What Magnitude Are Observed Non-Target Impacts from Weed Biocontrol?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thistles of Colorado
Thistles of Colorado About This Guide Identification and Management Guide Many individuals, organizations and agencies from throughout the state (acknowledgements on inside back cover) contributed ideas, content, photos, plant descriptions, management information and printing support toward the completion of this guide. Mountain thistle (Cirsium scopulorum) growing above timberline Casey Cisneros, Tim D’Amato and the Larimer County Department of Natural Resources Weed District collected, compiled and edited information, content and photos for this guide. Produced by the We welcome your comments, corrections, suggestions, and high Larimer County quality photos. If you would like to contribute to future editions, please contact the Larimer County Weed District at 970-498- Weed District 5769 or email [email protected] or [email protected]. Front cover photo of Cirsium eatonii var. hesperium by Janis Huggins Partners in Land Stewardship 2nd Edition 1 2 Table of Contents Introduction 4 Introduction Native Thistles (Pages 6-20) Barneyby’s Thistle (Cirsium barnebyi) 6 Cainville Thistle (Cirsium clacareum) 6 Native thistles are dispersed broadly Eaton’s Thistle (Cirsium eatonii) 8 across many Colorado ecosystems. Individual species occupy niches from Elk or Meadow Thistle (Cirsium scariosum) 8 3,500 feet to above timberline. These Flodman’s Thistle (Cirsium flodmanii) 10 plants are valuable to pollinators, seed Fringed or Fish Lake Thistle (Cirsium 10 feeders, browsing wildlife and to the centaureae or C. clavatum var. beauty and diversity of our native plant americanum) communities. Some non-native species Mountain Thistle (Cirsium scopulorum) 12 have become an invasive threat to New Mexico Thistle (Cirsium 12 agriculture and natural areas. For this reason, native and non-native thistles neomexicanum) alike are often pulled, mowed, clipped or Ousterhout’s or Aspen Thistle (Cirsium 14 sprayed indiscriminately. -
St. John's-Wort
A Guide to Weeds in British Columbia ST. JOHN’S-WORT DISTRIBUTION Hypericum perforatum L. Family: Clusiaceae (St. John’s-wort). Other Scientific Names: None. Other Common Names: Klamath weed, goatweed. Legal Status: Not categorized. Growth form: Perennial forb. Leaves: Leaves are opposite, 1–3 cm long, oval- Flower: Flowers shaped, with prominent veins and covered with are 2 cm in transparent dots. diameter, bright yellow, Stems: Mature plants are numerous in flat-topped 0.1–1.0 m high. The stems are clusters. Flowers have 5 erect, 2-sided, rust coloured, separate petals that are twice with numerous branches. as long as the sepals. Stamens Roots: Short rhizomes. are numerous and paired into Seedling: No information 3 groups. available. Seeds/Fruit: Seed pods are 6 mm long, rust-brown, with 3- Similar Species celled capsules that contain Exotics: None known. numerous seeds (Whitson et al. Natives: None known. 1996). Impacts ____________________________________________ Agricultural: St. John’s-wort invades grazed and irritation and blistering in light-coloured livestock disturbed lands. In dense stands, it displaces native when they are exposed to sunlight (Powell et al. 1994). plant species and reduces livestock and wildlife forage. Ecological: No information available. The plant also contains a toxin that causes skin Human: Commercially available as an antidepressant. Habitat and Ecology __________________________________ General requirements: In BC, St. John’s-wort grows Historical: Introduced from Eurasia. at low- to mid-elevations in coastal, grassland, and Life cycle: St. John’s-wort grows early in spring when open forested regions. It is commonly found on soil moisture is available, and flowers from June to rangeland, pasture, and meadows and along roadsides September, depending on geographic location. -
Classical Biological Control of Nodding and Plumeless Thistles
Biological Control 21, 206–213 (2001) doi:10.1006/bcon.2001.0940, available online at http://www.idealibrary.com on Classical Biological Control of Nodding and Plumeless Thistles L. T. Kok Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0319 Received March 15, 2001; accepted March 20, 2001; published online May 22, 2001 group. Both thistles are winter annuals or biennials. Nodding (musk) thistle (Carduus thoermeri Wein- Seeds produced in summer form rosettes which over- mann in the Carduus nutans L. group) and plumeless winter. The rosettes resume development in spring, thistle (Carduus acanthoides L.) are introduced nox- followed by stem elongation and flowering. Nodding ious weeds of Eurasian origin. Both weeds are prob- thistle was first recorded in 1853 at Harrisburg, Penn- lematic in pastures, rangelands, and croplands and sylvania (Stuckey and Forsyth, 1971) and has been along state highways in many parts of the United reported in 40 of the 48 contiguous states (Frick, 1978). States. The success of both species of thistles is largely Plumeless thistle first appeared in 1878 at Camden, due to their prolific seed production, seed longevity, New Jersey and in Ohio (Batra, 1978) and is found in competitive ability, and lack of natural enemies. Clas- sical biological control of nodding thistle in Virginia 19 states (Frick, 1978). The two thistle species often has been achieved with three exotic thistle herbivores, occupy the same habitats in the northeast, such as Rhinocyllus conicus Froelich (Coleoptera: Curculion- overgrazed pastures and disturbed roadsides, some- idae), Trichosirocalus horridus (Panzer) (Coleoptera: times occurring in mixed stands (Batra, 1978). -
Milk Thistle
Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control BIOLOGY AND BIOLOGICAL CONTROL OF EXOTIC T RU E T HISTL E S RACHEL WINSTON , RICH HANSEN , MA R K SCH W A R ZLÄNDE R , ER IC COO M BS , CA R OL BELL RANDALL , AND RODNEY LY M FHTET-2007-05 U.S. Department Forest September 2008 of Agriculture Service FHTET he Forest Health Technology Enterprise Team (FHTET) was created in 1995 Tby the Deputy Chief for State and Private Forestry, USDA, Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ On the cover: Italian thistle. Photo: ©Saint Mary’s College of California. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410 or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. The use of trade, firm, or corporation names in this publication is for information only and does not constitute an endorsement by the U.S. -
Thistle Identification
Oklahoma Cooperative Extension Service PSS-2776 Thistle Identification January 2021 Laura Goodman Extension Rangeland Ecology Specialist Oklahoma Cooperative Extension Fact Sheets are also available on our website at: Tom Royer extension.okstate.edu Extension Entomologist Alex Rocateli can often develop. The current Thistle Law includes three of Forage Systems Extension Specialist the five species. However, all introduced thistles should be considered invasive. Oklahoma’s Noxious Weed Law, first enacted in 1994 in four counties in northeastern Oklahoma (Code 35:30-36-13) Thistles Listed in the Noxious Weed Law was amended in 1995, 1998 and 1999. The current law de- Canada thistle (Cirsium arvense) is an introduced peren- clares musk, scotch and Canada thistles to be noxious weeds nial thistle widely distributed in Nebraska and other northern and public nuisances in all counties of the state. states. At present, it does not appear to be a major threat in There are about a dozen purple-flowered spiny thistle Oklahoma. Several plants were collected in the panhandle species that occur in Oklahoma. Oklahoma’s Noxious Weed counties in the 1950s and several more in Bryan County in Law can raise concern among landowners if they do not the 1970s, but currently, no infestations are known to exist in know which thistles on their land they are required to control. the state. In a 1998 survey of noxious weeds in Meade County The purpose of this publication is to describe the introduced Kansas, north of Beaver County, Oklahoma, reported a small thistles, selected common native thistles and provide infor- infestation of Canada thistle. -
Integrated Noxious Weed Management Plan: US Air Force Academy and Farish Recreation Area, El Paso County, CO
Integrated Noxious Weed Management Plan US Air Force Academy and Farish Recreation Area August 2015 CNHP’s mission is to preserve the natural diversity of life by contributing the essential scientific foundation that leads to lasting conservation of Colorado's biological wealth. Colorado Natural Heritage Program Warner College of Natural Resources Colorado State University 1475 Campus Delivery Fort Collins, CO 80523 (970) 491-7331 Report Prepared for: United States Air Force Academy Department of Natural Resources Recommended Citation: Smith, P., S. S. Panjabi, and J. Handwerk. 2015. Integrated Noxious Weed Management Plan: US Air Force Academy and Farish Recreation Area, El Paso County, CO. Colorado Natural Heritage Program, Colorado State University, Fort Collins, Colorado. Front Cover: Documenting weeds at the US Air Force Academy. Photos courtesy of the Colorado Natural Heritage Program © Integrated Noxious Weed Management Plan US Air Force Academy and Farish Recreation Area El Paso County, CO Pam Smith, Susan Spackman Panjabi, and Jill Handwerk Colorado Natural Heritage Program Warner College of Natural Resources Colorado State University Fort Collins, Colorado 80523 August 2015 EXECUTIVE SUMMARY Various federal, state, and local laws, ordinances, orders, and policies require land managers to control noxious weeds. The purpose of this plan is to provide a guide to manage, in the most efficient and effective manner, the noxious weeds on the US Air Force Academy (Academy) and Farish Recreation Area (Farish) over the next 10 years (through 2025), in accordance with their respective integrated natural resources management plans. This plan pertains to the “natural” portions of the Academy and excludes highly developed areas, such as around buildings, recreation fields, and lawns. -
Feeding, Colonization and Impact of the Cinnabar Moth, Tyria Jacobaeae
AN ABSTRACT OF THE THESIS OF Jonathan W. Diehl for the degree of Master of Science in Entomology presented on May 20, 1988. Title: Feeding, Colonization and Impact of the Cinnabar Moth Tyria jacobaeae, on Senecio triangularisa Novel, Native Host Plant Abstract Redacted for privacy approved: Peter B. McEvoy I conducted field and laboratory studies to determine the impact of the cinnabar moth, Tvria jacobaeae L., on the native perennial herb, Senecio triangularis Hook. The cinnabar moth was introduced into Oregon in 1960 to control the noxious weed Senecio iacobaea L. and is now well established on both the native plant and the weed in Oregon. My objectives were to determine the suitability of S. triangularis as a diet for the cinnabar moth, to estimate the frequency with which the moths colonize the native plant in the field, and to estimate the impact of larval feeding on the plant's survivorship and reproduction. Larvae successfully completed development on S. triangularis, but development time was longer, growth was slower, and pupae were lighter compared to performance on S. iacobaea. Cinnabar moth colonization and feeding damage were concentrated at one of the four study sites observed. Cinnabar moth defoliation results in a 3.9% reduction in seed viability and is inversely related to damage to seeds by native insects. I conclude that cinnabar moths commonly discover this native plant in the field, can establish and develop on it, and cause a small reduction in plant reproductive success. Feeding, Colonization and Impact of the Cinnabar Moth, Tvria iacobaeae, on Senecio triangularis, a Novel, Native Host Plant by Jonathan W. -
NOTE Establishment of the Rosette Weevil, Trichosirocalus Horridus (Panzer) (Coleoptera: Curculionidae) in North Carolina1
SAKE Project AS93-8 S441 .8855 NOTE Establishment of the Rosette Weevil, Trichosirocalus horridus (Panzer) (Coleoptera: Curculionidae) in North Carolina1 R. C. McDonald, K. A. Kidd and N. S. Robbins North Carolina Department of Agriculture Plant Industry Division P. O. Box 27647 Raleigh, NC 27611 USA NOTE Establishment of the Rosette Weevil, Trichosirocalus horridus (Panzer) (Coleoptera: Curculionidae) in North Carolina1 R. C. McDonald, K A. Kidd and N. S. Robbins North Carolina Department of Agriculture Plant Industry Division P. O. Box 27647 Raleigh, NC 27611 USA J. Entomol. Sci. 29(3): 302 -304 (April 1994) KEY WORDS Rosette weevil, Trichosirocalus horridus, thistle. Thistles in the genus Carduus and Cirsium rank as the second most common and third most troublesome weeds in pastures and haycrops in North Carolina (Witt. 1990. Proc. of the S. Weed Sci. Soc. Weed Survey - Southern States. 548 pp.). As part of a long-term solution to controlling thistle infestations, the North Carolina Department of Agriculture initiated a biological control program against these weeds in 1990. Shipments of the rosette weevil, Trichosirocalus (formerly Ceuthorhynchidius) horridus (Panzer), were obtained from Missouri, Tennessee, and Virginia. The weevils were released against musk thistle, Carduus nutans (= thoermeri) (L.), plumeless thistle, Carduus acanthoides (L.), and bull thistle, Cirsium vulgare (Savi) Tenore (Table 1). All three thistles are introduced Eurasian species. In early May of 1992, two weevil adults were collected from a musk thistle plant in Rowan Co., nearly 160 km from our nearest weevil release. These were identified as T. horridus by K. R. Ahlstrom, NCDA Insect Taxonomist; voucher specimens are in the NCDA Insect Collection. -
Coleoptera: Dryophthoridae, Brachyceridae, Curculionidae) of the Prairies Ecozone in Canada
143 Chapter 4 Weevils (Coleoptera: Dryophthoridae, Brachyceridae, Curculionidae) of the Prairies Ecozone in Canada Robert S. Anderson Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario, Canada, K1P 6P4 Email: [email protected] Patrice Bouchard* Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario, Canada, K1A 0C6 Email: [email protected] *corresponding author Hume Douglas Entomology, Ottawa Plant Laboratories, Canadian Food Inspection Agency, Building 18, 960 Carling Avenue, Ottawa, ON, Canada, K1A 0C6 Email: [email protected] Abstract. Weevils are a diverse group of plant-feeding beetles and occur in most terrestrial and freshwater ecosystems. This chapter documents the diversity and distribution of 295 weevil species found in the Canadian Prairies Ecozone belonging to the families Dryophthoridae (9 spp.), Brachyceridae (13 spp.), and Curculionidae (273 spp.). Weevils in the Prairies Ecozone represent approximately 34% of the total number of weevil species found in Canada. Notable species with distributions restricted to the Prairies Ecozone, usually occurring in one or two provinces, are candidates for potentially rare or endangered status. Résumé. Les charançons forment un groupe diversifié de coléoptères phytophages et sont présents dans la plupart des écosystèmes terrestres et dulcicoles. Le présent chapitre décrit la diversité et la répartition de 295 espèces de charançons vivant dans l’écozone des prairies qui appartiennent aux familles suivantes : Dryophthoridae (9 spp.), Brachyceridae (13 spp.) et Curculionidae (273 spp.). Les charançons de cette écozone représentent environ 34 % du total des espèces de ce groupe présentes au Canada. Certaines espèces notables, qui ne se trouvent que dans cette écozone — habituellement dans une ou deux provinces — mériteraient d’être désignées rares ou en danger de disparition. -
Indirect Effect of Early-Season Infestations of Trichosirocalus
Biological Control 30 (2004) 95–109 www.elsevier.com/locate/ybcon Indirect effect of early-season infestations of Trichosirocalus horridus on Rhinocyllus conicus (Coleoptera: Curculionidae) Lindsey R. Milbrath1 and James R. Nechols* Department of Entomology, Kansas State University, Manhattan, KS 66506-4004, USA Received 23 April 2003; accepted 29 September 2003 Abstract Field experiments were conducted to determine whether early vegetative feeding by Trichosirocalus horridus alters musk thistle (Carduus nutans) as a resource for the later-arriving Rhinocyllus conicus. Results showed that thistles with high larval densities of T. horridus (66 per plant) produced more and shorter flower stems, significantly fewer flower heads, and delayed flowering by 1 week when compared to uninfested thistles. Also, colonization and oviposition on flower heads by adult R. conicus were as much as three and five times lower, respectively, on thistles heavily infested with T. horridus than on uninfested thistles. As a result, 63% fewer R. conicus adults developed from T. horridus-infested thistles. Musk thistles that were infested with lower densities of T. horridus larvae (<20 per plant) also produced multiple stems that were usually shorter than uninfested thistles. However, no differences were observed in flower head production or in the behavioral responses of R. conicus to T. horridus-infested and uninfested plants. In a greenhouse experiment, the mortality rate of R. conicus was higher on musk thistles that were heavily infested by T. horridus, implying a change in musk thistle quality. However, this effect was apparent only at low R. conicus larval densities. T. horridus can indirectly and negatively affect R. conicus through a variety of mechanisms, but only when densities of T. -
Mt. Baker-Snoqualmie Invasive Plant Treatment
United States Department of Agriculture Mt. Baker-Snoqualmie National Forest Invasive Plant Treatment Draft Environmental Impact Statement Whatcom, Skagit, Snohomish, King, and Pierce Counties, Washington August 2014 for the greatest good Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religión, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual’s income is derived from any public assistance program, or protected genetic infor- mation in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/ or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency’s EEO Counselor (click the hyperlink for list of EEO counselors) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action. Additional information can be found online at http:// www.ascr.usda.gov/complaint_filing_file.html. To File a Program Complaint If you wish to file a Civil Rights program complaint of discrimination, complete the USDA Program Discrimination Complaint Form, found online at http://www.ascr.usda.gov/complaint_filing_cust.html, or at any USDA office, or call (866) 632-9992 to request the form. Send your completed com- plaint form or letter to us by mail at U.S. Department of Agriculture, Director, Office of Adjudication, 1400 Independence Avenue, S.W., Washington, D.C. -
St. Johnswort: Identification, Biology, and Integrated Management
St. Johnswort: Identification, Biology, and Integrated Management By Jane Mangold1, Roger Sheley 2, and Melissa Brown 3 This MontGuide describes St. Johnswort biological and ecological characteristics. It also provides mechanical, cultural, biological and chemical MontGuide options to control this plant species. MT199810AG Revised 6/17 ST. JOHNSWORT (HYPERICUM PERFORATUM L.), St. Johnswort generally grows in well drained, gravelly also known as goatweed and Klamath weed, is an or sandy soils and favors sunny exposures. In the western economically important pest in temperate regions U. S., the weed occupies lower elevations where annual worldwide. Although used as a possible natural precipitation is between 15 and 30 inches. Because it is not antidepressant, St. Johnswort causes considerable ecological a highly competitive plant, St. Johnswort persists well in and economic losses. In addition to displacing desirable disturbed areas that lack more competitive plant species. plants that are important for wildlife habitat and domestic However, St. Johnswort can become established in pristine livestock forage, St. Johnswort also poses a risk of poisoning rangelands. grazing animals. Correctly identifying St. Johnswort and understanding the plant’s life cycle and growth requirements Identification and biology are important for selecting management strategies that will St. Johnswort is a member of the Clusiaceae family effectively suppress St. Johnswort populations and promote (formerly the Hypericaceae family). Plants can grow from healthy, desired vegetation. one to five feet tall with numerous, rust-colored branches that are woody at the base. In autumn, infestations are Origin and distribution easy to spot by the remaining rust-colored branches. The St. Johnswort is native to Europe, North Africa, and parts taproot may reach depths of four to five feet.