963: Seminal paper by R. B. Merryfield describing for the first time the successful synthesis of a short on a polystyrene resin (J. Am. Chem. Soc. 1963, 85, 2149)

1965: Letsinger and Khorana applied solid supports for the synthesis of oligonucleotides (J. Am. Chem. Soc. 1965, 87, 2149); J. Am. Chem. Soc. 1966, 88, 3181)

1967: J. Fréchet described a highly loaded trityl resin (2.0mmol/g)

1967: Wilkinson et al. Described polymer-bound tris-(triphenylphoshine)chlororhodium as a hydrogenation catalyst (J. Am. Chem. Soc. 1967, 89, 1574)

1969: Solid-phase synthesis of Ribonuclease (J. Am. Chem. Soc. 1969, 91, 501)

1970: H. Rapoport introduced the term hyperentropic efficacy (effect of high dilution) on solid supports (J. Am. Chem. Soc. 1970, 92, 6363)

1971: Fréchet et al. pioneerd solid-phase synthesis in the field of carbohydrate research (J. Am. Chem. Soc. 1971, 93, 492)

1973: Application of intramolecular Dieckmann-condensation for the solid-phase synthesis of lactones by Rapoport et al. (J. Macromol. Sci. Chem. 1973, 1117)

winter semester 09 Daniel Obrecht, Polyphor Ltd 27 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 3. Combinatorial and Parallel Synthesis in Medicinal Chemistry

1973: Leznoff et al. described the use of polymer-supports for the mono-protection of symmetrical dialdehydes, oxime- formation, Wittig reaction, crossed aldol formation, benzoin-condensation and Grignard reaction (Can. J. Chem. 1973, 51, 3756)

1974: F. Camps describes the first synthesis of on solid support (Ann. Chim. 1974, 70, 1117)

1976: Leznoff and Files described bromination and lithiation of insoluble polystyrene, thus pioneering the synthesis of functionalized resins (Can. J. Chem. 1976, 54, 935)

1976: Rapoport and Crowley published a review entitled: Solid-phase organic snthesis: novelty or fundamental concept? which raised three important questions: -degree of separation of resin-bound functional groups; -analytical methods to follow reactions on solid support; -nature and kinetics of competing side reactions (Acc. Chem. Res. 1976, 9, 135)

1976- 1978: Leznoff et al. published a series of papers dealind with the synthesis of insect sex attractants (Can. J. Chem.. 1977, 55, 1143)

1977: Wulff et al. Synthesized chiral macroporous resins using carbohydrates as templates for the use of column materials for the separation (Makromol. Chem. 1977, 178, 2799)

winter semester 09 Daniel Obrecht, Polyphor Ltd 28 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 3. Combinatorial and Parallel Synthesis in Medicinal Chemistry

1979: Leznoff employed successfully a chiral linker for the assymetric synthesis of (S)-2-methyl-cyclohexanone in 95% e.e.(Angew. Chem. 1979, 91, 255)

1974: F. Camps describes the first synthesis of benzodiazepines on solid support (Ann. Chim. 1974, 70, 1117)

1984: Geysen et al. described the the multi-pin technology for the multiple peptide synthesis (Proc. Natl. Acad. Sci. USA, 1984, 81, 3998)

1985: Houghten et al. described the tea-bag method for multiple peptide synthesis (Proc. Natl. Acad. Sci. USA, 1984, 81, 3998)

1985: G. P. Smith described in seminal paper the use of filamentous phage for the synthesis of peptide libraries (phage display method, Science 1985, 228, 1315)

1986: Mixtures of activated monomers were coupled to solid supports for the synthesis of peptide libraries as mixtures; the product distribution depended on the relative couplind rates (Mol. Immunol. 1986, 23, 709)

1991: Fodor et al. described the VLSIPS method (very large scale immobilised polymer synthesis; photolitographic parallel synthesis (Science 1991, 251, 767)

winter semester 09 Daniel Obrecht, Polyphor Ltd 29

O Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 3. Combinatorial and Parallel Synthesis in Medicinal Chemistry

1991: Almost simultaneously Furka et al. described the `portioning-mixing‘ method (Int. J. Pept. Prot. Res. 1991, 37, 487); Hruby et al. the `split synthesis‘ (Nature 1991, 354, 82); and Houghten et al. the `divide, couple and recombine`process (Nature 1991, 354, 84)

1992: Oligonucleotide-encoded by Lerner and Brenner (Proc. Natl. Acad. Sci. USA, 1992, 89, 5181)

1992: Synthesis od 1,4-benzodiazepines on solid support described independently by S. Hobbs-DeWitt (Diversomer technology, US-Pat. 5324483, 1993) and J. A. Ellman (J. Am. Chem. Soc. 1992, 114, 10997)

1993: Binary encoded synthesis using gas chromatographically detectable chemically inert tags by W. C. Still et al. (Proc. Natl. Acad. Sci. USA, 1992, 89, 5181)

1993: Use of multi-cleavable linkers for the synthesis of peptide-like libraries by M. Lebl et al. (Int. J. Protein Res. 1993, 41, 201)

1994: Use of the `safety-catch` linker principle developed by Kenner et al. (J. Chem. Soc. Chem. Commun. 1973, 636) by J. A. Ellman for multidiretional cleavage from the resin (J. Am. Chem. Soc. 1994, 116, 11171)

1995: Synthesis of a potent ACE inhibitor by combinatorial on solid support using a 1,3-dipolar cycloadddition reaction by Gallop et al. (WO 95/35278, 1995)

winter semester 09 Daniel Obrecht, Polyphor Ltd 30 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 3. Combinatorial and Parallel Synthesis in Medicinal Chemistry

1995: Use of a genetic algorythm for the selection of the products of an Ugi four component reaction (Angew. Chem. Int. Ed. Engl. 1995, 34, 2280)

1996: Use of the Ugi four component reaction in combination with a 1,3-dipolar cycloaddition reaction of intermediary formed `Munchnones` with electronpoor acetylenes by R. Armstrong et al. (Tetrahedron Lett. 1996, 37, 1149)

1997: Combination of a cyclo-condensation reaction, multicomponent diversification and multidirectional resin cleavage using a novel `safety-catch`- and traceless linker yielding highly diverse pyrimidines by D. Obrecht et al. (Chimia 1996, 11, 530; Helv. Chim. Acta 1997, 80, 65) and L. M. Gayo et al. (Tetrahedron Lett. 1997, 38, 211)

1997: Synthesis of a taxoid library using radiofrequency-encoding (J. Org. Chem. 1997, 62, 6092)

2001: Click Chemistry: Diverse Chemical Function from a few good reactions: H. C. Kolb, K. B. Sharpless, Angew. Chem. Int. Ed. 2001, 40, 2004-21; ibid Drug Discovery Today 2003, 8, 1128-37.

2001: Dynamic Combinatorial Chemistry: J. M. Lehn et al. Science 2001, 291, 2331-32.

2001: Using an ‘s active site to template inhibitors: R. Nguyen, I. Huc, Angew. Chem. Int. Ed. 2001, 40, 1774

2005: Receptor-assisted Combinatorial Chemistry: Thermodynamics and Kinetics in Drug Discovery: J. D. Cheeseman et al. Chem. Eur. J. 2005, 11, 1708-16

2006: In situ click chemistry: a powerful means for lead discovery: B. K. Sharpless et al. Expert Opin. Drug Discov. 2006, 1(6), 525-38

winter semester 09 Daniel Obrecht, Polyphor Ltd 31 Medicinal Chemistry: Combinatorial Chemistry-Parallel Synthesis 3. Combinatorial and Parallel Synthesis in Medicinal Chemistry

2004: Fragment-based drug discovery: D. A. Erlanson, R. S. McDowell, T. O‘Brien, J. Med. Chem. 2004, 47, 3463- 3482; D. C. Rees, M. Congreve, R. Carr, Nat. Rev. Drug Discov. 2004, 3, 660-672.

winter semester 09 Daniel Obrecht, Polyphor Ltd 32 : Combinatorial Chemistry-Parallel Synthesis 3. Combinatorial and Parallel Synthesis in Medicinal Chemistry

The role of combinatorial chemistry and parallel synthesis in drug discovery

Aim: Large Screening Libraries for High Throughput Screening -Hit identification 100'000 to 3'000'000 compounds Methods:

-Combinatorial synthesis on solid support -High throughput parallel synthesis in solution

Aim: Focused Libraries for Hit Confirmation and Validation -Hit confirmation, validation and exploration of SAR

100 to 1'000 compounds Methods:

-High throughput parallel synthesis in solution

Aim:

Focused Libraries for -Hit optimization, SAR, ADMET properties, TPP Hit-to-Lead Optimization 20 to 100 compounds per cycle Methods: -Medicinal chemistry approaches; parallel synthesis winter semester 09 Daniel Obrecht, Polyphor Ltd 33 Chemical Biology: Combinatorial Chemistry-Parallel Synthesis 3. Combinatorial and Parallel Synthesis in Medicinal Chemistry

Compound mixtures:

-Mixtures (most often 10-20 compounds) of purified compounds in equimolar amounts

-Mixtures of products synthesized in one reaction in equimolar ratio: Mol. Immunol. 1986, 23, 709 R1-20 O H2N R R O O H OH N (Boc)FmocHN (Boc)FmocHN O R1-20: coding amino acids 1-20 O O R ratio determined according to coupling rates

-Most often products originating from a reaction mixture are not formed in equimolar ratio are contaminated with impurities

Advantage: compound mixtures can reduce the screening effort in expensive and laborious screens

Drawbacks: compounds in mixtures can interfere with one another; prone to false positive hits

Trend today: screening of single compounds

winter semester 09 Daniel Obrecht, Polyphor Ltd 34 Chemical Biology: Combinatorial Chemistry-Parallel Synthesis 3. Combinatorial and Parallel Synthesis in Medicinal Chemistry

Single compounds:

-Synthesis on solid supports without final purification: requires a lot of development work; allows to make large libraries

-Synthesis in solution using high yielding reactions without further purification: limits the scope of reactions that can be used; often used in the context of multi- component reactions; useful for large libraries

-Synthesis in solution followed by high-throughput preparative HPLC-purification: whole repertoire of organic reactions can be used; is todays standard method for the synthesis of focused libraries (hit validation; lead optimization)

Trend: as screening technologies have increased the throughput, screening of single compound libraries is more and more becoming the standard

as companies are looking for highly diverse general compound libraries of high quality (purity, stability) library synthesis has shifted from solid phase synthesis (large libraries) to solution phase synthesis followed by high-throughput purification (normal and reverse phase)

winter semester 09 Daniel Obrecht, Polyphor Ltd 35 Chemical Biology: Combinatorial Chemistry-Parallel Synthesis 3. Combinatorial and Parallel Synthesis in Medicinal Chemistry

Solution phase chemistry:

++ most reactions and have been studied in solution

+ usually no excess of reagents have to be used

+ solvent effects can be studied and altered readily

++ steric effects are usually less pronounced in solution and can be overcome more easily by using more drastic reaction conditions

++ reaction conditions are usually adapted to a large variety of substituents

-- extensive and time consuming, chromatographic purification procedures are often necessary

-+ side products have to be separated and analysed (can also be an advantage in the first exploratory stage of a given project

-- parallelisation and automation usually requires more initial effort

winter semester 09 Daniel Obrecht, Polyphor Ltd 36 Medicinal Chemistry: Combinatorial Chemistry-Parallel Synthesis 3. Combinatorial and Parallel Synthesis in Medicinal Chemistry

Solid phase chemistry:

++ excess of reagents can be used to drive reactions to completion

++ purification procedures achieved by simple filtrations which can be easily automated

++ assuming complete spatial separation of the reactive sites on a given solid support, the principle of high dilution („hyperentropic effect“, Acc. Chem. Res. 1976, 9, 135) can be used beneficially; e.g. for intramolecular cyclisation reactions

+- overall costs for the synthesis of large libraries (assuming no purification of the final compounds is necessary) can compare favourably with solution synthesis

+- linker molecules have to be designed which are compatible with the polymeric matrix and the chemistry used for library synthesis: labour intense development work; ok for large libraries

-- development of reaction conditions requires more work than in solution reactions on solid support are more sensitive to steric effects: limitations in the design of highly diverse libraries

-- reactions are more difficult to monitor; especially a drawback in the development phase winter semester 09 Daniel Obrecht, Polyphor Ltd 37 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 3. Combinatorial and Parallel Synthesis in Medicinal Chemistry

General

General trends:

Solid-Phase chemistry: large libraries (no purification of individual compounds)

split mixed approach

linear approaches: polypeptides peptoids oligosaccharides oligocarbamates and ureas use of solid support as a protective group: for guanidines, amidines, hydroxamic acids, carboxylic acids, alcohols..)

Solution-phase chemistry: small focused libraries of high chemical diversity (purified products)

parallel synthesis

convergent approaches

winter semester 09 Daniel Obrecht, Polyphor Ltd 38 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 3. Combinatorial and Parallel Synthesis in Medicinal Chemistry

Questions

1. What are the advantages of using mixtures of compounds in the biological screening?

2. What are the disadvantages?

3. What are the advantages of using solid phase chemistry?

4. For which type of molecules is it advantageous to use solid phase chemistry?

winter semester 09 Daniel Obrecht, Polyphor Ltd 39 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: linear approaches

bond bond bond bond bond

Monomer A1 Monomer A2 Monomer A3 Monomer A4

monomers bond formation polymers

amino acids amide bond peptides, proteines

nucleotides phosphorester bond oligonucleotides

mono- and disaccharides glycosidic bond polysaccharides

N-alkylated glycines amide bond peptoids

winter semester 09 Daniel Obrecht, Polyphor Ltd 40 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: peptides

-Peptides synthesized as individuals or as mixtures on solid supports (polystyrene, polyacrylamide, polyacrylamide-polystyrene co-polymers) and cleaved to be assayed in solution

-Peptides synthesized and assayed as individuals or as mixtures on solid supports such as pins (H. M. Geysen et al. Mol. Immunol. 1986, 23, 709), resin beads (K. S. Lam et al. Nature 1991, 354, 82), cotton (R. A. Houghton et al. 1993,32, 11035), microchips (S. P. A. Fodor et al. Science 1991, 37, 481), or cellulose membranes (A. Kramer et al. Pept. Res. 1993, 6, 314)

-Peptides synthesized on the surface of a filamentous phage: Phage display technology (G. P. Smith et al. Meth. Enzymol. 1993, 217, 228; J. K. Scott et al. Curr. Opin. Biotechnol. 1994, 5, 40)

Mixtures of peptides can be obtained by by using two different strategies:

-As true mixtures where a peptide coupling step involves the coupling of a mixture (typically the 20 coding amino acids) of side-chain protected Boc- or Fmoc- protected amino acids (D or L) in a predetermined molar ratio which compensates for the different coupling rates.

-as mixtures of resin beads which resulted from synthesis: `one bead-one compound concept` `portioning-mixing` (A. Furka et al. Int. J. Protein Res. 1991, 37, 487) `couple and recombine` (R. A. Houghton et al. Nature 1991, 354, 84) `split synthesis` (V. Hruby et al. Nature 1991, 354, 82) winter semester 09 Daniel Obrecht, Polyphor Ltd 41 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

solid-phase peptide synthesis: overview

P1 P1 R R OH O(NH) Linker Polymer Fmoc-strategy FmocHN FmocHN O O

P1 P2 R R O Linker Polymer Boc-strategy OH FmocHN BocHN O O

P 1 P1 O R R1 -cleavage, wash H2N O(NH) Linker Polymer O(NH) Linker Polymer N H FmocHN -coupling, wash R2 O O -cleavage, wash 1 cycle P n cycles

P P P P Rn+1 O R1 Rn +1 O R1 H H N O(NH) Linker Polymer N OH(NH2) H N N H2N N 2 H H O R O O R O n P n P

Rn+1 O R1 H N OH(NH ) H N N 2 2 H O R O winter semester 09 Daniel Obrecht, Polyphor Ltd 42 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

solid-phase peptide synthesis: resins-polymer supports P1 P1 R R OH O(NH) Linker Polymer Fmoc-strategy FmocHN FmocHN O O 1. Functionalized polystyrene resins:

Ph Ph + * Ph Ph

Ph FG Ph (1-2%) cross-linked polystyrene resin randomly functionalized cross-linked polystyrene resin

Ph * + + Ph FG: CH2X (X: Cl, OH, NH2)

FG FG Ph (1-2%)

selectively functionalized cross-linked polystyrene resin * suspension polymerisation: water, free radical catalyst (dibenzoyl peroxide, AIBN), dispergator: particle size depends upon stirring speed, the relative amounts of aqueous and monomer phases, amount and nature of dispergator winter semester 09 Daniel Obrecht, Polyphor Ltd 43 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

solid-phase peptide synthesis: resins-polymer supports 1. Functionalized polystyrene resins

microporous: 1-2% crosslinking Ph Ph macroporous: 20% crosslinking Cl Ph Cl (95:5 para/ortho)

chloromethyl-polystyrene resin (Merryfield resin: J. Am. Chem. Soc. 1963, 85, 2149)

styrene, DVB OMe

OMe i styrene, DVB

styrene, DVB Cl ii

(up to 2.5 mmol/g loading) Cl

+ - i: BCl3, CCl4, 0°, 2h; ii: NaOH, CHCl3 (or ClCH2CH2Cl), BnN Et3, Cl , SO2Cl2, AIBN, 60°; Macromolecules 1986, 19, 2470 winter semester 09 Daniel Obrecht, Polyphor Ltd 44 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

solid-phase peptide synthesis: resins-polymer supports

Swelling properties of Merryfield type microporous resins:

Solvent crosslinked PS (1% DVB)* crosslinked PS (2% DVB)*

MeOH 0.95 EtOH 1.05 1.0 AcOH 1.0 MeCN 2.0 pyridine 3.0 DMF 3.5 2.0 THF 5.5 dioxane 4.9 2.5

Et2O 2.6 CH2Cl2 5.2 toluene 5.3 2.8

*swelling capacity: volume of swollen resin/original volume

winter semester 09 Daniel Obrecht, Polyphor Ltd 45 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

solid-phase peptide synthesis: linkers

2. TentaGelR resins

Bayer and Rapp; Angew. Chem. Int. Ed. Engl. 1991, 30, 113; contain up to 60-80% of PEG units

i - + CH2O(CH2CH2O)3CH2CH2O K CH2O(CH2CH2O)4+nH OH

ii Me iii Me

OH O(CH2CH2O)nH

i: ethylene oxide; ii: propylene oxide, SnCl4, CH2Cl2; iii: ethylene oxide, KOH, dioxane, 110°

Good swelling properties in: water, MeOH, CH2Cl2, MeCN, THF and DMF; used preferentially in continous flow reactors

3. Polyacrylamide resins

pioneerd by Sheppard: Bioorg. Chem. 1979, 8, 351

O O O H H O N N NHBoc N N N N CO Me H H 2 O O basic monomer crosslinking agent functionalized monomers

Persulphate initiated copolymerisationin 66% aqueous DMF, 1,2-dichloroethane and cellulose acetate/butyrate as emulgator winter semester 09 Daniel Obrecht, Polyphor Ltd 46 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

solid-phase peptide synthesis: linkers

2. Linkers for releasing carboxylic acids

structure abbreviation cleavage conditions reference

Cl Merryfield resin HF, CF3SO3H J. Am. Chem. Soc. 1963, 85, 2149

OH hydroxymethyl-PS HF, CF3SO3H

OH Wang resin 95% TFA J. Am. Chem. Soc. 1973, 95, 1328 O

OH SasrinR resin (Bachem) 1% TFA Tetrahedron Lett. 1988, 29, 4005 O OMe

OH OMe

Rink resin 1% TFA Tetrahedron Lett. 1987, 28, 3787

O OMe

Cl chloro-trityl resin Tetrahedron Lett. 1989, 30, 3943 (Barlos) Cl Ph winter semester 09 Daniel Obrecht, Polyphor Ltd 47 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Solid-phase peptide synthesis: linkers 2. Linkers for releasing amides

structure abbreviation cleavage conditions reference

NH2 J. Org. Chem. 1985, 50, 5291 BHA (R=H) HF, CF3SO3H MBHA (R=Me) Peptides. 1981, 2, 85 O R

NH2 OMe

Rink resin 95% TFA Tetrahedron Lett. 1987, 28, 3787 O OMe

OMe TFA Int. J. Prot. Pept. Res. 1987, 30, 206 NH2 PAL resin O

OMe

OMe TFA Tetrahedron Lett. 1997, 38, 7325 NH2 O

OH N

Kaiser oxime resin NH3 J. Org. Chem. 1980, 45, 1295 primary and secondary amines O NO 2 NH2NH2 x 1H2O winter semester 09 Daniel Obrecht, Polyphor Ltd 48 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

H H Me H H HOOC NHFmoc HOOC NHFmoc HOOC NHFmoc HOOC NHFmoc HOOC NHFmoc

glycine; Gly; G alanine; Ala; A valine; Val; V leucine; Leu; L phenylalanine; Phe; F OH (Boc)

SMe OH (tBu) OH (tBu) H H * H H * H HOOC NHFmoc HOOC NHFmoc HOOC NHFmoc HOOC NHFmoc HOOC NHFmoc

serine; Ser; S threonine; Thr; T methionine; Met; M isoleucine; Ile; I tyrosine; Tyr; Y (Boc) H N

COOH (tBu) CONH2 (NHTr) COOH (tBu) CONH2 (NHTr) H H H H H

HOOC NHFmoc HOOC NHFmoc HOOC NHFmoc HOOC NHFmoc HOOC NHFmoc

aspartic acid; Asp; D aparagine; Asn; N glutamic acid; Glu; E glutamine; Gln; Q tryptophan; Trp; W NHPbf (Tr) H NH2 (Boc) HN NH N N SH (Tr) S H H H H 2 H HOOC NHFmoc HOOC NHFmoc HOOC NHFmoc HOOC NHFmoc HOOC NHFmoc

lysine; Lys; K arginine; Arg; R cysteine; Cys; C cystine; Cys2; histidine; His; H winter semester 09 Daniel Obrecht, Polyphor Ltd 49 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Solid-phase peptide synthesis: coupling reagents uronium salts

- - - PhO N X : PF6 HBTU; BF4 TBTU DPPA (diphenyl-phosphoryl ) P N3 N Tetrahedron Lett. 1989, 30, 1927 PhO N NMe2 O O base - NMe2, X R-COOH R-CON + 3

- - N X : PF6 HATU carbodiimides N J. Chem. Soc., Chem. Commun. 1994, 201 N N N NMe2 R1 N C N R2 , N Y= CH, N O Y N - NMe2, X 1 2 OH + R =R = iPr (DIC) R1=R2=cyclohexyl (DCC) 1 2 + - R =Et; R =CH2CH2N Me2, Cl (EDCI) - - - N X : PF6 , BF4 , (Castro's ) N Tetrahedron Lett. 1975, 1219 acid fluorides N NMe2 O P NMe2 - NMe2, X base + R-COOH R-COF F N F N - N N X P N ,PF6 (X=Cl, PyCloP) N (X=Br, PyBroP) F + J. Org. Chem. 1994, 59, 2437 winter semester 09 Daniel Obrecht, Polyphor Ltd 50 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Solid-phase peptide synthesis: protective groups

Fmoc strategy: Cleavage

Main chain (backbone) amino groups: Fmoc 20% piperidine/DMF, rt

Side chain amino groups (Lys, Orn, Dab): Boc TFA, CH2CH2, triisoprpoylsilane*

Side chain carboxylic acids (Glu, Asp): t-butyl esters TFA, CH2CH2 triisopropylsilane*

Side chain primary amides (Gln, Ans): N-trityl TFA, CH2Cl2, triisopropylsilane*

Side chain hydroxy(phenol) groups (Ser, Thr, Tyr):

t-butyl ethers TFA, CH2Cl2, triisopropylsilane*

Side chain indole and imidazole groups (Trp, His): N-trityl TFA, CH2Cl2, triisopropylsilane*

Side chain guanidine groups (Arg): Pmc, Pmb TFA, CH2Cl2, triisopropylsilane*

*other scavengers like thioanisol

phenol,H2O, thiocresol and others are used winter semester 09 Daniel Obrecht, Polyphor Ltd 51 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: peptoids

Peptoids: ideal scaffold for parallel and combinatorial synthesis

R1 O R3 R1 O R3 H H N N N N N N peptide backbone N N N azapeptide backbone H H H H O R2 O O R2 O

R2 O N N N peptoid backbone R1 O R3 O

-protease stability increased

-number of H-bond donors reduced (can be also disadvantage)

-number of rotatable bonds increased (tertiary amides have lower trans-cis barrier)

-prediction of peptoid backbone conformation quite difficult (flexibility)

-ideally suited for library synthesis: large number of building blocks available available by solid-phase synthesis split-mixed synthesis possible winter semester 09 Daniel Obrecht, Polyphor Ltd 52 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: peptoids

Approach A: sequential coupling of N-substituted glycines

O R1 O R1 O R3 O R1 i, ii N Fmoc N N N N N H2N N H N Fmoc H H O R2 O R2

Approach B: sequential coupling of glycine followed by reductive amination with aldehydes

1 1 O H O R O R iii, iv N v N Fmoc N N H N N N Fmoc H H H O H iii, iv

O R1 O R1 O R3 N H N N N N H N N H H 2 2 O R O R2

2 i: DBU, DMF; ii: PyBop or PyBrop, R NFmocCH2COOH; iii: DBU, DMF; vi: RCHO, Na(OAc)3BH or NaCNBH3, MeOH; v: Fmoc-Gly, PyBop or PyBrop; vi: DIC, DMF, BrCH2COOH; vii: R-NH2, DMSO winter semester 09 Daniel Obrecht, Polyphor Ltd 53 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: peptoids

Approach C: coupling of bromo-acetic acid followed by nucleophilic displacement with amines

1 O O R1 O R vi Br vii N vi, vii N H NH2 N N H N N H H H O R2

Proc. Nat. Acad. Sci. USA 1992, 89, 9367

O R1 O R3 N N H2N N H O R2 2 i: DBU, DMF; ii: PyBop or PyBrop, R NFmocCH2COOH; iii: DBU, DMF; vi: RCHO, Na(OAc)3BH or NaCNBH3, MeOH; v: Fmoc-Gly, PyBop or PyBrop; vi: DIC, DMF, BrCH2COOH; vii: R-NH2, DMSO

O

O Screening 18 pools originated from split-mixed synthesis 3 N for [ H]-DAMGO (-specific) binding to opiate receptor. HN CONH2 Chir 4531: 6nM O

Chir 4531 OH winter semester 09 Daniel Obrecht, Polyphor Ltd 54 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: oligosccharides

O O S Ph O HO N3 O OH OPiv S i PivO O O S BnO O OBn PivO O OPiv Ph BnO O S Ph O HO N3 ii O ii

O Ph O S O O Ph O S O N3 O OPiv O N3 O O BnO O OBn O BnO PivO OPiv PivO iii iii

O O Ph O OH Ph O OH O O OPiv N3 N3 O O O O BnO OBn PivO OPiv BnO PivO

i: Cs2CO3, Merryfield resin; ii: Tf2O, 2,6-di-tert-butyl-4-methylpyridine, CH2Cl2, -60 to -20°; iii: Hg(OCOCF3)2, CH2Cl2, H2O, r.t.

D. Kahne et al. J. Am. Chem. Soc. 1994, 116, 6953; ibid J. Am. Chem. Soc. 1994, 116, 1766; ibid J. Am. Chem. Soc. 1989, 111, 6881 winter semester 09 Daniel Obrecht, Polyphor Ltd 55 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Questions

1. Name at least three different types of solid supports?

2. Give at least two different ways to synthezise chloro-methyl polystyrene?

winter semester 09 Daniel Obrecht, Polyphor Ltd 56 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Drug-like molecules-the rule of 5

What is a drug-like molecule- how are drugs adminstered

Topical administration: type of molecules

-intra-, trans- and extradermal: sprays, ointments, powders, plasters small molecules (<600) -inhalation: sprays, powder inhalators peptides, proteins (, fusion proteins) and others Subcutaneous administration:

-by syringes; special devices (slow release) especially well suited for proteins (e.g. antibodies) Intravenous (i.v.):

-injections (syringes) of solutions of the drug into venes (blood-stream) small molecules (<600) peptides, proteins (antibodies, Intraperitoneous (i.p.): fusion proteins) and others

-injections (syringes) in the peritoneous small molecules (<600) peptides, proteins (antibodies, Oral (parenteral): fusion proteins) and others

-formulation of the drug into various forms of pills; absorption through the small molecules (<600) mucosa into the blood stream winter semester 09 Daniel Obrecht, Polyphor Ltd 57 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: parallel synthesis of single compounds

R1-20 O R1/2 H N O H2N N H O R1-20 O

800 products R2 R1 O O H2N H2N O O 40 reaction vessels R1 R1 OH 2 3 10 R20 OH R2 3 R10 R20 FmocHN R R R FmocHN R O 40 times couple and cleave O

O R1 O R20 O R2 O R2 H N O H N O H2N O H2N O 2 N 2 N N N H H H H R1 O R1 O R1 O R20 O

40 individual products R1 R1 800 reaction vessels OH R2 3 R10 R20 OH R2 R3 R10 R20 FmocHN R FmocHN O 40 times couple and cleave O

R1 O R1 R20 O R20 R1 O R2 R20 O R2 H H H H N O N O N O N O H2N N H2N N H2N N H2N N H H H H O R1 O O R1 O O R1 O O R20 O

800 individual products winter semester 09 Daniel Obrecht, Polyphor Ltd 58 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: parallel synthesis of mixtures

R1-20 O R1/2 H N O H2N N H O R1-20 O

800 products R2 R1 O O H2N H2N O O 2 reaction vessels R1 R1 OH 2 3 10 20 OH 2 3 10 R20 FmocHN R R R R FmocHN R R R O 2 times couple* and cleave O

2 2 O R1 O R1 O R O R H N O H N O H2N O H2N O 2 N 2 N N N H H H H R1 O R20 O R1 O R20 O

mixture of 20 products mixture of 20 products 1 R1 R 20 OH 2 3 10 R20 OH R2 R3 R10 R FmocHN R R R FmocHN O 2 times couple* and cleave O

R1 O R1 R20 O R1 R1 O R2 R20 O R2 H H H H N O N O N O N O H2N N H2N N H2N N H2N N H H H H O R1 O O R20 O O R1 O O R20 O mixture of 400 products *cocktail of 20 amino acids mixture of 400 products winter semester 09 Daniel Obrecht, Polyphor Ltd 59 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: one bead-one compound

R1 2 R1-20 O R1/2 R H O O N O H N H N H N N 2 2 2 H O O R1-20 O O

800products mix

divide

R1 2 R1 R2 R O O O O H2N H2 N H2N H2N O O O O Pool 1 Pool 2 Pool 3 Pool 20 1 2 R R R20 OH OH couple, cleave OH couple, cleave FmocHN FmocHN FmocHN O O O

O R1/2 O R1 /2 O R1/2 H N O H N O H N O 2 N 2 N 2 N H H H R1 O R2 O R20 O

Pool 1 (2 products) Pool 2 (2 products) Pool 2O (2 products)

mix

divide

R1 O R1/2 R2 O R1 /2 R20 O R1/2 H H H N O N O N O H2 N N H2N N H N N H H 2 H O R1-20 O O R1-2 0 O O R1-20 O Pool 1 (40 products) Pool 2 (40 products) Pool 20 (40 compounds) winter semester 09 Daniel Obrecht, Polyphor Ltd 60 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: peptides

Parallel synthesis of compound mixtures:

++ high-throughput with little synthetic manipulations -- difficult interpretation of screening results (synergistic and non-synergistic effects) -- resynthesis of individual compounds necessary generally not used anymore

Parallel synthesis of single compounds

++ clear screening results ++ identification of structure unambiguous ++ resynthesis generally not necessary; repurification required -- many parallel synthetic steps and reaction vessels required; usually expensive robotic equipment required method of choice for relatively small compound libraries

Split mixed synthesis of mixtures (one bead- one compound):

++ usually clear screening results can be obtained; on bead or in solution ++ large libraries with few synthetic steps can be obtained in real combinatorial fashion -- only small amounts are usually obtained and structure of hits have to be determined by cleavage and MS or deconvolution or tagging (binary codes or radio-frequency labels) startegies method of choice for large combinatorial libraries winter semester 09 Daniel Obrecht, Polyphor Ltd 61 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: peptides

Parallel synthesis of single compounds

-tea bags: e.g. R. A. Houghton et al. Proc. Natl. Acad. Sci. USA., 1985, 82, 5131; G. Jung et al. Pept. Res. 1991, 4, 88

label Spatially separated reaction compartments, where peptides can polypropylene net be synthesized by capitalizing on the fact that all washing, resin beads (up to 100mg) neutralisation and deprotection steps can be performed simulta- neously. For parallel synthesis the bags are separated before the coupling steps.

-multi pins: H. M. Geysen et al. Proc. Natl. Acad. Sci. USA., 96 pins 1984, 81, 3998 96 wells polyacrylic acid- grafted polyethylene Spatially separated parallel synthesis of compounds in microtiter format

winter semester 09 Daniel Obrecht, Polyphor Ltd 62 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: peptides: photolithography

Photolithography: light-directed combinatorial synthesis (S. P. A. Fodor et al. Science 1991, 251, 767)

Spatially separated multiple parallel synthesis using photocleavalbe protective groups such as the N-nitro- veratrylcarbonyl group (NVOC), allows the controlled synthesis of (peptide) libraries by the spatially controllable addition of specific reagents to specific locations.

NO2 H O N COOH

NO2 O R O R' O R H O N X O O N n H N X O H 2 n O h R' h h NO2 96 well format h h CHO R' R O H N Xn O H2N O

winter semester 09 Daniel Obrecht, Polyphor Ltd 63 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Questions

1. What are the advantages of a split-mixed approach over a parallel synthesis approach and for which types of molecules will you apply this technology? Please discuss.

winter semester 09 Daniel Obrecht, Polyphor Ltd 64 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: peptides: split-mixed technology (one bead-one compound)

RA-G O RA-G H N O H2N N H O RA-G O 73= 343 tripeptides O O O O O O 1 2 1 2 3 HO X NHFmoc O X NH X -NHFmoc O X NH X -NH X -NH2 step 1 couple couple, cleave dipeptides tripeptides O A A O A NHFmoc Pool 1A Pool 2A (7) Pool 3A (49) Pool 4A(49) O B B O B NHFmoc Pool 1B Pool 2B (7) Pool 3B(49) Pool 4B (49) O mix C mix C O C NHFmoc Pool 1C Pool 3C (49) cleave Pool 2C (7) cleave Pool 4C (49) O split D split D O D NHFmoc Pool 1D Pool 2D (7) Pool 3D (49) Pool 4D (49) 342 tripeptides O E E on bead O E NHFmoc step 2 Pool 1E Pool 2E (7) step 3 Pool 3E (49) Pool 4E (49) O F F O F NHFmoc Pool 1F Pool 2F (7) Pool 3F (49) Pool 4F (49) O G G O G NHFmoc Pool 1G Pool 2G (7) Pool 3G (49 Pool 4G (49) winter semester 09 Daniel Obrecht, Polyphor Ltd 65 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: peptides: split-mixed technology (one bead-one compound)

Iterative deconvolution (Nature 1991, 354, 84; Science 1994,266, 2019; Proc. Nat. Acad. Sci, USA 1993, 90, 10811)

Sreening reveals in which of the Pools 4A to 4G are the most active compounds; determines most active building block in the 3rd step (position): assumption it is B; Pools 2A to 2G are resynthesized but not mixed and coupled with building block B in the third step. The compounds are retested and this determines the favoured building block in the second step (position): assumption it is G. Now the initial 7 resins are coupled with G (2nd step) and B (3rd step) and the resulting Compounds tested again. The most active tripeptide is now identified: assumption it is A-G-B.

Recursive deconvolution (e.g. Nat. Acad. Sci, USA 1994, 91, 11422)

By using this technique samples of the initial resins as well as Pools 2A-2G and Pools 4A-4G are stored away for resynthesis of sublibraries similarly to the iterative deconvolution procedure.

Positional scanning (e.g. Nat. Acad. Sci, USA 1994, 91, 11422; Life Sci. 1993, 52, 1509)

Indexed or orthogonal libraries (e.g. Chem. Biol. 1995, 2, 621; Tetrahedron Lett. 1997, 38, 491)

Binary encoding (e.g. W. C. Still et al. Proc. Nat. Acad. Sci, USA 1993, 90, 10922)

Radio-frequency tags (Irori system): (J. Am. Chem. Soc. 1995, 117, 10787; J. Org. Chem. 1997, 62, 6092)

winter semester 09 Daniel Obrecht, Polyphor Ltd 66 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

6.5. Examples for libraries synthesized on solid-phase: peptides: split-mixed technology : binary encoding

Binary encoding 7 building blocks (e.g. W. C. Still et al. Proc. Nat. Acad. Sci, USA 1993, 90, 10922) RA-G O RA-G H N O 3 steps H2N N H O RA-G O requires 9 tags 73= 343 tripeptides 1 2 3 4 5 6 7 8 9 step 1: building block A: 1 0 0 tag 1 for tripeptide E-C-G: B: 0 1 0 tag 2 C: 0 0 1 tag 3 1 3 6 7 8 9 D: 1 1 0 tags 1 + 2 E: 1 0 1 tags 1 + 3 GC/MS F: 0 1 1 tags 2 + 3 G: 1 1 1 tags 1 + 2 + 3 step 1 step 2 step 3 step 2: building block A: 1 0 0 tag 4 GC/MS B: 0 1 0 tag 5 NO2 O C: 0 0 1 tag 6 1 0 1 0 0 1 1 1 1 D: 1 1 0 tags 4 + 5 O O OAr E: 1 0 1 tags 4 + 6 step 1 step 2 step 3 n F: 0 1 1 tags 5 + 6 G: 1 1 1 tags 4 + 5 + 6 O Cl Cl Cl Cl step 3: building block A: 1 0 0 tag 7 B: 0 1 0 tag 8 Ar: C: 0 0 1 tag 9 D: 1 1 0 tags 7 + 8 Cl Cl Cl E: 1 0 1 tags 7 + 9 F: 0 1 1 tags 8 + 9 n: 0-x variations of Ar and n gives rise to the different tags, G: 1 1 1 tags 7 + 8 + 9 which can be detected in minute amounts by GC/MS winter semester 09 Daniel Obrecht, Polyphor Ltd 67 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: peptides: radio-frequency tags

Radio-frequency tags (Irori system): (J. Am. Chem. Soc. 1995, 117, 10787; J. Org. Chem. 1997, 62, 6092) radio frequency tag (code)

fret resin beads

code A Irori can (polypropylene)

codeB

AB DB A D codeC CB C mix codeD couple B BB EB B E cleave codeG codeE sort codeF (radio frequency GB F G reader) FB

winter semester 09 Daniel Obrecht, Polyphor Ltd 68 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: peptides: split-mixed technology (one bead-one compound)

Application of the split-mixed method for discovery of Factor Xa inhibitors

Factor Xa is implicated in the blood coagulation cascade: inhibitors of Factor Xa could be potentially useful as anti-thrombotic agents (Biochemistry 1998, 37, 1053-1059; Drug Discovery Today 1998, 3, 223))

octa-peptide library (split-mixed technology)

HN on-bead screening NH - 2 N+ X

O O O H-Tyr-Ile-Arg-Leu-Ala-Ala-Phe-Thr-NH2 (SEL1691) H H O N N N N N H H NH O O 2

SEL2602

winter semester 09 Daniel Obrecht, Polyphor Ltd 69 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: peptides: split-mixed technology (one bead-one compound)

Application of the split-mixed method for discovery of Factor Xa inhibitors Blood coagulation factor Xa is implicated in hemostasis (bloodcoagulation)

Thrombosis: pathological form of hemostasis: myocardial infarction (arterial thrombosis) pulmonary embolism (venary thrombosis intrinsic pathways infection by gram-negative organisms XII XII

XI XIa Factor X extrinsic pathways

IX IXa VIIa VII 2+ VIIIa/Ca2+ TF*/Ca 2+ Factor Xa /Va/Ca Fibrinogen Factor Xa inhibitors Prothrombin Thrombin

Fibrin

Thrombin inhibitors XIIIa

*tissue factor cross-linked fibrin clot winter semester 09 Daniel Obrecht, Polyphor Ltd 70 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

6.5. Examples for libraries synthesized on solid-phase: peptides: split-mixed technology (one bead-one compound)

Application of the split-mixed method for discovery of Factor Xa inhibitors

Current anti-thrombotic therapies include: aspirin

Thrombin inhibitors: heparin (sulphated poly-saccharide); heparin analogues; hirudin; small molecular weight thrombin inhibitors (not on the market yet)

high levels of thrombin inhibition necessary; unacceptable bleeding

Factor Xa inhibitors: trypsin-like serine protease

current molecules in clinical trials

NH2 NH2 HN HN NH NH O O S COOH NH O N O O H H2N N S N N N S H NH O O O Cor-Therapies (IC50 factor Xa: 0.65nM) Yamanouchi (IC50 factor Xa: 1.3nM) (IC50 thrombin: 10.0M) (IC50 thrombin: >100M)

winter semester 09 Daniel Obrecht, Polyphor Ltd 71 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: peptides: split-mixed technology (one bead-one compound)

Application of the split-mixed method for discovery of Factor Xa inhibitors

Synthesis of a octa-peptide library by split-mixed synthesis and colorimetric assay on bead:

Streptavidin-AP

biotinylated Factor Xa Factor Xa biotin complex

inhibitor AP: alkaline phosphatase

Factor Xa biotin inhibitor inhibitor

Factor Xa biotin Streptavidin-AP biotin Factor XA

inhibitor

biotin Factor Xa

AP: alkaline phosphatase de-phosphorylates 5-bromo-4-chloro-3-indolyl phosphate forming a blue precipitate, which stains the beads winter semester 09 Daniel Obrecht, Polyphor Ltd 72 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: peptides: split-mixed technology (one bead-one compound)

Application of the split-mixed method for discovery of Factor Xa inhibitors

Synthesis of a octa-peptide library by split-mixed synthesis and colorimetric assay on bead:

All active compounds contained Tyr-Ile-Arg at the N-terminus

H-Tyr-Ile-Arg-Leu-Ala-Ala-Phe-Thr-NH2 (SEL1691; IC50: 4-15M)) Drug Discovery Today 1998, 3, 223

HN HN NH2 OH NH2 NH2 HN HN O O O O O O H H O H H O N N N N N N N N N N H H NH H H NH O O 2 O O 2

SEL2489 (IC : 25nM; half-life in SEL2316 (IC50: 80nM) 50 rats and rabbits 8 to 10 minutes)

winter semester 09 Daniel Obrecht, Polyphor Ltd 73 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: peptides: split-mixed technology (one bead-one compound)

Application of the split-mixed method for discovery of Factor Xa inhibitors HN HN NH2 OH NH2 NH2 HN HN O O O O O O H H O H H O N N N N N N N N N N H H NH2 H H NH O O O O 2

SEL2489 (IC50: 25nM; half-life in SEL2316 (IC50: 80nM) rats and rabbits 8 to 10 minutes)

HN NH2 + X- N NH 2 N+

O O O H H O O O O N N H H O N N N N N H H NH2 N N N O O H H NH O O 2

SEL2602 (IC50: <25nM; improved half-life) SEL2602 (IC50: 285nM)

winter semester 09 Daniel Obrecht, Polyphor Ltd 74 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: peptides: thrombin inhibitors)

Application of solid-phase chemistry for discovery of thrombin inhibitors

multi-directional cleavage

R R R1HN i, ii N O iii, iv N O N N NH2 x TFA N NHBoc O O O O Fmoc O Ph Ph Ph Ph

i: 20% piperidine, DMF; ii: amino acid, HBTU, HOBt, DIEA, DMF; Cl 1 iii: R NH2, DMF; iv: TFA

J. Med. Chem. 1998, 41, 401-406; J. Med. Chem. 1998, 41, 1011-1013 Cl N NH x TFA O 2 O Ph IC50: 3nM Ph

winter semester 09 Daniel Obrecht, Polyphor Ltd 75 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: inhibitors of protein-protein interaction

Characteristic of large surface protein-protein interactions

•Fundamental to the functioning of biological systems –many proteins function as part of complexes –cell to cell signalling –cell adhesion –long distance communication () •Specific inhibition offers important therapeutic potential:

•Generally form across a large area of interacting surfaces: 700-1300 A2 average •High binding energy •Difficult to inhibit with small molecules? discovery approaches have largely failed •Antibodies and fusion proteins () have emerged as important drugs: however, these act only on extracellular targets •Slow to mature : initial binding is thought to occur through “hotspots” in selected areas

winter semester 09 Daniel Obrecht, Polyphor Ltd 76 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

6.5. Examples for libraries synthesized on solid-phase: inhibitors of protein-protein interaction

average contact surface area in protein-protein interactions: 600-900 A° 2

Bogan, A. A.; Thorn, K. J. Mol. Biol. 1998, 280, 1-9

topology of the hotspots determine specificity Hotspots

O-Rings

winter semester 09 Daniel Obrecht, Polyphor Ltd 77 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: inhibitors of protein-protein interaction

Extracellular GH-receptor

growth

Kd ˜0.3 nM Buried surface on each protein ˜1300 Å2

Wells, PNAS, 1996, 93, 1-6; Science, 1995, 267, 383 winter semester 09 Daniel Obrecht, Polyphor Ltd 78 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: inhibitors of protein-protein interaction

Petidic -helix mimetics as inhibitors of protein-protein interactions

Dr. Sjoerd Wadman

•~40% of all HTS campaigns in GSK were targeted to find small PPI inhibitors in 1998 •Very low success rate •Many assays suitable for HTS developed

•Most were “shelved” during portefolio review •Addressed one important target with full resource

winter semester 09 Daniel Obrecht, Polyphor Ltd 79 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: inhibitors of protein-protein interaction

Oncostatin M

-4-Helical Cytokine

-Pro-inflammatory hormone

-Therapeutic applications:

-Rheumatoid Arthritis

-Asthma

-Interacts with 7TM receptor

-Part of a large family of important proteins

winter semester 09 Daniel Obrecht, Polyphor Ltd 80 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: four helix bundle proteins Family Long Chain Short Chain Dimeric-dimeric 4-helix bundle 4-helix bundle 4-helix bundle Growth Hormone IL-2 IL-10 Prolactin IL-4 IFN-G IL-6 IL-13 IFN-B IL-3 IFN-a IL-7 IL-5 LIF GM-CSF OSM M-CSF CNTF CDF

winter semester 09 Daniel Obrecht, Polyphor Ltd 81 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: four helix bundle proteins

winter semester 09 Daniel Obrecht, Polyphor Ltd 82 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: four helix bundle proteins

Note side-on interactions of -helices winter semester 09 Daniel Obrecht, Polyphor Ltd 83 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: four helix bundle proteins

--helices cluster with hydrophobic residues poiting at the inside (red) whereas hydrophilic residues (yellow) are located at the outside

-challenge: inhibit formation of 4-helix bundle formation by interacting with the helical momomers

winter semester 09 Daniel Obrecht, Polyphor Ltd 84 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: four helix bundle proteins

-Helix side-chains are arranged like the steps on a spiral staircase

-Regular distance

-Regular angle

-Model potential antagonists and pick the ones that fit the model best

-Aimed to antagonise “side-on” -helix interactions through 3 side-chains -Large - 100k compounds -Non-peptidic -Split - mix synthesis on solid phase -Fully Encoded / Partial Release Technology -384 screening format

winter semester 09 Daniel Obrecht, Polyphor Ltd 85 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: four helix bundle proteins Amino acid-like side-chains 1-14 1-14

5-7 angstrom 5-7 angstrom FG1 FG2 FG3

LINK1 LINK3 CORE 1 CORE 2 LINK2

1-7 1-7 Spacers hold side chains in correct orientation winter semester 09 Daniel Obrecht, Polyphor Ltd 86 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: four helix bundle proteins

Propose Connectivity Model compounds and potential monomers proposed library

Take best connectivity Measure fit against and best monomers Helix Vector Model

winter semester 09 Daniel Obrecht, Polyphor Ltd 87 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: four helix bundle proteins

1 R R2 R3 O H N H N N O Core 1 N Core 2 H O H O

Amines Amino acids -Amino acids Amino acids Amines 14 7 14 7 14

Tags 4 3 4 3 3 required

Total number of compounds: 134'456 winter semester 09 Daniel Obrecht, Polyphor Ltd 88 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: four helix bundle proteins amines neutral

NH2 NH2 NH2 NH2

H N 2 H2N NH2 NH2 O TrO NH2 NH2 O O

acidic

O NH2 O NH2 O O basic

N NH2 NH N 2 N NH Boc NH2 BocHN 2 N winter semester 09 Daniel Obrecht, Polyphor Ltd 89 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

6.5. Examples for libraries synthesized on solid-phase: four helix bundle proteins

Core 1 amino acids

NHFmoc NHFmoc HOOC NHFmoc H H HOOC HOOC H H H H

NHFmoc NHFmoc H H HOOC HOOC H H

NHFmoc HOOC Fmoc N HOOC

OMe OMe winter semester 09 Daniel Obrecht, Polyphor Ltd 90 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: four helix bundle proteins

-Amino acids HOOC NHFmoc HOOC NHFmoc HOOC NHFmoc HOOC NHFmoc H H H Gly Ala Leu Val

HOOC NHFmoc HOOC NHFmoc HOOC NHFmoc HOOC NHFmoc H H H H Phe Tyr OtBu OtBu Ser Thr OtBu

HOOC NHFmoc HOOC NHFmoc HOOC NHFmoc HOOC NHFmoc H H H H Met COOtBu Arg MeS Asp COOtBu NBoc HN Hyp (hydroxyproline) Glu NHBoc winter semester 09 Daniel Obrecht, Polyphor Ltd 91 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: four helix bundle proteins

Core 2: Diacids (Anhydrides)

O H O H O O

O O O O O

O H O H O O

O O O H H

O O O

H O O H O

winter semester 09 Daniel Obrecht, Polyphor Ltd 92 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: four helix bundle proteins

Major conformers closely match -helix in side-chain display vectors

H Me N

O COOH O HN O O N H N H

winter semester 09 Daniel Obrecht, Polyphor Ltd 93 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: four helix bundle proteins

3 building blocks Concepts 3 products in pools of 1

Mix -Split Mix synthesis -Library encoding 9 products in pools of 3 -Differential release -Single Bead screening

Mix

27 products in pools of 9

1 bead = 1 compound

winter semester 09 Daniel Obrecht, Polyphor Ltd 94 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: four helix bundle proteins

Codes for Building Blocks each building block

winter semester 09 Daniel Obrecht, Polyphor Ltd 95 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: four helix bundle proteins

Affimax encoding strategy

H Linker N O O N O O N N H O N alloc N H O HN

Product on acid- -Codes are different amines or photolabile linker -Cleaved with cHCl -Dansylate and analyse by hplc winter semester 09 Daniel Obrecht, Polyphor Ltd 96 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: four helix bundle proteins

Differential release

PHOTO-LABILE LINKER NO2 O H N HN O O OMe CODE Product

O HN O N H O

OMe ACID-LABILE LINKER

50% on acid labile linker Product can be released 50% on photolabile linker twice at different times

winter semester 09 Daniel Obrecht, Polyphor Ltd 97 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: four helix bundle proteins

Single bead screening

Acid cleave Screen pools

Active pool

Plate out individual beads photocleave screen single beads

Active bead

Cleave Tag from bead Identify active molecule winter semester 09 Daniel Obrecht, Polyphor Ltd 98 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: four helix bundle proteins

Single bead screening

-Compounds prepared on Tentagel

-Reactions done on an ACT synthesis robot

-All building blocks were “rehearsed”

-Analysis throughout

-1st stage by magic angle nmr

-later stages by lc/ms and tag reading

-lc/ms aided using “analytical constructs”

-All done by one in 5 months

winter semester 09 Daniel Obrecht, Polyphor Ltd 99 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: four helix bundle proteins

Resin differentiation OH BocNH 10:1 O OH FmocNH O O O H N NH 2 2 FmocNH NHBoc N N DIC, HOBT, DMF Amino Tentagel H H 1 10

DIPEA, DMF O OH O N O O O O O Code H 1 Aloc N NHBoc H2N NHBoc N N N N N H H DIPEA, HATU, DMF H H O Code 1

95%TFA O H N HN Photolinker Photolinker O H O O Acid Linker Aloc N H N N Aloc N NH H N N N 2 O H H Code O DIPEA, HATU, DMF 1 Code 1 HN AcidLinker N H O winter semester 09 Daniel Obrecht, Polyphor Ltd 100 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: four helix bundle proteins

Prepared resin

winter semester 09 Daniel Obrecht, Polyphor Ltd 101 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: four helix bundle proteins

Reductive amination

NO2 NO2 O O H O N N H H HN O N HN O O OMe H2N O OMe CODE N H CODE N Me NBH(OAc) H O 4 3 AcOH, DMF O HN O N HN O H N O O H H O N OMe OMe

winter semester 09 Daniel Obrecht, Polyphor Ltd 102 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: four helix bundle proteins

CODE Linker Library1)Split/mixsynthesis 1 N CODE Linker H N 2) O NHFmoc MeO HO O

OM e MeO NHFmoc OMe HATU,DMF,DIPEA 1) Split/mix 2) Code deprotection 3) Codecoupling 4) Fmoc deprotection 5) HATU,DIPEA,DMF O NHFmoc HO

1) Split/mix 2) Code deprotection CODE Linker 3) Codecoupling N 4) Fmoc deprotection MeO 5) Pyridine O CODE Linker N O O MeO MeO NH O O O O MeO O O NHFmoc O O OH winter semester 09 Daniel Obrecht, Polyphor Ltd 103 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: four helix bundle proteins

Library synthesis 2

1) Split/mix 2) Code deprotection 3) Codecoupling 4) pyridine, DMF F F F F F O F CODE Linker F O F CODE Linker N N MeO MeO O 5) DIPEA, DMF O O MeO O MeO O NH NH H N OtBu O 2 O O O O O

OH HN OtBu

O

winter semester 09 Daniel Obrecht, Polyphor Ltd 104 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

6.5. Examples for libraries synthesized on solid-phase: four helix bundle proteins

Final construct

O H N O HN

O CO2H C H N O TARGET HN O N 27 34 4 8 H [542.6] OMe OMe

CONSTRUCT O H N NO2 O HN

O CO2t-Bu O N O N C3C10 BB H H MdD o MH' N O'O' BP HN O OMe NH2 NH2 O MeO OMe

O O O O O O photo-labile H N N N O N N N N H O O O O O O

NH2 NH2 NH2 OO Mo EB O OMe PD PP MP HN O OMe DD HH C3C4 N H H O N O N O CO2t-Bu tag OMe O HN N acid-labile H O winter semester 09 Daniel Obrecht, Polyphor Ltd 105 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: four helix bundle proteins

Screening of library

•Primary screen :168 x 96 wells / ~30 beads per well • 42 plates in 384 format • Half of acid-cleaved material used • Screening concentration ~ 2mM/component

Histogram of 1ry screening data for GL1495 in OSM

2000

y 1500 c n e

u 1000 q e r

F 500

0

0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 e 2 1 1 - 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 0 0 r - - - 1 1 o M % Inhibition winter semester 09 Daniel Obrecht, Polyphor Ltd 106 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: four helix bundle proteins

Screening results -21 sub-micromolar hits re-made as discretes -5 Compounds potent and selective -17 also inhibit TNF in same cell line : signalling inhibitors?

Source Number Hits Leads

GSK compound collection 250.000 3134 0

Natural product extracts 70.000 18 0

Aptamers 2000.000 78 13

Apha helix library GL1495 134.456 21 5 winter semester 09 Daniel Obrecht, Polyphor Ltd 107 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: four helix bundle proteins

Acknowledgements

-Chemistry: Helen Jenkins -Biology: Paul Life, John Spaul -Screening: Liz Clarke, Sandra Arpino -Modelling: Darren Green

+ many others

And Dr. Sjoerd Wadman

winter semester 09 Daniel Obrecht, Polyphor Ltd 108 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: peptides: phage display

Gene3 protein

The native phage contains a DNA genome surrounded by a protein coat. At one end of the phage are 5 copies of the Gene3 gene product expressed from the phage genome.

The phage infects a host bacterial cell (e.g. E. Coli) and uses the bacterium to replicate itself, leading to secretion of progeny phage. In phage display, the E. Coli host contains a DNA plasmid encoding Gene3 fused to either a protein of interest, or a library of random E. coli peptides. As the phage replicates, Gene3 fusion proteins (expressed from the plasmid) are incorporated into the phage coat. Libraries of plasmid phages can be produced, with each bacterium producing phages with a unique peptide displayed at its surface determined by the plasmid (the phage also contains the at this point) of the host cell.

G. P. Smith et al. Meth. Enzymol. 1993, 217, 228; J. K. Scott et al. Curr. Opin. Biotechnol. 1994, 5, 4) winter semester 09 Daniel Obrecht, Polyphor Ltd 109 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: peptides: Phage display panning techniques

A library of phages, each displaying a unique peptide sequence, is allowed to bind to a plate coated with the target molecule (e.g. protein).

Unbound phages are washed away.

Specifically bound phages are eluted. The eluted phages are amplified and panning process is repeated several times. After 3-4 rounds of panning, individual phage clones are isolated and sequenced to determine the sequence of the displayed winter semesterpeptide09 . Daniel Obrecht, Polyphor Ltd 110 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

Examples for libraries synthesized on solid-phase: phage display

Functional mimicry of a protein hormone by a peptide agonist: EPO receptor complex; Science 1996, 273, 464-471

Erythropoetin (EPO) is the primary hormone that regulates the proliferation and differentiation of immature erythroid cells. Recombinant human EPO is widely used in the treatment of patients with anemia due to renal failure, cancer chemotherapy, and AZT treatment. The EPO receptor belongs to the cytokine receptor superfamily, which includes receptors for other hematopoetic growth factors, such as interleukins (IL) and colony-stimulating factors (CSF), as well as growth hormone (GH), prolactin, and ciliary neurotrophic factor (CNTF).

Screening of a phage libray (Annu. Rev. Microbiol. 1993, 47, 535) against immobilized EPOR gave an active consens sequence, and a very potent member of the family with agonistic activity in vitro and vivo was identified (see Figure). COOH G

G Q P K C V W T L S S P G T Y S C H YF G G

H2N winter semester 09 Daniel Obrecht, Polyphor Ltd 111 winter semester 09 Daniel Obrecht, Polyphor Ltd 112 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 4. Combinatorial Synthesis of Biopolymers

winter semester 09 Daniel Obrecht, Polyphor Ltd 113

Polyphor2001-1/JPO/DO Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Chemical strategies used for the synthesis of small molecule libraries: overview

Steps required for the design and synthesis of a library

1. Planning (literature search and of the problem)

2. Synthesis strategy (linear, convergent, multicomponent reactions, tandem reactions...)

3. Building blocks (commercial or self-made)

4. Parallel or combinatorial synthesis (in solution; in solution by aid of solid-supported reagents; on solid supports)

5. Parallel work-up (two phases: aqueous, organic, fluoruos; solid-phase extraction)

6. Purification: parallel flash ; high-throughput HPLC coupled to MS on normal and reversed phase

7. Analysis, stability and storage of products

winter semester 09 Daniel Obrecht, Polyphor Ltd 114 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Synthetic strategies: introduction

sub-library A scaffold

R3 exit vectors: determine the relative orientation of the high H H and low variation substituents and thus the overall shape N N N of the final molecule N O R2 scaffold: MG~290; for the substituents remain MG~210 R1

low variation substituents high variation substituents

sub-library B

scaffold diversity associated with scaffolds: "vertical diversity"; diversity associated with substituents: "horizontal diversity" R3 H H N N N the synthetic strategies generally do not permit simultaneous high variation of substituents R1-R3; rather sub-libraries (e.g. A and B) are planned; also N O R2 SAR data often show that not all substituents are equally importantfor biological R1 activity

high variation substituents low variation substituents winter semester 09 Daniel Obrecht, Polyphor Ltd 115 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Synthetic strategies: convergent, multi-step

Multi-step synthesis of advanced building blocks (scaffold) by linear or convergent synthetic strategies and parallel conversion into final products

O O O 2 R2 R 1 N O 1 N R R1 R N NHR2 N O N Cl H final products building block

winter semester 09 Daniel Obrecht, Polyphor Ltd 116 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Synthetic strategies: classical multi-component approach

Synthesis of advanced building blocks (scaffold) using multi-component reactions and parallel conversion into final products

NH 1 R R3 R3 O NH2 4 O S R + O S H N N 1 2 2 2 R N R R N=C=S R1 N R + building blocks final products O Br R3

winter semester 09 Daniel Obrecht, Polyphor Ltd 117 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Classical multi-component reactions

A A + B + C A B C B C

intermèdiaire

- Classical multi-component reactions (MCR‘s) are have in common that components (e.g. A, B, C) react in a reversible way to a reactive intermediate, which reacts in a irreversible way to the product. Thus, the sequence by which the components are added does nor affect product formation.

- The best known MCR‘s are the following: Ugi, Passerini, Biginelli, Strecker, Hantzsch, Mannich etc.

- Reactions can be ideally performed in a matrix format

- Classical MCR‘s generally yield generally the same scaffold

winter semester 09 Daniel Obrecht, Polyphor Ltd 118 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Classical multi-component reactions

3 R1COOH R CHO 3 1 3 Ugi 4MCR O R NHR4 R1 N 2 4 2 R NH2 R N=C R O 2 4 H+

3 R2 H R3 R irreversible 3 2 N H+ O R R N 4 O N NHR R1 N O R4 N 2 C R1 R O O R4

R1 O-

The classical multi-component reactions are ideally suited for parallel synthesis, however, they yield generally the same scaffold (limited scaffold diversity)

winter semester 09 Daniel Obrecht, Polyphor Ltd 119 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Classical multi-component reactions

Passerini 3-MCR

O 2 3 O R R H 1 4 R COOH + + R N=C 1 N 4 R2 R3 R O R O H. Passerini, Gazz. Chim. Ital. 1921, 51, 126

Strecker synthesis

NH2 RCHO + NH3 + HCN R CN

A. Strecker, Justus Liebigs Ann. Chem. 1854, 91, 345; ibid. 1890, 23, 1474

Bucherer-Bergs variation of the Strecker synthesis O O R1 NH (NH ) SO 1 2 + KCN + 4 2 4 R R R2 N O H H. T. Bucherer et al. J. Prakt. Chem. 1934, 140, 69; ibid. 1934, 140, 28 winter semester 09 Daniel Obrecht, Polyphor Ltd 120 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Mechanism of the Passerini 3-MCC reaction

2 3 Passerini 3MCR 2 R1COOH R CHO R N=C O R 3 1 NHR A B C R O O

H+

2 H 2 R R 2 O H+ irreversible O R O 3 O N NHR R1 O O R3 N C R1 O O R3 reactive intermediate R1 O-

winter semester 09 Daniel Obrecht, Polyphor Ltd 121 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Classical multi-component reactions

Modified Passerini 3-MCR R1 O + - NH4 HCO3 N PhS 2 1 + R2N=C + PhS COOH NHR R CHO S O R. Bossio et al. J. Chem. Res. 1991, 15, 320

O 1 H N 1 1 R + - 2 R R O NH4 HCO3 O HN PhS PhS NHR2 PhS NHR2 NHR2 O O HO S O O O

winter semester 09 Daniel Obrecht, Polyphor Ltd 122 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Classical multi-component reactions

Hantzsch MCR's

R2 S Br R3 N R1 NH + R2 R3 2 R1 S O

R2 S Br R3 N R1N NH + R2 R3 2 R1N S O

COOR2 O O 2 1 COOR + NH3 + X R 3 3 1 R R N R H

R3 O R2OOC COOR2 2 x COOR2 + NH + R3-CHO R1 3 R1 N R1 H A. Hantzsch, Ber. Deutsch. Chem. Ges. 1890, 23, 1474

winter semester 09 Daniel Obrecht, Polyphor Ltd 123 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Classical MCR’s

Erlemeyer azlactone synthesis

R2 O NaOAc N 2 1 1 + Ac2O + R CHO R R N COOH O H O

3-MCR involving a ü1,3¨-dipolar cycloaddition

O MeOOC O MeOOC O N + N R1 CHO + HN R1 O O O N R. Grigg et al. Tetrahedron 1993, 49, 8679

O MeOOC - + N N + O 1 R O winter semester 09 Daniel Obrecht, Polyphor Ltd 124 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Classical multi-component reactions Mannich 3-MCR R1 4 N R O 2 4 H R H R O N 3 5 ; 1 2 + CH2O + 1 N 2 + CH2O + R R R R R R 3 5 N N R R R2 H N H R1

C. Mannich et al. Arch. Pharm. 1 921, 250, 647

Biginelli 3-MCR R1 O O COOR3 + R1CHO HN + COOR3 H2N NH2 R2 O N R2 H

P. Biginelli, Ber. Deutsch. Chem. Ges. 1893, 26, 47; ibid. 1891, 24, 2962

Biginelli 3-MCR (Atwal variation)

R2 NH O COOR4 2 + R CHO + 4 N 1 3 COOR R S NH2 R R1S N R3 H

winter semester 09 Daniel Obrecht, Polyphor Ltd 125 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Classical MCR’s

Grieco's 3-MCR

COOH COOH COOH

COOH CHO H H [4+2] + + H HN N N H H NH2

P. Grieco et al. Tetrahedron Lett. 1988, 29, 5855; R. W. Armstrong et al. Tetrahedron Lett. 1997, 38, 6163

Pauson-Khand MCR O R1 R3 R4 R3 R1 R2 + + CO R2 R4 U. I. Khand et al. J. Chem. Soc. Perkin Trans. 1 1973, 9, 977 winter semester 09 Daniel Obrecht, Polyphor Ltd 126 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Classical multi-component reactions: applications

Applications of MCR's

CHO NO2 O NO2 EtOOC COOEt 2 x COOEt + NH3 + Me N H

R O COOEt Nifedipine (Adalat , Bayer) COOEt + NH3 Me H2N 1 NO CHO 2 NO2 EtOOC O NO2 1 EtOOC COOEt COOEt + Me O N 2

- Nifedipine is a widely used anti-hypertensive drug (is off patent now). It belongs to the Ca2+ channel blockers (other include: Verapamil-type, Dilthiazem-type)

-It can be produced in a Hatzsch-type 3-MCR in a very efficient and cheap way. winter semester 09 Daniel Obrecht, Polyphor Ltd 127 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Application of the Ugi 4-MCR: genetic algorithm

O O + O R2 R2 R4 OH R2 H 1 3 1 4 NHR R NHR + + R N + N 3 3 R1N=C R O H O R NH2 +

L. Weber et al. Angew. Chem. Int. Ed. Engl. 1995, 34, 2280

Genetic algorithms constitute an interesting approach for efficient optimization of multiparameter systems

Parameters: inputs acids, isocyanates, aldehydes, amines; (inhibition of thrombin)

Genetic operations: replication, mutation and crossover

O O O H O O H S N S N N NH O OH O

H2N NH2 x HCl H2N NH2 x HCl winter semester 09 Daniel Obrecht, Polyphor Ltd 128 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

L. Weber et al. Angew. Chem. Int. Ed. Engl. 1995, 34, 2280 O O + O R2 R2 R4 OH R2 H NHR1 R3 NHR1 4 (40) 2 (40) R4 N + N 3 + + R O H O 1 R3NH + R N=C 2 bit pattern 5 (160'000) 3 (10) 1 (10)

H2N NH NH2 NH2 NH2 2 H N 2 O NH2 + 4 amines N N HN

H2N NH H2N NH H2N NH H2N NH NH2 H2N NH

1 2 3 4 1 2 3 4 1 2 3 4 0010 011100 0111 010011 0010 011100 0110 110011 0011 011100 0111 010111 crossover mutation

1st generation: random selection of 20 bit patterns: synthesis

2nd generation: generated by entering first 20 bit patterns into the genetic algorithm which by means of crossover and mutations generated the next 20 bit patterns: synthesis and biological testing of all 40 compounds

3rd generation: the 20 most active compounds (bit patterns) were again entered into the genetic algorithm which generated the next generation: synthesis and testing

after 16 cycles, the average effective inhibitory concentration (EC50) of the 20 best compounds was submicromolar winter semester 09 Daniel Obrecht, Polyphor Ltd 129 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Application of the Asinger-Ugi 6-MCR: Penicillin derivatives

OHC * CO2Me N O O Pht

S PhtN 1. Asinger C6H11N=C S CO2H + NaSH + NH3 N * 2. hydrolysis N NHPht O NHC6H11 Br CHO O

OHC S Br CHO HS CHO CO2Me H2N NHPht

HN=C * CO2Me NPht PhtN O S NPht S O - HN O N O N H

C N C6H11 C6H11

winter semester 09 Daniel Obrecht, Polyphor Ltd 130 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Questions

1. Please name three classical multi-component reactions (MCR‘s)?

2. Give possible products of the following MCR‘s

CHO N=C: COOH MeOH a) + + + 50° NO2 NH2

Cl CF3COOH b) + + CH Cl S CHO 2 2

NH2

winter semester 09 Daniel Obrecht, Polyphor Ltd 131 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Sequential multi-component reactions

C A + B A B A B C B A + C A C A C B

A C + B C B C B A

intermediate

- In sequential multi-component reactions (SMRC‘s) components (e.g. A, B, C) are added in a sequential way to the reaction mixture. Thus, reaction of A + B form irreversibly intermediate A-B which is subsequently reacted with C to form the product A-B-C. By changing the sequence of component addition theoretically 6 different product types (scaffolds) can be obtained.

-The SMCR‘s offer the same advantages as the classical MCR‘s, but in addition they have the potential to gene- rate different scaffolds.

winter semester 09 Daniel Obrecht, Polyphor Ltd 132 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Sequential multi-component reactions

R3 R3 N O 1 S R N NH 1 2 1 2 R NHR 2 R R -N=C=S N S NHR NH2 A + B + C A + C + B A B R3 O O N R2 3 Br 1 R N N R N 3 R 3 C R1 N S R O O A + B + CDI + C A + 2 x C

Sequential multi-component reactions (MCR‘s) offer the same advantages as the classical MCR‘s: in addition several different scaffolds can be obtained employing the same set of building blocks

D. Obrecht, P. Ermert, 5th Ineternational conference on Synthetic (ECSOC-5); www.mdpi.org/ecsoc-5/, September 1-30, 2001, [B0005]

winter semester 09 Daniel Obrecht, Polyphor Ltd 133 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Sequential multi-component reactions

bis-donors bis-acceptors acceptor-donors electrophiles nucleophiles

+ - O 9 10 S NH2 , X R7 N C S R X R NH2 1 R S 1 Cl N C O (X: Cl, Br, I) 15 H2N NHR NHR 12 1 4 7 14 R8 N C O R2 Br 13 + - O S NH2 , X 8 H N R S OH 2 NHNH2 NHNH2 5 R3 2 HO O 9 + - S NH2 , X R4 H2N NHN R S NHN 3 6 (X: Cl, Br) O R5 10

R6 COOMe O 11

winter semester 09 Daniel Obrecht, Polyphor Ltd 134 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Sequential multi-component reactions

R R R ' N N N R ' ' N ' Ph R HN N R R'HN N R HN N NH

N N HO N N N H Me O O O Olomoucin R'' R'' R R'' N N N ' R HN N R'HN N R'HN N R

D. Obrecht, P. Ermert, 5th Ineternational conference on Synthetic Organic Chemistry (ECSOC-5); www.mdpi.org/ecsoc-5/, September 1-30, 2001, [B0005]

winter semester 09 Daniel Obrecht, Polyphor Ltd 135 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Sequential multi-component reactions

O + R'' NH2 N X- SMCR S NHR S N O solid-phase R R'' N R' N N O H R + R'' NH2 N X- SMCR R S NHR solution R S N R

D. Obrecht, P. Ermert, 5th Ineternational conference on Synthetic Organic Chemistry (ECSOC-5); www.mdpi.org/ecsoc-5/, September 1-30, 2001, [B0005]

winter semester 09 Daniel Obrecht, Polyphor Ltd 136 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Sequential multi-component reactions

bis-donors bis-acceptors acceptor-donors electrophiles nucleophiles

+ - O 9 10 S NH2 , X R7 N C S R X R NH2 1 Cl N C O (X: Cl, Br, I) H2N NHR1 R S NHR 12 15 4 1 7 14 R8 N C O R2 Br 13 + - O S NH , X 2 8 H N R S OH 2 NHNH2 NHNH2 5 R3 2 HO O 9 + - S NH2 , X R4 H2N NHN R S NHN 3 6 (X: Cl, Br) O R5 10

R6 COOMe O 11 winter semester 09 Daniel Obrecht, Polyphor Ltd 137 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Sequential multi-component reactions

4 R4 R R4 + ii, iii - i N NH2 N , X ' + R 5 S S N R5 N N R NH2 H 4 O R5 10

O N

N N N N H O

' i: DIPEA, DMF; ii: m-CPBA, CH2Cl2; iii: RNH2 (15), dioxane, 80-100° [8]. D. Obrecht, P. Ermert, 5th Ineternational conference on Synthetic Organic Chemistry (ECSOC-5); www.mdpi.org/ecsoc-5/, September 1-30, 2001, [B0005] winter semester 09 Daniel Obrecht, Polyphor Ltd 138 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Sequential multi-component reactions

bis-donors bis-acceptors acceptor-donors electrophiles nucleophiles

+ - O 9 10 S NH2 , X R7 N C S R X R NH2 1 Cl N C O (X: Cl, Br, I) H2N NHR1 R S NHR 12 15 4 1 7 14 R8 N C O R2 Br 13 + - O S NH , X 2 8 H N R S OH 2 NHNH2 NHNH2 5 R3 2 HO O 9 + - S NH2 , X R4 H2N NHN R S NHN 3 6 (X: Cl, Br) O R5 10

R6 COOMe O 11 winter semester 09 Daniel Obrecht, Polyphor Ltd 139 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Sequential multi-component reactions

R2 Br O R2 + - O NH2 , X i NH S 8 + R7 N C S NH S R S 1 R S 7 NHR N NHR 7 4 12 H R S N NHR

-RCH2SH

H2N OMe N R2 O 7 S N O S R H N N H H2N

i: DBU, DMF, 0°; then DBU and 8, r.t. D. Obrecht, P. Ermert, 5th Ineternational conference on Synthetic Organic Chemistry (ECSOC-5); www.mdpi.org/ecsoc-5/, September 1-30, 2001, [B0005] winter semester 09 Daniel Obrecht, Polyphor Ltd 140 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Sequential multi-component reactions: application

Ch. Abrecht, P. Ermert, D. Obrecht; Polyphor AG, Gewerbestrasse 14, CH-4123 Allschwil

P. Maienfisch, Th. Pitterna, Syngenta Crop Protection AG, WRO-1060, CH-4002 Basel

Insecticidal Library

E NC O E S S S Y Y 1 N 1 Cl N N R N R N N H Cl Me Cl Cl O

D. Obrecht et al. Chimia 2003, 57, 262-269 E: RCO; CN

1 R : CF3, NH2, 4-Cl-C6H4-; thiophen-2-yl- winter semester 09 Daniel Obrecht, Polyphor Ltd 141 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Sequential multi-component reactions: application

OMe + NH2 N=C=S i NH S OMe ,X- + 2 R1 NH 1 3 2 MeO R N N E: R CO; CN H H OMe

ii, E-CH2-X E v, iv S OMe iii, iv R1 N N H OMe E E S O O O S Cl S R1 N Cl N 1 N H R4: Me, CH OEt R N 2 H

vi vi

E S O O E S Cl S O 1 R N N Cl 4 1 N R R N R4

i: DIEA, DMF; ii: DBU, DMF, ECH2X; iii: 3-Cl-C6H4COCl, DCM,pyridine, DMAP; iv: TFA, DCM, H2O; v: 3-Cl-C6H4SO2Cl, DCM, pyridine, DMAP; vi: K2CO3, DMF, MeI or ClCH2OEt winter semester 09 Daniel Obrecht, Polyphor Ltd 142 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Sequential multi-component reactions: application

+ NH 2 i NH2 S ,X- + E: R3CO; CN 1 R NH2 Cl N=C=S R1 N N Cl H H

ii, E-CH2-X

E iii S iv R1 N Cl N H

E E S S 1 N Cl R N R1 N Cl Me N O

i: DIEA, DMF; ii: DBU, DMF, ECH2X; iii: K2CO3, DMF, MeI; iv: K2CO3, DMF, ClCH2OEt winter semester 09 Daniel Obrecht, Polyphor Ltd 143 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Sequential multi-component reactions: application

+ NH2 i NH S ,X- 2 2 3 ' + R N=C=S E: R CO; CN R S NH2 R'S N NHR2 H

ii, E-CH2-X

E E O S S E iii Cl iv S O NHR2 H N N Cl H2N N 2 N N H2N N H

v OMe MeO v

E E S Cl O 3 S N E: R CO; CN Cl H2N N N 4 H2N R 4 N 4 R : Me; CH2OEt R

i: DIEA, DMF; ii: DBU, DMF; iii: 3-Cl-C6H4COCl, CH2Cl2, pyridine, DMAP; iv: TFA, CH2Cl2, H2O; v: K2CO3; DMF CH3I or ClCH2OEt winter semester 09 Daniel Obrecht, Polyphor Ltd 144 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 2. Lead Discovery and Lead Optimization-Drugability

Fragment-based screening

enzyme binding pocket

F2' F2 F2'

F1' F1 F1' F3 F3 F3

A. Identification of fragments: B: Fragment evolution: C. Fragment linking:

Weak binders mM to 30M are -An initial fragment is optimized -Two ore more fragments, identified (e.g. F1-3) (e.g. F1 to F1‘ and F2 to F2‘) which bind to proximal parts of the active site, are joined together -very challenging -D. C. Rees et al. Nature Rev. Drug Disc. 2004, 3, 660-672 -P. Hayduk et al. Nat. Rev. Drug Disc. 2007, 6, 211-219

winter semester 09 Daniel Obrecht, Polyphor Ltd 145 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Dynamic Combinatorial Synthesis

COOH COOH COOH COOH neuraminidase O NaCNBH3 + 1 2 R R N NH H2O, pH 6 N NH 2 2 HN NH2 H2N NH2 1 2 NHAc 1 2 NHAc NHAc NHAc R R R R R1 R2 "amplifications"

COOH COOH

HN NH2 HN NH2 NHAc NHAc

HO amplification> 30 amplification= 84 Ki = 85nM (strongest binder) Ki = 700nM

M. Hochgürtel et al. J. Med. Chem. 2003, 46, 356-8

winter semester 09 Daniel Obrecht, Polyphor Ltd 146 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Dynamic Combinatorial Synthesis: Disulfide Thethering

1 R SH R disulfide S binding stabilizes S exchange S disulfide S + S R S IL-2 IL-2 R2 IL-2

C

S N A, B, C: H, CO2H, CO2Me or MeO best R series: S O B A

improve design of a known inhibitor with tethering "hit"

Me Me N N N R N R

Cl O Cl Cl Cl C A B existing inhibitor improved inhibitors IC50 = 3 M IC50 = 0.2 M

J. A. Wells et al. Proc. Natl. Acad. Sci. USA 2000, 97, 9367-72; A. C. Brainsted et al. J. Am. Chem. Soc. 2003, 125, 3714-15 winter semester 09 Daniel Obrecht, Polyphor Ltd 147 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Click Chemistry

Click Chemistry: Diverse chemical function from a few good reactions

H. C. Kolb, K. B. Sharpless, Angew. Chem. Int. Ed. 2001, 40, 2004

Development of a set of powerful reactions for the rapid synthesis of useful new compounds and combinatorial libraries through heteroatom links (C-X-C); an approach called Click Chemistry.

Reactions that have a high thermodynamic driving force, usually greater than 20 kcal/mol

-Cycloadditions ([1,3]-dipolar additions; Diels-Alder reactions) -Nucleophilic Substitution reactions on strained heterocyclic electrophiles -Carbonyl Chemistry of the non-Aldol-type: synthesis of ureas, thioureas, aromatic heterocycles, oxime ethers -Addition reactions to C-C carbon multiple bonds: epoxidations, aziridinations, dihydroxylations winter semester 09 Daniel Obrecht, Polyphor Ltd 148 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Click Chemistry

Nature

X X: O, NR

1 + - n R -N=N=N :Nuc Petroleum

N XH O R2 N Nuc 1 2 N R R R1 3 R XNH2

O R1 XR3 H N N N R1 R2 N N R4 R3

H. C. Kolb, K. B. Sharpless, Drug Discovery Today 2003, 8, 1128-37

winter semester 09 Daniel Obrecht, Polyphor Ltd 149 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Click Chemistry

[1,3]-Dipolar additions of acetylenes and azides

OH + -N N N + Cu (turnings) - N N N N (ca 1g) Ph N OH HO N N N N (10.0mMol) H2O/tBuO(2:1) (50ml) HO + RT, 24h Ph CuSO4(cat.) Ph (10Mol%) 3.7g (95%) white solid (20.0mMol)

V. V. Rostovtsev et al. Angew. Chem. Int. Ed. 2002, 41, 2596

winter semester 09 Daniel Obrecht, Polyphor Ltd 150 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Click Chemistry in Drug Discovery O N O O N H O O O O N N O - O - NH 2 Cu (turnings) HO OH (ca 1g) O O R N N N N O O N H + H N O N H2O/tBuO(2:1) n O O O - N (50ml) O O - NH O + RT, 24h 2 - HO OH R N=N=N CuSO4(cat.) N (10Mol%) H n

O O N N N N O O Ki: 62nM; inhibition of fucosyl transferase N H H N O N 4 O O O cancer metastasis; lymphocyte trafficking - - N O O NH2 HO OH

Lee et al. J. Am. Chem. Soc. 2003, 125, 9588-89

Dramatic rate acceleration of the azide- cycloaddition by sequestering the two components inside the host structure (enzyme or receptor) winter semester 09 Daniel Obrecht, Polyphor Ltd 151 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Click Chemistry in Drug Discovery

-Emerging resistance in clinical isolates of bacteria render existing such as Neomycin and Ciprofloxaxin inactive -Enzymes such as aminoglycoside 3‘-phsphotransferases inactivate 3‘ position in aminoglycoside antibiotics by phosphorylation -Combination of two antibiotics has emerged as a valuable strategy to overcome rapid resistance mechanisms winter semester 09 Daniel Obrecht, Polyphor Ltd 152 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Click Chemistry in Drug Discovery

NH2 O HO -biological activities (MICs) depended X HO H2N N N H2N significantly on the variable spacer 3 NH2 HO N N + Y O OH groups X and Y O H N 2 -best combinations were X= -(CH2)2- HOOC F OH and Y= -CH OCH - H N O 2 2 O 2 OH -MIC (minimal inhibitory concentration):

[(CH3CN)4Cu]PF6; 7% NEt3 in E.coli (R477-100): 3g/ml H2O; microwave irridiation 40s NH (yields: 30-80%) 2 E.coli (ATCC 25922): 3g/ml O E.coli (AG100A): 0.38g/ml HO HO H2N B. subtilis (ATCC 6633): 0.75g/ml N N H2N NH2 X N HO N Y O OH N N O H2N OH H N O HOOC F 2 OH O Cipro-NeoB hybrids

winter semester 09 Daniel Obrecht, Polyphor Ltd 153 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Click Chemistry in Drug Discovery

Azide 1 O OMe O OH O O N x H O N COOMe OH H COOMe O O S N OMe N N3 O N N OH H OMe

HIV-protease (SF-2), buffer, 23°, 24h OMe

O O S Ki = 1.7 nM N N O O HN OH N N HO

M. Whiting et al. Angew. Chem. Int. Ed. 2006, 45, 1435-39; K. B. Sharpless, R. Manetsch, Exp. Opin.Drug. Disc. 2006, 1(6), 525-38 winter semester 09 Daniel Obrecht, Polyphor Ltd 154 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Click Chemistry in Drug Discovery

Summary of fragment-based approaches:

-fragment libraries are smaller: few hundreds to thousands

-screening effort smaller; however, weak binders have to be detectable

-leads derived from fragments are often smaller; allows more extensive optimization

-fragments can be assembled in a thermodynamically or kinetically controlled fashion: dynamic combinatorial synthesis

-fragments can be assembled using click chemistry

-finding the appropriate linkers to assemble fragments is a big challenge winter semester 09 Daniel Obrecht, Polyphor Ltd 155 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Reactions used for the introduction of high variation substituents

Formation d`amides et d`urées: Couplage Suzuki: O O Ar X NH(R)RHV BB OH BB BB BB

Réduction au diborane: H H N N HV NH2 R O BB HV BB O R NHRHV N BB BB H

Amination réductrice: Alkylation du groupe thiol: O HV NH(R)R 1 2 base 2 H BB R -SH R 1 R BB + Br R S O O

winter semester 09 Daniel Obrecht, Polyphor Ltd 156 Chemical Biology: Combinatorial Chemistry-Parallel Synthesis 2.5. Parallel reactions

Reactions used for the introduction of high variation substituents

Substitution nucleophillique: Alkylation de NH activés: 1 R1 R N N BB BB 2 2 R N X N NH(R)RHV R N O N O H RHV

Réaction de Mitsunobu: Réaction de Mannich: R2 1 2 N N R 1 R CHO R OH R1 O R3 R1 N NH R3 R2 2 R O N H R3 O N 1 H R OH R1 N

2 2 R R O 1 R NH2 R2 R1 OH 1 R N3 2 R R2

1 R OH R1 O 3 2 R R R2 winter semester 09 Daniel Obrecht, Polyphor Ltd 157 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Questions

1. Please name five efficient reactions that can be used for final parallel derivatization?

2. Please name potential advantages of fragment-based lead discovery over screening large combinatorial libaries?

3. What is the rule of 3?

winter semester 09 Daniel Obrecht, Polyphor Ltd 158 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Examples: various parallel extraction procedures

Extractions : principle

Liquid-liquid extractions

Solid-phase extractions

Solid-supported scavengers

Ion-exchange resins

Fluorous phase extractions

winter semester 09 Daniel Obrecht, Polyphor Ltd 159 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Parallel work-up procedures: principle

1. Two phase extractions: manuel extraction

Upper phase: contains product (EtOAc or fluorous phase): separated manually

Lower phase: contains impurities (aqueous phase)

2. Two phase extractions: robotic system (style Tecan)

Upper phase: contains impurities (aqueous phase): separated by robot

Lower phase: contains product (CHCl3 or CH2Cl2): dried and evaporated

winter semester 09 Daniel Obrecht, Polyphor Ltd 160 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Parallel work-up strategies: liquid-liquid extractions

1. Two phase extractions: solubilize impurities in the aqueous phase

3 R 2 S O 1. MeOH, 60° R Br 1 + R3 N H2N NHR S R2 2. 4, 60° R1HN 1 2 3. aq.NaOH 3 CH2Cl2 Me2N(CH)nNH2

H H N NH2 excess 2 N S R2 S N HOOC HOOC R3 4 5 Products of type 5 are soluble in the basic aqueous phase

A. Chuchulowski,T. Masquelin, D. Obrecht,J. Stadlwieser,J.-M. Villalgordo, Chimia 1996, 50, 530

winter semester 09 Daniel Obrecht, Polyphor Ltd 161 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Parallel work-up strategies: solid-phase extractions

Solid phase extractions/filtrations

Solid phase: one or several solid pahses are filled into a polypropylene syringe or cartridge

Solid phases: SiO2; Al2O3; `` exchange resins (basic, acidic and mixed bed)``; Kieselguhr; MgSO4; polymère functionalisé: -NH2, -SH, -PPh2, COOH, CHO, CH2OH, isothiourée,N3...;

The organic phases are passed through these cartridges in order to get rid of impurities which are adsorbed onto the solid phase. They can be applied manually or by a robotic system (Tecan)

winter semester 09 Daniel Obrecht, Polyphor Ltd 162 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Parallel work-up strategies: solid-supported scavengers

R2-N=C=O R1-NHCONHR2 2 R3-COCl 1 1 3 R -NH2 R -NHCOR 3 1 R4-SO Cl 2 1 4 R -NHSO2R 4

excess 2 NH2 NHCONHR

NHCOR3

4 NHSO2R

winter semester 09 Daniel Obrecht, Polyphor Ltd 163 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Parallel work-up strategies: solid-supported scavengers

Parallel synthesis in solution using polymer-bound reagents P1 R R i CbzHN COOH P2 GP N R' H P1' O O i cysteine trap R O Cl 1) CbzHN NR1R2 R R O CbzHN Br CbzHN N2 N H or O O N O N+ R 1 2 DMF, -5° R R NH 3 Br- CbzHN SR 2) CH N /DCM or 2 2 3 O DMF, 1.5h, 25° R SH -10°, 1h DCM, 18h 80-85% 85-90% HN HN (5-10% methylester) N Ph CbzHN N CbzHN S S H O O

N. Y. Yadav-Bhatnagar, N. Desjonquères, J. Mauger, J. Comb. Chem. 2002, 4, 49-55 winter semester 09 Daniel Obrecht, Polyphor Ltd 164 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Parallel work-up strategies: solid-supported scavengers; intermediate catch

Parallel synthesis in solution using polymer-bound reagents COOH ("intermediate catch" or "resin capture" R3 N3 1 + O R1 O R O O N N R1NH 3 2 R3 5 R NHR5 DCM, 0° NHR wash + N O N O +N PPh3 P Ph O N Ph 2 - R2 R CHO R2 toluene, 60° +

4 R N=C O 1 R N O R3 5 N NHR

R2

A. Chucholowski, D. Heinrich, B. Mathis, C. Müller, Generation of benzodiazepin and benzodiazocin libraries through resin capture of Ugi-4CC, conference: 214th ACS national meeting, Las Vegas, 1997 winter semester 09 Daniel Obrecht, Polyphor Ltd 165 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Parallel work-up strategies: fluorous phases

FP: fluorous phase; C6F13CH2CH2- or C10F21CH2CH2-

FP FP liquid phase reactions FP + + excess reagents Substrate Products Substrate

liquid-liquid extraction

1. cleavage FP Products 2. extraction Products

winter semester 09 Daniel Obrecht, Polyphor Ltd 166 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Parallel work-up strategies: fluorous phases

Multicomponent reactions: fluorous phase extraction

1 2 2 R NH2 O R O R 3 COOH 3 NHR i, ii NHR iii, ii N 2 N + R CHO 1 R1 O (Rf) Si R O 3 (Rf)3Si R3N=C

Rf: C10F21CH2CH2- i: TFE, 90°, 48h; ii: liquid-liquid extraction; iii: Bu4NF, THF, rt

A. Studer, S. Hadida, R. Ferritto, S.-Y. Kim, P. Jeger, P. Wipf, D. Curran, Science 1997, 275, 823

winter semester 09 Daniel Obrecht, Polyphor Ltd 167 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 5. Strategies for the Synthesis of Small Molecule Libraries

Parallel work-up strategies: fluorous phases

Fluorous phase extraction: cleavage by cyclization

X

O O O i ii O N + O N O N N Me H N COOH (Rf)3Si (Rf)3Si (Rf)3Si 2 - 3 1 OTf

Rf: C6F13CH2CH2- iii

X O O iv O O N N H X N O (Rf)3Si O NH H

4 O

i: MeOTf, CH2Cl2, 1,1,1-(trifluoromethyl)benzene(BTF); ii: anthranilic acid, DMAP, BTF, CH2Cl2; iii: TBTU, furfuryl amine, THF;iv: Et3 N

D. Schwinn, W. Bannwarth, Helv. Chim. Acta 2002, 85, 255 winter semester 09 Daniel Obrecht, Polyphor Ltd 168 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

What are the prime biological targets?

-Kinases: 22%; market: 2 drugs -GPCR: 15%; ¨ : 30% -Ion channels: 5%; ¨ : 7% -Ser proteases: 4%; ¨ : 1 drug -Phosphatases: 4%; -Zn proteases: 2%; ¨ : ACE inhibitors -Nuclear receptors: 2%; ¨ : 4% -others* : 44%;

*Many targets involving large surface protein-protein interactions

-despite the fact that kinases, CPCR‘s and ion channels constitute only about 42% of all targets of therapeutic interest, the pharmaceutical industry is devoting about 90% of their resources to those targets; it is believed that these targets can be adressed with small molecules. -The number of biologicals (antibodies, fusion proteins, peptides) reaching the market is increasing. These molecules target mainly large surface protein-protein interactions

winter semester 09 Daniel Obrecht, Polyphor Ltd 169 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Targets hit by current drugs

Drugs, their targets and the nature and number of drug targets

P. Imming et al. Nature Rev. Drug Disc. 2006, 5, 821-34

1. Number of drug targets :

1997 : Drews et al. Nature Biotechnol. 1997, 15, 1318-19

-Marketed drugs hit 482 targets ; human genome suggests 100'000 proteins

2002: J. Burgess et al.

-after sequencing of human genome: ~8000 targets ~5000 hit by known drugs: 2400 by antibodies; 800 by proteins

2002: A. Hopkins et al. Nature Rev. Drug Disc. 2002, 1, 727

-on the basis of binding studies: 399 targets, which belong to 130 target families ~3000 targets amenable to small molecules

bottom line: 300-500 targets hit by current drugs; 3’000-8’000 drugable targets winter semester 09 Daniel Obrecht, Polyphor Ltd 170 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Kinase inhibitors

-Recent reviews: A. J. Bridges, Chem. Rev. 2001, 101, 2541-2571; G. Scapin, Drug Disc.Today 2002, 77, 601-611; S. Orchard, Curr. Opin. Drug Disc. & Dev. 2002, 5, 713-717; D. Fabbro, C. Garcia-Echeverria, Curr. Opin. Drug Disc. & Dev. 2002, 5, 701-712; S. K. Hanks, The FASEB J. 1995, 9, 576-596 (sequences of kinases); M. E. M. Noble, J. A. Endicott, L. N. Johnson Science 2004, 303, 1800-5; J. Zhang; P. L. Yang; N. S. Gray, Nat. Rev. Drug Discov. 2009, 9, 28-39 (Targeting cancer with small molecule kinase inhibitors);

-Three families of kinases: -Serine-threonine kinases (S/TKs)

-Tyrosine kinases (TKs)

-Dual function kinases (DFKs)

-Roughly 2000 kinases known in the human genome

-Kinases phosphorylate serine, threonineO and tyrosine and are ATP dependent O- OH P O O- TKs) - R OH TKs) O * R O * P O- ATP ATP O

phospatases phospatases winter semester 09 Daniel Obrecht, Polyphor Ltd 171 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Kinase inhibitors: 3D-structure of kinase domain

DDT 2002,77, 601-611

winter semester 09 Daniel Obrecht, Polyphor Ltd 172 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Nat. Rev. Drug Discov. 2009, 9, 28-39

winter semester 09 Daniel Obrecht, Polyphor Ltd 173 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Nat. Rev. Drug Discov. 2009, 9, 28-39

winter semester 09 Daniel Obrecht, Polyphor Ltd 174 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Nat. Rev. Drug Discov. 2009, 9, 28-39

winter semester 09 Daniel Obrecht, Polyphor Ltd 175 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Nat. Rev. Drug Discov. 2009, 9, 28-39

winter semester 09 Daniel Obrecht, Polyphor Ltd 176 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Kinase inhibitors on the market

winter semester 09 Daniel Obrecht, Polyphor Ltd 177 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

CPCR’s: introduction

50% of all drugs target G-Protein-Coupled Receptors (sales in 2001: ~50billion USD)

G-protein: guanin nucleotide-binding protein

-240 receptors with known from which only ~30 are currently investigated by pharma companies -An additional 160 receptors with unknown ligands (orphan receptors) are known

Family 1: rhodopsin-like or adrenergic-like GPCR‘s

constitute the largest family; contain a short N-terminus and amino acid residues in the trans-membrane domain are highly conserved

Family 2: glucagon receptor-like or secretin receptor-like GPCR‘s

Family 3: metabotropic glutamate receptors

Drug design strategies for targeting G-protein-coupled-receptors: Th. Klabunde, G. Hessler, ChemBioChem 2002,3, 928-44.

3D-structure of bovine rhodopsin: Science, 2000, 289, 739-45; Biochemistry, 2001, 40, 7761-72. winter semester 09 Daniel Obrecht, Polyphor Ltd 178 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

CPCR’s: introduction

G-protein-coupled receptors

Extracellular -NH2 e2 e3 e1 -S-S-

TM1 TM2 TM3 TM4 TM5 TM6 TM7

i2 i1

Cytoplasmic i3

COOH- winter semester 09 Daniel Obrecht, Polyphor Ltd 179 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

GPCR’s: some best-selling drugs

H S N Cl N N H N COOH N 2

N N O OEt Neurontin (Pfizer, GABA B-agonist Claritin (Schering-Plough, H1 antagonist Zyprexa (Ely Lilly, D2/D1/5-HT2 allergies, 3.1billion USD, 2001) allergies, 2.35 billion USD, 2001) neurogenic pain, 2.35 billion USD, 2001)

N N N COOH HO HN N HO O N H OH

Serevent (Glaxo, 1 agonist Diovan (Novartis, AT1 antaginist asthma, 0.91 billion USD, 2001) hypertension, 0.8 billion USD, 2001)

winter semester 09 Daniel Obrecht, Polyphor Ltd 180 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Extracelluular ligand Nicotinoid AChR AChR: Neuromuscular Disorder gated channels GABA 300000 patients US Glycine 5-HT3 Hydroxy- Migraine, depression tryptamin type Intracellular ligand CAMP Not considered here gated channels cGMP CA ++ 14 subtypes G-proteins Voltage gated Na+ >15 subtypes Na: Migraine, back pain, channels Ca ++ 35 subtypes 34 mio. patients US K+ > 100 Ca: Hypertension subtypes patients US, prostate cancer 50% not yet K: MS, spinal cord injury charactarized 250000 patients US

NMDA NMDA: Brain ischimia, CNS- Extracellular ligand AMPA trauma, epilepsy, huntington gated channels KAINATE disease 2.3 million patients winter semester 09 Daniel Obrecht, Polyphor Ltd 181 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 1: Inhibitors of influenza endonuclease

Inhibitors of influenza endonuclease: collaboration between Roche and Polyphor Ltd

R1 R1 OH OPiv F O O RHN N BocHN NO N 2 BocHN OH OPiv

winter semester 09 Daniel Obrecht, Polyphor Ltd 182 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 1: Inhibitors of influenza endonuclease

Disease and target

- Influenza infects an estimated 120 Mio. people in US, Europe and Japan in a typical year

-The influenza endonuclease is an attractive target for several reasons:

i: It is a key component of the viral transcription mechanism, which has no cellular counterparts and should therefore provide a good potential for discovering selective, non-toxic drugs

ii: In contrast the neuraminidase inhibitors that do not prevent the formation of new virus particles, but interfere with virus release from host cells and are therefore virustatic, endonuclease inhibitiors, due to the block of viral transcription, are expected to have a virucidal effect.

winter semester 09 Daniel Obrecht, Polyphor Ltd 183 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 1: Inhibitors of influenza endonuclease

Ketobutanoates N-Hydroxy-imides H O OH N N O OH N N O N OH O N O O Merck: IC50: 21.3M OH Flutimide: fungal methabolite Roche: IC50 95M O OH OMe Merck: IC50: 5.5M F O O N Merck: IC : >500M OH 50 O N O OH Roche: IC50 >1000M OH O N O O OH O

Roche: IC 5M Merck: IC50: 0.9M N 50 OH O O OH H Roche: IC50 15M OH N N OH Ph O O O

Roche: IC50 >500M N NH2 O Cl Roche: IC 800M Roche: IC50: 0.43M 50 winter semester 09 Daniel Obrecht, Polyphor Ltd 184 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 1: Inhibitors of influenza endonuclease

Ketobutanoates N-Hydroxy-imides

O OH OH N

O O N O

Merck: IC50: 21.3M OH Flutimide: fungal methabolite

Merck: IC50: 5.5M

N-Hydroxy-tetramic acids

R1 R1 OH O

2 R O R2 OH N N OH OH winter semester 09 Daniel Obrecht, Polyphor Ltd 185 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 1: Inhibitors of influenza endonuclease

N-Hydroxy-2-indolinones

R1 R1 OH O

2 R O R2 OH N N OH OH

R1 OH

O RHN N OH 1

winter semester 09 Daniel Obrecht, Polyphor Ltd 186 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 1: Inhibitors of influenza endonuclease

-N-hydroxy-2-indolinone derivatives 1 were not described in the literature

R1 OH -keto amide moiety

O N high variation site RHN hydroxamic acid moiety OH 1

-Molecules of type 1 bear two potentially reactive and labile functional groups for which suitable protective groups have to be found

-Molecules of type 1 are acidic and polar and thus problems of isolation and purification were anticipated; especially for a parallel approach

winter semester 09 Daniel Obrecht, Polyphor Ltd 187 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 1: Inhibitors of influenza endonuclease

R1 OH O O R3 N N H OH 1A

R1 1 R1 R OH 2 OH OCOR O O O O R4HN N N N N H2N RHN H OH OH OPG 2 1 1B key precursors for parallel synthesis R1 OH PG: protective group

O O O 5 S R N N H OH 1C

winter semester 09 Daniel Obrecht, Polyphor Ltd 188 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 1: Inhibitors of influenza endonuclease

1 R COOH OCOR2 O O BocHN N N BocHN NO2 H2N OPiv OPG 2 3 4

key precursors for parallel synthesis

winter semester 09 Daniel Obrecht, Polyphor Ltd 189 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 1: Inhibitors of influenza endonuclease

F CH(COOMe) F i ii 2

H2N NO2 BocHN NO2 BocHN NO2 6 7 5

i: Boc2O, THF, 80°; ii: CH2(COOMe)2, NaH, DMSO; iii: aq. NaOH, MeOH, reflux

winter semester 09 Daniel Obrecht, Polyphor Ltd 190 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 1: Inhibitors of influenza endonuclease

problemes:

-partial reduction of nitro group -cyclization -isolation of hydroxamic acid

COOH iv, v O N BocHN NO2 BocHN OCOtBu 4 3

iv: Pt/C(5%),H2, DMSO, EtOH; then AcOH; v: tBuCOCl, DIPEA, CH2Cl2

winter semester 09 Daniel Obrecht, Polyphor Ltd 191 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 1: Inhibitors of influenza endonuclease

O O 1 1 1 R 1 R R R COX O O (2.5 equiv.) ii O O O N i N BocHN BocHN N BocHN OPiv OPiv OPiv

1 10a (R1= Me) 3 9a (R = Me) 1 9b (R1= Et) 10b (R = Et)

9c (R1= Ph)

i: 9a: X=OCOCH3; 9b: X=Cl; 9c: X=Cl, DMAP, DIPEA, CH2Cl2, THF; 0°-r.t.; ii: tBuCOCl, tetrabutylammonium cyanide or NaCN, pyridine, CH2Cl2

winter semester 09 Daniel Obrecht, Polyphor Ltd 192 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 1: Inhibitors of influenza endonuclease

O O Me Me O O i O O N BocHN N H2N OPiv OPiv 2a 10a O O

O O i O O N BocHN N H2N OPiv OPiv 2b 10b

O O Ph Ph O O i O O N N BocHN H2N OPiv OPiv 9c 2c

i: 4N HCl/dioxane or CF3COOH/CH2Cl2; then extraction with aq. sat. NaHCO3 solution and CH2Cl2 winter semester 09 Daniel Obrecht, Polyphor Ltd 193 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 1: Inhibitors of influenza endonuclease

R1 OCOR2 O i O R3 N N H OPiv 11a

R1 2 R1 OCOR OCOR2 O ii O 4 O R HN N N N H OPiv H2N 11b OPiv

2a (R1= Me; R2= tBu) R1 OCOR2 2b (R1= Et; R2= tBu) iii O O O 2c (R1= R2= Ph) S R5 N N H 11c OPiv

3 4 5 i: R COCl, pyridine (DIEA), DMAP, CH2Cl2; ii: R N=C=O, CHCl3 (ethanol-free), 70°; iii: R SO2OCl, pyridine (DIEA), DMAP, CH2Cl2 winter semester 09 Daniel Obrecht, Polyphor Ltd 194 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 1: Inhibitors of influenza endonuclease

- out of the library of 131 compounds 26 had an IC50< 50M

Me Ph OH OH O O O O O S S N N N N H OH H OH

IC = 48M IC50= 9M; EC50= 21M 50

Ph OH O O HOOC N N N H H OH

IC50= 3M; EC50= 6M

compounds are antiviral in cell cultures winter semester 09 Daniel Obrecht, Polyphor Ltd 195 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 1: Inhibitors of influenza endonuclease

-Based on a pharmacophor hypothesis, novel 1-hydroxy-indolin-2-ones were proposed as inhibitors of influenza endonuclease

-A parallel synthesis was developed which allowed to synthesize a library 131 compounds in significant quantities (6-71 mg) and high purities (75 - 99%) within 4 months

-From 131 compounds tested 26 had an IC50< 50M

-From 26 active compounds 10 showed a good antiviral activity in cell cultures

winter semester 09 Daniel Obrecht, Polyphor Ltd 196 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 2: Structure-based Design Inhibitors of Metalloproteinases: TACE; MMP1

-Ligand-based design capitalizes on the presence of existing structural similarities between a set of compounds and the active ligand (also -based ) -Using a solid-phase, parallel synthesis approach optimization could be achieved efficiently -TNF-converting enzyme (TACE) represents an attractive target for reducing circulating levels of the proinflammatory protein tumor necrosis factor alpha (TNF-). -TACE belongs to the Zn-metalloproteinases. The hydroxamic acid moiety chelates to the Zn- located in the active site winter semester 09 Daniel Obrecht, Polyphor Ltd 197 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 2: Structure-based Design Inhibitors of Metalloproteinases: TACE; MMP1

M. Abou-Gharbia, J. Med. Chem. 2009, 52, 2-9 winter semester 09 Daniel Obrecht, Polyphor Ltd 198 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 3: Parallel synthesis of analogues of antibiotic GE2270 A

Parallel synthesis starting from a -derived building block

O O CONH OH N N 2 O S N S N N N N S N S S N OH N S S N OH HN O N S HN O O O NH O HN N NH O N NH HN N NH O N S O S O S MeHN O S MeO MeHN MeO GE2270 A 1 active against many gram positive pathogens inhibitor of elongation factor EF-TU MIC 0.06-1.0 g/ml; low solubility in aqueous solvents J. W. Jacobs et al. (Versicor), 40th annual ICAAC conference, Toronto, Canada, september 17-20th, 2000, Poster 2193 and 2194 winter semester 09 Daniel Obrecht, Polyphor Ltd 199 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 3: Parallel synthesis of analogues of antibiotic GE2270 A

Parallel synthesis starting from a natural product-derived building block

NO2 F F F OH O O F O O O F O S N S N S N

N R 2 R 4 N S NO2 NO2 S N OH N S HN O O O O O O O HN NH NH O N N N H O S S N S N O S MeHN MeO R 3 R 5

1

J. W. Jacobs et al. (Versicor), 40th annual ICAAC conference, Toronto, Canada, september 17-20th, 2000, Poster 2193 and 2194 winter semester 09 Daniel Obrecht, Polyphor Ltd 200 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 2: Parallel synthesis of analogues of antibiotic GE2270 A

Parallel synthesis starting from a natural product-derived building block Solubility (mg/ml)

F GE2270 A <0.0001 F F O O F 2 R1: R COOH 0.5 O N 1 2 2 F R R NH R1 R =H OH S N S N

1 COOH R : 0.91 R 2 R 6 R2=Me NO2

O R1 O 1 COOH 0.5 N R : O 2 O R1R2NH O R R2=H S N S N

R1: COOH 0.73 R R 3 7 R2=Me

J. W. Jacobs et al. (Versicor), 40th annual ICAAC conference, Toronto, Canada, september 17-20th, 2000, Poster 2193 and 2194 winter semester 09 Daniel Obrecht, Polyphor Ltd 201 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 3: Parallel synthesis of analogues of antibiotic GE2270 A

Parallel synthesis starting from a natural product-derived building block

O O CONH OH N N 2 O S N S N N N N S N S S N OH N S HN O S N OH N S HN O O O NH O HN N NH O N NH HN N NH O N S O S O S MeHN O S HO MeHN HO GE2270 D2 8

J. W. Jacobs et al. (Versicor), 40th annual ICAAC conference, Toronto, Canada, september 17-20th, 2000, Poster 2193 and 2194 winter semester 09 Daniel Obrecht, Polyphor Ltd 202 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 3: Parallel synthesis of analogues of antibiotic GE2270 A

Parallel synthesis starting from a natural product-derived building block

F F F OH O F O O F S N S N N N N S DCC, Pfp N S S S N OH N S N OH HN O N S HN O O O O HN NH NH O N NH N HN N NH O N S S O O S MeHN O S HO MeHN HO 8 9 J. W. Jacobs et al. (Versicor), 40th annual ICAAC conference, Toronto, Canada, september 17-20th, 2000, Poster 2193 and 2194 winter semester 09 Daniel Obrecht, Polyphor Ltd 203 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 3: Parallel synthesis of analogues of antibiotic GE2270 A

F Parallel synthesis starting from a natural product-derived building block F F Solubility (mg/ml) 1 O F NHR GE2270 A <0.0001 O F O

S N S N 1 R : COOH 0.44 2 N N R = SCH3 N S N S R1: COOH 0.41 S N OH S S N OH N S N HN O 2 HN O R = SCH3 O O O O NH HN NH HN N NH N NH N N COOH >2.0 O O R1: S S O S O S MeHN MeHN N 2 2 HO R S R = COOH 9 10

1 i:R NH2, DMF, DIEA; ii: H2O; then precipitation + wash; iii: Ts2O; CH2Cl2; DIEA; iv: R2SH, DMF/aq. K2CO3; then precipitation + wash; v: TFA/CH2Cl2 (1:1); Et2O; then precipitation + wash; then dry J. W. Jacobs et al. (Versicor), 40th annual ICAAC conference, Toronto, Canada, september 17-20th, 2000, Poster 2193 and 2194 winter semester 09 Daniel Obrecht, Polyphor Ltd 204 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 3: Parallel synthesis of analogues of antibiotic GE2270 A

Parallel synthesis starting from a natural product-derived building block

COOH O O HN CONH N N 2 O

S N S N Solubility MIC(MRSA) (mg/ml) (g/ml) N N GE2270 A <0.0001 0.125 N S N S 12 >2.0 0.5 S N OH S N OH N S N S HN O HN O O O O O NH NH HN N NH HN N NH N N O O S S O S O S MeHN MeHN MeO S GE2270 A N 12

COOH J. W. Jacobs et al. (Versicor), 40th annual ICAAC conference, Toronto, Canada, september 17-20th, 2000, Poster 2193 and 2194 winter semester 09 Daniel Obrecht, Polyphor Ltd 205 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 4: Parallel synthesis based on Natural Products

-Rapamycin is a immunosuppressant natural product, which has two binding sites. It binds to the FKBP domain and to mTOR (kinase) effector domain. Besides its immunosuppressant activity the synthetic analogue torisel shows potent anti-tumor activity and is used for treatment of renal carcinoma. Torisel was obtained through a parallel synthesis approach from rapamycin.

M. Abou-Gharbia, J. Med. Chem. 2009, 52, 2-9 winter semester 09 Daniel Obrecht, Polyphor Ltd 206 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 4: Parallel synthesis based on Natural Products

-Using a parallel synthesis approach starting from the natural product rapamycin, the alcohol group was derivatized with various different substituents. M. Abou-Gharbia, J. Med. Chem. 2009, 52, 2-9 winter semester 09 Daniel Obrecht, Polyphor Ltd 207 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 4: Parallel synthesis based on Natural Products

-ILS-920 is a semi-synthetic rapamycin derivative which lacks the immunosuppressant activity but shows neuroprotective properties. It shows good brain penetration.

M. Abou-Gharbia, J. Med. Chem. 2009, 52, 2-9 winter semester 09 Daniel Obrecht, Polyphor Ltd 208 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 5: kinase inhibitors

-Recent reviews: A. J. Bridges, Chem. Rev. 2001, 101, 2541-2571; G. Scapin, Drug Disc.Today 2002, 77, 601-611; S. Orchard, Curr. Opin. Drug Disc. & Dev. 2002, 5, 713-717; D. Fabbro, C. Garcia-Echeverria, Curr. Opin. Drug Disc. & Dev. 2002, 5, 701-712; S. K. Hanks, The FASEB J. 1995, 9, 576-596 (sequences of kinases)

-Three families of kinases: Serine-threonine kinases (S/TKs) Tyrosine kinases (TKs) Dual function kinases (DFKs) involved in cell signaling pathways

-Roughly 2000 kinases known in the human genome

-Kinases phosphorylate serine, threonine and tyrosine and are ATP dependent O O- OH P O O- TKs) - R OH TKs) O * R O * P O- ATP ATP O

phospatases phospatases winter semester 09 Daniel Obrecht, Polyphor Ltd 209 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 5: kinase inhibitors

-Some important kinases: protein kinase C (PKC: 12 isoforms); PKC: involved in cell proliferation; target in cancer therapy

Growth factor receptor kinases: EGF (epidermal groth factor); TGF (transforming growth factor); PDGF (platelet-derived growth factor); VEGF (vascular endothelial growth factor); TNF (tumor necrosis factor); NGF (nerve growth factor)

MAP-kinase (mitogen activated kinase); CDKs (cyclin-dependent kinases); JAK’s (Janus family of TKs); Abl (Abelson TK); targets in cancer and inflammation; and many more

some early natural O H product leads N MeOOC O HO Ph O O O

NH OH

N N N OH O N O HO H Me N N N O H OMe O NHMe COOMe OH

Staurosoporine (IC50(PKC): 2.5nM) Olomoucine (IC50(CDK): 4.5M) Bryostatin 1 (non-specific to other PKC-isoforms) winter semester 09 Daniel Obrecht, Polyphor Ltd 210 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 5: parallel synthesis of olomoucine analogues

NH2 Ph

NH building block synthesis N N Cl HO Cl NH N N N N N i H N N ii, iii N N Olomoucine (IC50(CDK): 4.5M) N H2N N F N N N H F N P. G. Schultz et al. Tetrahedron Lett. 1997, 38, 1161 H H iv

MeO H N C OHC O O HN L MeO HN L NH2

L: PAL-linker

NH NH NH N N v vi, vii N N N N F N N parallel synthesis N 2 N H F N R HN N R1 R1

i: 0.3M NaNO2, HBF4 (48% in H2O), -15°; ii: 4-nitro-benzylamine hydrochloride, DIEA, n-BuOH, 50°; iii: H2, Pd/C; iv: NaBH(OAc)3, 1 2 1% AcOH, DMF; v: R -OH, PPh3, DEAD, CH2Cl2/TFA (1:1); vi: R -NH2, n-BuOH/DMSO (4:1), 90-100°, 48h; vii: TFA/H2O/Me2S (90:5:5) winter semester 09 Daniel Obrecht, Polyphor Ltd 211 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 6: Orexin receptor (OX1 and OX2) antagonists

-Orexin receptor 1 (OX1) and orexin receptor 2 (OX2) belong to the GPCR‘s and are believed to modulate appetite, food intake and sleep.

-The two endogenous neuropeptides orexin A and B bind to both OX1 and OX2: orexin A: IC50=20nM (OX1); IC50=36nM (OX2) orexin B: IC50=420nM (OX1); IC50=38nM (OX2)

-Actelion initiated a program in developing orexin antagonists as modulators of sleep

-HTS delivered a hit compound 1 which served as starting point for several follow-up libraries of type 2. R4 MeO R5 O O N N R1 MeO N R6 N H MeO R7 R8 R2

MeO R3 1 2 R. Koberstein et al. Chimia 2003, 57, 270-275. winter semester 09 Daniel Obrecht, Polyphor Ltd 212 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 6: Orexin receptor (OX1 and OX2) antagonists

Library 1 O 1) Br MeO MeO Br MeO O O 1 NH N R N MeO MeO N 1 2 MeO N 2) DIEA; NHR R 2 H MeO MeO R MeO OMe

MeO MeO MeO

>100 analogues IC50=19nM (OX1); 101nM (OX2)

Library 2

O MeO MeO MeO POCl3 O X R3 + NH N R1 NH MeO MeO N MeO 2 NaBH4 R2 X: Cl, OH R3 R3

R. Koberstein et al. Chimia 2003, 57, 270-275. winter semester 09 Daniel Obrecht, Polyphor Ltd 213 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 6. Case studies

Case study 6: Orexin receptor (OX1 and OX2) antagonists

Library 2 Library 3

MeO MeO O O N N MeO N MeO N H H X

Y

IC50=18nM (OX1); 1161nM (OX2) X=H; Y=NMe2: IC50=45nM (OX1); 1536nM(OX2) X=Y=F: IC50=1906nM (OX1); 19nM (OX2)

-Substituent R8 can modulate the selectivity towards OX1 and OX2

-OX2 specific compounds can be made

R. Koberstein et al. Chimia 2003, 57, 270-275. winter semester 09 Daniel Obrecht, Polyphor Ltd 214 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 7. Appendix (Definitions; Reviews; Literature

Some useful definitions in medicinal chemistry EC50: effective dose for a 50% of maximal response

Dose: in mg/kg: mg of compound per kg of body weight; e.g. 1mg in a 25g mouse is the equivalent of 2g dose in a 50kg (small) adult.

SAR: structure activity relashionship. Correlation between chemical structure and biological activity.

Phase I: In phase I clinical trials a compound is dosed to healthy volunteers and three main questions are asked: 1. Is the compound safe at the proposed dose? 2. What are the limiting side effects likely to be? 3. How long does the compound stay in the system?

Phase II: Phase II clinical trials aim at showing efficacy of the compound in a sample of patients having a particular disease. If there are signs that the compound is active enough it can be promoted to next phase.

Phase III: Phase III clinical studies are big and comprise many patients. The key issues are the following: How well does the drug work? What are its side effects at the proposed efficacy doses? What kind of a dosing schedule is optimal? How does it interact , favorably or unfavorably, with other drugs for the same or related conditions?

Success: At least 25000 compounds have to be made in order to get one drug expenses are around 500 million USD with a lead time of 7-10 years. winter semester 09 Daniel Obrecht, Polyphor Ltd 215 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 7. Appendix (Definitions; Reviews; Literature

Some useful definitions in medicinal chemistry

Targets: Up to now only about 200 discrete molecular targets have been explored. Around 50% of these belong to the GPCR’s (e.g. histamine, dopamine or serotonin receptors). With decoding of the human genome it is believed that 30’000 targets will be unveiled.

Protein structure: -primary sequence: genomics -sequence alignment with known proteins: conserved residues are characteristic for function -gene knockout can reveal importance of a target for a certain disease -expression and purification -3D structural determination by X-ray or NMR techniques -mutagensis studies (site directed mutagenesis) can reveal important residues in receptors or ligands

Protein kinases: transfer the g phosphate of ATP to side chain hydroxyls of substrate proteins. It is estimated that about 2000 kinases exist in the human genome Serine/threonin kinases (S/TK’s) Tyrosine kinases (TK’s) Dual function kinases (DFK’s)

Protein phosphatases: cleave phosphate groups from substrate proteins

winter semester 09 Daniel Obrecht, Polyphor Ltd 216 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 7. Appendix (Definitions; Reviews; Literature

ADMET: Adsorption, Distribution, Metabolism, Elimination and Toxicity

ADMET: Adsorption, Distribution, Metabolism, Excretion(Elimination) and Toxicity

In vitro ADMET experiments:

-Cytotoxicity assay on different cancer cell lines

-Stability in plasma: rodents (mouse, rat), human

-Caco 2 cell passage of compounds: indicator for oral absorption

-Passage of compounds through artificial membranes (PAMPA)

-Metabolism studies in liver microsomes: first pass metabolism

-Protein binding (binding to serum albumin): indicates availability of compound in plasma

winter semester 09 Daniel Obrecht, Polyphor Ltd 217 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 7. Appendix (Definitions; Reviews; Literature

Targets hit by current drugs

2. Target classes: -2.1. Enzymes -2.2. Substrates, metabolites and proteins -2.3. Receptors -2.4. Ion channels -2.5. Transporter proteins -2.6. DNA/RNA and the -2.7. Targets of monoclonal antibodies -2.8. various -2.9. unknown

2.1. Enzymes: -Oxidoreductases (e.g. MAO-B, aromatases etc.) -Transferases (kinases, phosphatases, DNA polymerases etc.) -Hydrolases (serine proteases, metalloproteases etc.) -Lyases (DOPA decarboxylase, carbonic anhydrase etc.) -Isomerases ((DNA gyrases, topoisomerases etc.) -Ligases (dehydropteroate synthase, mTOR etc.)

winter semester 09 Daniel Obrecht, Polyphor Ltd 218 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 7. Appendix (Definitions; Reviews; Literature

Targets hit by current drugs

2.3. Receptors: -Direct ligand-gated ion channels (GABAA, acetylcholine R, glutamate R) -GPCR’s (class 1, class 2 (secretin-like), others) -Cytokine receptors -Integrin receptors -Receptors associated with TK -Nuclear receptors

2.4. Ion channels: -Voltage-gated Ca2+ channels (L- and K-type) -K+ channels (epithelial, voltage-gated) -Na+ channels (epithelial voltage-gated) -RIR-CaC -TRP-CC -Cl- channels

2.5. Transporter proteins: -Cation-chloride cotransporter (CCC) -Na+/H+ antiporters -Proton pumps -Eukariotic sterol transporters -Neurotransmitter/ Na+ symporter -Noradrenalin/Na+ symporter -Dopamine/Na+ symporter winter semester 09 Daniel Obrecht, Polyphor Ltd 219 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 7. Appendix (Definitions; Reviews; Literature

Targets hit by current drugs

2.6. DNA/RNA and the ribosome: -Nucleic acids -RNA (16S-rRNA; 23S-rRNA) -Spindle (tubulin, kinesins) -Ribosome (30S subunit; 50S subunit)

2.7. Targets of monoclonal antibodies: -Vascular endothelial factor (VEGF; e.g. bevazizumab; Avastin) -Lymphocyte function-associated receptor (LFA-1; efalizumab) -Epidermal growth factor receptor (EGFR) (e.g. cetuximab) -h-EGFR-2 (e.g. trastzumab; Herceptin) -Immunoglobulin E (IgE; e.g. omalizumab; Xolair) -CD-3 -CD-20 (Rituximab; Mabthera) -CD-33 (Gemtuzumab)) -CD-52 (Alemtuzumab) -TNF(Adalimumab; ; Enbrel) winter semester 09 Daniel Obrecht, Polyphor Ltd 220 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 7. Appendix (Definitions; Reviews; Literature

Targets hit by current drugs

G-Protein Coupled Receptors (GPCR’s): -Acetylcholin receptors (muscarinic receptors; MCR 1-4) -Adenosin receptors -Adrenoreceptors (1, 2, 1) -Angiotensin receptors -Calcium-sensing receptors -Cannabinoid receptors (CB1, CB2) -Cysteinyl-leukotriene receptors -Dopamine receptors -Endothelin receptors -GABAB recptors -Glucagon receptors -Glucagon-like peptide-1 receptor (GLP-1R) -Histamin receptors (H1, H2) -Opioid receptors (, , ) -Neurokinin receptors (NK1, NK2, NK3) -Prostanoid receptors -Prostamide receptors -Purinergic receptors -Serotonin receptors (5-HT1A, 5-HT1B/1C, 5-HT2a, 5-HT3, 5-HT4) -Vasopressin receptors (V1, V2, OT) winter semester 09 Daniel Obrecht, Polyphor Ltd 221 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 7. Appendix (Definitions; Reviews; Literature

Targets hit by current drugs

Cytokine receptors: -Growth hormone receptor -Erythropoetin receptor (EPO) -Granulocyte colony stimulating factor receptor (G -Interleukin-1 receptor (IL-1R) -Interleukin-2 receptor (IL-2R) -Tumour necrosis factor (TNF)

Integrin receptors: -Glycoprotein IIb/IIIa receptor (GPIIb/IIIa)

Receptors associated with TK: -Insulin receptor

Nuclear receptors: -Mineralcorticoid receptor -Glucocorticoid receptor -Progesteron receptor -Oestrogen receptor -Androgen receptor -Vitamin D receptor -ACTH receptor -Retinoic acid receptor (RXR) -Peroxisome-proliferator-activated receptors (PPAR;  -Thyroid hormone receptor

winter semester 09 Daniel Obrecht, Polyphor Ltd 222 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 7. Appendix (Definitions; Reviews; Literature)

4. Appendix-Reviews

-Applications of Combinatorial Technologies to Drug DIscovery. 1. Background and Peptide Combinatorial Libraries. M. A. Gallop, R. W. Barrett, W. J. Dower, S. P. A. Fodor, E. M. Gordon, J. Med Chem. 1994, 37, 1233

-Applications of Combinatorial Technologies to Drug DIscovery. 2. Combinatorial Organic Synthesis, Library Screening Strategies, and Future Directions. M. A. Gallop, R. W. Barrett, W. J. Dower, S. P. A. Fodor, E. M. Gordon, J. Med Chem. 1994, 37, 1385

-Combinatorial Libraries. Synthesis, Screening and Application Potential. R. Cortese (Ed.), W. De Gruyter, Berlin (1995)

-Combinatorial Peptide and Nonpeptide Libraries. G. Jung (Ed.), VCH, Weinheim (1996)

-Kombinatorische Synthese. K. Frobel, T. Krämer, Chemie in unserer Zeit 1996, 30, 270

-Organic synthesis on solid phase. J. S. Früchtel, G. Jung, Angew. Chem. Int. Ed. Engl. 1996, 35, 17

-Combinatorial synthesis of small-molecular-weight organic compounds. F. Balkenhohl, C. Bussche-Hünnefeld, A. Lansky, C. Zechel, Angew. Chem. 1996, 108, 2436

-Solid-phase organic reactions: a review of recent literature: P. H. H. Hermkens, H. C. J. Ottenhejm, D. Rees, Tetrahedron 1996, 52, 4527

winter semester 09 Daniel Obrecht, Polyphor Ltd 223 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 7. Appendix (Definitions; Reviews; Literature

4. Appendix-Reviews

-Synthesis and application of small molecule libraries: L. A. Thompson, J. A: Ellman, Chem. Rev. 1996, 29, 132

-Strategy and tactics in combinatorial organic synthesis. Applications to drug discovery. E. M. Goron, M. A. Gallop, D. V. Patel, Acc. Chem. Rev. 1996, 29, 144

-Design, synthesis and evaluation of small-molecule libraries. J. A. Ellman, Acc. Chem. Res. 1996, 29, 132

-Multiple-component condensation startegies for combinatorial library synthesis: R. W. Armstrong, A. P. Combs, S. D. Brown, T. A. Keating, Acc. Chem. Res. 1996, 29, 123

-Combinatorial organic synthesis using Parke-Davies‘s DIVERSOMER method: S. Hobbs-DeWitt, A. W. Czarnik, Acc. Chem. Res. 1996, 29, 114

-Combinatorial Chemistry, Synthesis and Application. S. Wilson, A. W. Czarnik, Wiley 1997

-The current status of heterocyclic combinatorial libraries: A. Nefzi, J. M. Ostresh, R. A. Houghthen, Chem. Rev. 1997, 97, 449

-Organic synthesis on soluble polymer supports: Liquid phase methodologies: D. J. Gravert, K. D. Janda, Chem. Rev. 1997, 53, 5643

winter semester 09 Daniel Obrecht, Polyphor Ltd 224 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 7. Appendix (Definitions; Reviews; Literature

4. Appendix-Reviews

-Synthesis and application of small molecule libraries: L. A. Thompson, J. A: Ellman, Chem. Rev. 1996, 29, 132

-Recent developments in soliud-phase organic synthesis: R. Brown, Contemporary Organic Synthesis 1997, 4, 216

-Solid-PhaseOrganic Reactions II. A Review of the Recent Literature. P. H. H. Hermkens, H. C. J. Ottenheijm, D. C. Rees, Tetrahedron 1997, 53, 5643

-Functionalized polymers: Recent developments and new applications in synthetic organic chemistry: S. J. Shuttleworth, S. M. Allin, P. K. Sharma, Synthesis 1997, 1217.

-Functionalized resins and linkers for solid-phase synthesis of small molecules: C. Blackburn, F. Albericio, S. A. Kates, Drugs of the Future 1997, 22, 1007

-Solid supported combinatorial and parallel synthesis of small-molecular-weight compound libraries: D. Obrecht, J. -M. Villalgordo, Tetrahedron Organic Chemistry Series, Vol 17, Pergamon, 1998.

Very recent reviews:

-Combinatorial : L. A. Marcaurelle, P. H. Seeburger, Curr. Opinion Chem. Biol. 2002, 6, 289-296

-Combinatorial synthesis of natural products: J. Nielsen, Curr. Opinion Chem. Biol. 2002, 6, 297-305

winter semester 09 Daniel Obrecht, Polyphor Ltd 225 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 7. Appendix (Definitions; Reviews; Literature

4. Appendix-Reviews

-Combinatorial synthesis of natural products: J. Nielsen, Curr. Opinion Chem. Biol. 2002, 6, 297-305

-Recent advances in isocyanide-based multicomponent chemsitry:A. Dömling, Curr. Opinion Chem. Biol. 2002, 6, 306-313

-High speed combinatorial synthesis utilizing microwave irridiation: C. O. Kappe, Curr. Opinion Chem. Biol. 2002, 6, 314-320

-Applications of parallel synthesis to lead optimization: M. Altorfer, Ph. Ermert, J. Fässler, S. Farooq, E. Hillesheim, A. Jeanguenat, K. Klumpp, P. Maienfisch, J. A. Martin, J. H. Merrett, K. E. B. Parkes, J. –P. Obrecht, Th. Pitterna, D. Obrecht, Chimia 2003, 57, 262-269

-Versatile monitoring tools in parallel solid-phase synthesis: E. R. Felder, K. Martina, S. Scarpella, M. Tato, Chimia 2003, 57, 229-236.

-The analytical challenge: Keeping pace with combinatorial chemistry: D. B. Kassel, P. L. Myers, Pharmaceutical News 2002, 9, 171-177.

-Synthetic aspects of combinatorial chemistry: P. Wipf, Pharmaceutical News 2002, 9, 157-169.

-Multicomponent reactions: emerging chemistry in drug discovery from xylocain to crixivan: Ch. Hulme, V. Gore, Curr. Med. Chem. 2003, 10, 51-80

winter semester 09 Daniel Obrecht, Polyphor Ltd 226 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 7. Appendix (Definitions; Reviews; Literature

4. Appendix-Reviews

-Drug design strategies for targeting G-protein-coupled-receptors: Th. Klabunde, G. Hessler, ChemBioChem 2002, 3, 928-44.

-Protein kinase inhibitors from the urea class: J. Dumas, Curr. Opin. Drug Disc. 2002, 5, 718-27.

-Inhibitors of the JNK signaling pathway: S. J. Harper, P. LoGrasso, Drugs of the Future 2001, 26, 957-73.

-Inhibitors of growth factor receptor kinase-dependent signaling pathways in anticancer therapy-clinical progress: P. A. Renhowe, Curr. Opin. Drug Disc. 2002, 5, 214-224.

-Kinases as targets: prospects for chronic therapies: S. Orchard, Curr. Opin. Drug Disc. 2002, 5, 713-727.

-Current progress on farnesyl protein transferase inhibitors: S. B. Singh, R. B. Lingham, Curr. Opin. Drug Disc. 2002, 5, 225-44.

-Medicinal chemistry of target family-directed masterkeys: G. Müller, Drug Disc. Today 2003, 8, 681-91.

-Topics in drug design and discovery: Chapter 26. Privileged structures-an update: A. A. Patchett, R. P. Nargund, Ann. Rep. Med. Chem. 2000, by Academic Press.

-Drugs, leads and drug-likeness: an analysis of some recently launched drugs: J. R. Proudfoot, Bioorg. Med. Chem. Lett. 2002, 12, 1647-50.

winter semester 09 Daniel Obrecht, Polyphor Ltd 227 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 7. Appendix (Definitions; Reviews; Literature

4. Appendix-Reviews -Protein kinase inhibitors: insights into drug design from structure: M. M. Noble, J. A. Endicott, L. N. Johnson, Science, 2004, 303, 1800-5.

-Small-molecule inhibitors of protein-protein interactions: progressing towards the dream: M. R. Arkin, J. A. Wells, Nature Reviews Drug Discovery 2004, 3, 301-17.

-NMR in drug discovery: M. Pellecchia, D. S. Sem, K. Wüthrich, Nature Reviews Drug Discovery 2002, 1, 211-19.

-Chemical inhibitors of Protein Kinases: A. J. Bridges, Chem. Rev. 2001, 101, 2541-2571.

-Fragment-based lead discovery: D. C. Rees, M. Congreeve, W. Murray, R. Carr, Nature Rev. Drug Disc. 2004, 3, 660-72

-Persuing the leadlikeness concept in pharmaceutical research: M. M. Hann, T. I. Oprea, Curr. Opin. Chem. Biol. 2004, 8, 255-63.

-Design and synthesis of of protein superfamily-targeted chemical lbraries for lead identification and optimization, S. J. Shuttleworth, R. V. Connors, J. Fu, J. Liu, M. E. Lizarzaburu,W. Qiu, R. Sharma, M. Wanska, A. J. Zhang, Curr. Med. Chem. 2005, 12, 1239-81.

-Receptor-assisted Combinatorial Chemistry: Thermodynamics and Kinetics in Drug Discovery, J. D. Cheeseman, A. D. Corbett, J. L. Gleeson, and R. J. Katlauskas, Chem. Eur.J. 2005, 11, 1708-16.

-A decade of fragment-based drug design: Strategic advances and lessons learned, P. Hayduk, J. Greer, Nature Rev. Drug Disc. 2007, 6, 211-19. winter semester 09 Daniel Obrecht, Polyphor Ltd 228 Medicinal Chemistry : Combinatorial Chemistry-Parallel Synthesis 7. Appendix (Definitions; Reviews; Literature

4. Appendix-Reviews

-High throughput Lead Optimization in Drug Discovery; Ed. T.Kshirsagar,CRC Press, Taylo&Francis Group, 2008.

-Discovery of innovative small molecule therapies; M. Abou-Garbia, J. Med. Chem. 2009, 52, 2-9.

-Transforming fragments into candidates; D. E. De Kloe et al. Drug Discov. Today 2009, 14, 630-646.

winter semester 09 Daniel Obrecht, Polyphor Ltd 229