Investigation Into the Rate-Determining Step Of

Total Page:16

File Type:pdf, Size:1020Kb

Investigation Into the Rate-Determining Step Of University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 2009 Investigation into the rate-determining step of mammalian heme biosynthesis: Molecular recognition and catalysis in 5-aminolevulinate synthase Thomas Lendrihas University of South Florida Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the American Studies Commons Scholar Commons Citation Lendrihas, Thomas, "Investigation into the rate-determining step of mammalian heme biosynthesis: Molecular recognition and catalysis in 5-aminolevulinate synthase" (2009). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/2059 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Investigation into the Rate-Determining Step of Mammalian Heme Biosynthesis: Molecular Recognition and Catalysis in 5-Aminolevulinate Synthase by Thomas Lendrihas A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Molecular Medicine College of Medicine University of South Florida Major Professor: Gloria C. Ferreira, Ph.D. Samuel I. Beale, Ph.D R. Kennedy Keller, Ph.D. Randy W. Larsen, Ph.D. Gene C. Ness, Ph.D. Larry P. Solomonson, Ph.D. Date of Approval: June 30, 2009 Keywords: X-linked sideroblastic anemia, α-oxoamine synthase, transient kinetics, pyridoxal 5'-phosphate, porphyria, photodynamic therapy © Copyright 2009, Thomas Lendrihas Acknowledgements I wish to express my gratitude to the members of my committee, Dr. R. Kennedy Keller, Dr. Randy W. Larsen, Dr. Gene C. Ness, and Dr. Larry P. Solomonson for their consistent guidance, understanding and support throughout the course of my graduate work. Most of all, to Dr. Gloria C. Ferreira, I am deeply appreciative for allowing me the privilege of working with her side-by-side. Her remarkable guidance as both a scientific mentor and cherished friend will never be forgotten. I am grateful to all the professors and colleagues in the Department of Molecular Medicine, for their intellectual and personal contributions. To Dr. Gregory A. Hunter and Dr. Tracy D. Turbeville, I am indebted for both their scientific and emotional counsel. I wish to express my appreciation to Ms. Kathy Zahn and Ms. Maxine Roth at the Office of Research and Graduate Affairs for their continuous administrative assistance. Additionally, I would like to specifically thank Ms. Helen Chen-Duncan for her unwavering support and caring as both a colleague and treasured friend. I am forever grateful to my friends: Zena Y. Davis, Julia B. Huddleston, John K. Knowles, Mitchell M. McNelly, Laura Jackson Roberts, Louis J. Smith and Thomas F. Zarella, for their enduring encouragement and love. Finally, I wish to acknowledge my family, without whom, this journey would not have been possible. Table of Contents List of Tables iii List of Figures iv List of Abbreviations vi List of Schemes ix Abstract x Chapter One 1 INTRODUCTION: The central function of heme: biogenesis, chemistry and health 1 Enzymes in the heme biosynthesis pathway 2 Aminolevulinate synthase 2 Porphobilinogen synthase 11 Porphobilinogen deaminase 13 Uroporphyrinogen III synthase 15 Uroporphyrinogen decarboxylase 19 Coproporphyrinogen oxidase 21 Protoporphyrinogen oxidase 24 Ferrochelatase 26 Enzymes in the heme degradation pathway 31 Heme oxygenase 31 Biliverdin reductase 34 Content of the dissertation 36 References 36 Chapter Two 51 SERINE-254 ENHANCES AN INDUCED FIT MECHANISM IN MURINE i 5-AMINOLEVULINATE SYNTHASE 51 Abstract 51 Introduction 53 Materials 59 Methods 59 Results 65 Discussion 74 Acknowledgements 79 References 79 Chapter Three 82 ARG-85 AND THR-430 IN MURINE 5-AMINOLEVULINATE SYNTHASE COORDINATE ACYL-COA-BINDING AND CONTRIBUTE TO SUBSTRATE SPECIFICITY 82 Abstract 82 Introduction 84 Materials 88 Methods 88 Results 93 Discussion 106 Acknowledgements 114 References 114 Chapter Four 117 HYPERACTIVE ENZYME VARIANTS ENGINEERED BY SYNTHETICALLY SHUFFLING A LOOP MOTIF IN MURINE 5-AMINOLEVULINATE SYNTHASE 117 Abstract 117 Introduction 119 Materials 123 Methods 123 Results 132 Discussion 150 Acknowledgements 156 References 156 Chapter Five 159 SUMMARY AND CONCLUSION 159 References 167 About the Author End Page ii List of Tables Table 2.1. Summary of steady-state kinetic parameters. 66 Table 2.2. Gibb’s free energy associated with the S254 variant-catalyzed reactions. 78 Table 3.1. Comparison of steady-state kinetic constants for wild-type ALAS, R85K, R85L, and R85L/T430V with CoA derivatives as substrates. 95 Table 3.2. Rates of quinonoid intermediate formation and decay under single- turnover conditions. 103 Table 4.1. Designed mutations for incorporation at indicated positions within the ALAS active site loop. 124 Table 4.2. Amino acids substitutions in active site lid variants. 139 Table 4.3. Kinetic parameters for the reactions of hyperactive ALAS enzymes. 141 Table 4.4. Thermodynamic activation parameters of wild-type ALAS and the SS2 variant. 149 iii List of Figures Figure 1.1. Enzymes and intermediates of the heme biosynthetic pathway. 4 Figure 1.2. The X-ray crystal structure of porphobilinogen deaminase from Homo sapiens. 14 Figure 1.3. The three-dimensional structure of human uroporphyrinogen III synthase. 16 Figure 1.4. The X-ray crystal structures of coproporphyrinogen III oxidase. 22 Figure 1.5. The three-dimensional structure of ferrochelatase from Homo sapiens. 28 Figure 1.6. Enzymes in the heme degradation pathway. 32 Figure 2.1. Structural models for murine erythroid ALAS based on the R. capsulatus crystal structures. 57 Figure 2.2. Multiple sequence alignment of phylogenetically diverse members of the α-oxoamine synthase family in the region of murine eALAS serine-254. 58 Figure 2.3. Circular dichroism and fluorescence emission spectra of ALAS and the S254 variants. 67 Figure 2.4. Reaction of the S254 variants (60 µM) with increasing concentrations of glycine. 69 Figure 2.5. Reaction of wild-type ALAS and the S254 variants (5 µM) with ALA. 70 Figure 2.6. Reaction of wild-type ALAS- and S254 variant-glycine complexes with succinyl-CoA under single turnover conditions. 72 iv Figure 2.7. Kinetic mechanisms of the S254 variant enzymes. 78 Figure 3.1 The acyl-CoA-binding cleft in R. capsulatus ALAS. 87 Figure 3.2. Comparison of normalized specificity constants for murine eALAS variants with different CoA substrates. 98 Figure 3.3. Visible circular dichroism spectra of wild-type ALAS and the R85 and R85/T430 variants. 99 Figure 3.4. Reaction of wild-type ALAS, R85K, R85L and R85L/T430V (5 µM) with ALA. 101 Figure 3.5. Reaction of wild-type ALAS- and R85K-glycine complexes with different CoA derivatives under single turnover conditions. 104 Figure 4.1. The position of the active site loop in the R. capsulatus ALAS crystal structure. 122 Figure 4.2. The generation and screening of the library. 126 Figure 4.3. Differential fluorescence of ALAS variant isolates streaked on expression agar. 128 Figure 4.4. Multiple alignment of the amino acid sequences of the ALAS loop region. 134 Figure 4.5. The single turnover reactions of isolated hyperactive ALAS variants. 141 Figure 4.6. The SS2 variant-catalyzed reaction. 147 Figure 4.7. The thermal dependence of the SS2-variant catalyzed reaction. 148 Figure 4.8. The simulated kinetic mechanism of the SS2 variant-catalyzed reaction. 149 v List of Abbreviations A-site Acetyl-site AAT Aspartate aminotransferase AIP Acute intermittent porphyria ALA 5-Aminolevulinate ALAD 5-Aminolevulinate dehydratase ALAS 5-Aminolevulinate synthase ALAS1 5-Aminolevuinate synthase (Non-specific isoform) ALAS2 5-Aminolevulinate synthase (Erythroid-specific isoform) AON 8-Amino-7-oxononanoate AONS 8-Amino-7-oxononanoate synthase Bach-1 Basic leucine transcription factor 1 BVR Biliverdin reductase CD Circular dichroism CO Carbon monoxide CO2 Carbon dioxide CoA Coenzyme-A CEP Congenital erythropoietic porphyria CPK Corey, Pauling and Koulton vi CPO Coproporphyrinogen oxidase DEAE Diethylaminoethyl EPP Erythropoietic protoporphyria FAD Flavin adenine dinucleotide FC Ferrochelatase GATA1 Globin transcription factor 1 HCP Hereditary coproporphyria HEP Hepatoerythropoietic porphyria HEPES (N-[2-Hydroxyethyl] piperazine-N’-[2-ethane sulfonic acid]) HMB Hydroxymethylbilane HO Heme oxygenase HRM Heme regulatory motif INH 4-Bromo-3-(5'-carboxy-4'-chloro-2'-fluoro-phenyl)-1-methyl-5- trifluoromethyl-pyrazol IRE Iron response element IRP IRE-binding protein KBL 2-Amino-3-ketobutyrate-CoA ligase meALAS Murine erythroid ALAS mno montalcino (zebrafish variant displaying defective PPO activity) MOPS 4-Morpholinepropanesulfonic acid NAD+ -Nicotinamide adenine dinucleotide NADPH -Nicotinamide adenine dinucleotide phosphate O2 Diatomic oxygen vii PBG Porphobilinogen PBGD Porphobilinogen deaminase PBGS Porphobilinogen synthase PCT Porphyria cutanea tarda P-site Propionyl-site PDB Protein data bank PLP Pyridoxal 5’-phosphate PPO Protoporphyrinogen oxidase RMSD Root mean square deviation SAM S-adenosyl-L-methionine SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis SPT Serine palmitoyl transferase SS2 Synthetically shuffled variant #2 UROD Uroporphyrinogen decarboxylase UROS Uroporphyrinogen synthase VP Variegate porphyria XLSA X-linked sideroblastic anemia viii List of Schemes Scheme 1.1. The chemical mechanism of
Recommended publications
  • Amplitaq and Amplitaq Gold DNA Polymerase
    AmpliTaq and AmpliTaq Gold DNA Polymerase The Most Referenced Brand of DNA Polymerase in the World Date: 2005-05 Notes: Authors are listed alphabetically J. Biol. Chem. (223) Ezoe, S., I. Matsumura, et al. (2005). "GATA Transcription Factors Inhibit Cytokine-dependent Growth and Survival of a Hematopoietic Cell Line through the Inhibition of STAT3 Activity." J. Biol. Chem. 280(13): 13163-13170. http://www.jbc.org/cgi/content/abstract/280/13/13163 Although GATA-1 and GATA-2 were shown to be essential for the development of hematopoietic cells by gene targeting experiments, they were also reported to inhibit the growth of hematopoietic cells. Therefore, in this study, we examined the effects of GATA-1 and GATA-2 on cytokine signals. A tamoxifen-inducible form of GATA-1 (GATA-1/ERT) showed a minor inhibitory effect on interleukin-3 (IL-3)-dependent growth of an IL-3-dependent cell line Ba/F3. On the other hand, it drastically inhibited TPO-dependent growth and gp130-mediated growth/survival of Ba/F3. Similarly, an estradiol-inducible form of GATA-2 (GATA-2/ER) disrupted thrombopoietin (TPO)-dependent growth and gp130-mediated growth/survival of Ba/F3. As for this mechanism, we found that both GATA-1 and GATA-2 directly bound to STAT3 both in vitro and in vivo and inhibited its DNA-binding activity in gel shift assays and chromatin immunoprecipitation assays, whereas they hardly affected STAT5 activity. In addition, endogenous GATA-1 was found to interact with STAT3 in normal megakaryocytes, suggesting that GATA-1 may inhibit STAT3 activity in normal hematopoietic cells.
    [Show full text]
  • Molecular Expression, Characterization and Mechanism of ALAS2 Gain-Of-Function Mutants Vassili Tchaikovskii, Robert J
    Tchaikovskii et al. Molecular Medicine (2019) 25:4 Molecular Medicine https://doi.org/10.1186/s10020-019-0070-9 RESEARCHARTICLE Open Access Molecular expression, characterization and mechanism of ALAS2 gain-of-function mutants Vassili Tchaikovskii, Robert J. Desnick and David F. Bishop* Abstract Background: X-linked protoporphyria (XLP) (MIM 300752) is an erythropoietic porphyria due to gain-of-function mutations in the last exon (Ducamp et al., Hum Mol Genet 22:1280-88, 2013) of the erythroid-specific aminolevulinate synthase gene (ALAS2). Five ALAS2 exon 11 variants identified by the NHBLI Exome sequencing project (p.R559H, p.E565D, p.R572C, p.S573F and p.Y586F) were expressed, purified and characterized in order to assess their possible contribution to XLP. To further characterize the XLP gain-of-function region, five novel ALAS2 truncation mutations (p.P561X, p.V562X, p.H563X, p.E569X and p.F575X) were also expressed and studied. Methods: Site-directed mutagenesis was used to generate ALAS2 mutant clones and all were prokaryotically expressed, purified to near homogeneity and characterized by protein and enzyme kinetic assays. Standard deviations were calculated for 3 or more assay replicates. Results: The five ALAS2 single nucleotide variants had from 1.3- to 1.9-fold increases in succinyl-CoA Vmax and 2- to 3-fold increases in thermostability suggesting that most could be gain-of-function modifiers of porphyria instead of causes. One SNP (p.R559H) had markedly low purification yield indicating enzyme instability as the likely cause for XLSA in an elderly patient with x-linked sideroblastic anemia. The five novel ALAS2 truncation mutations had increased Vmax values for both succinyl-CoA and glycine substrates (1.4 to 5.6-fold over wild-type), while the Kms for both substrates were only modestly changed.
    [Show full text]
  • CYP2A6) by P53
    Transcriptional Regulation of Human Stress Responsive Cytochrome P450 2A6 (CYP2A6) by p53 Hao Hu M.Biotech. (Biotechnology) 2012 The University of Queensland B.B.A. 2009 University of Electronic Science and Technology of China B.Sc. (Pharmacy) 2009 University of Electronic Science and Technology of China A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2016 School of Medicine ABSTRACT Human cytochrome P450 (CYP) 2A6 is highly expressed in the liver and the encoding gene is regulated by various stress activated transcription factors, such as the nuclear factor (erythroid-derived 2)-like 2 (Nrf-2). Unlike the other xenobiotic metabolising CYP enzymes (XMEs), CYP2A6 only plays a minor role in xenobiotic metabolism. The CYP2A6 is highly induced by multiple forms of cellular stress conditions, where XMEs expression is normally inhibited. Recent findings suggest that the CYP2A6 plays an important role in regulating BR homeostasis. A computer based sequence analysis on the 3 kb proximate CYP2A6 promoter revealed several putative binding sites for p53, a protein that mediates regulation of antioxidant and apoptosis pathways. In this study, the role of p53 in CYP2A6 gene regulation is demonstrated. The site closest to transcription start site (TSS) is highly homologous with the p53 consensus sequence. The p53 responsiveness of this site was confirmed by transfections with various stepwise deleted of CYP2A6-5’-Luc constructs containing the putative p53RE. Deletion of the putative p53RE resulted in a total abolishment of p53 responsiveness of CYP2A6 promoter. Specific binding of p53 to the putative p53RE was detected by electrophoresis mobility shift assay.
    [Show full text]
  • 1 Metabolic Dysfunction Is Restricted to the Sciatic Nerve in Experimental
    Page 1 of 255 Diabetes Metabolic dysfunction is restricted to the sciatic nerve in experimental diabetic neuropathy Oliver J. Freeman1,2, Richard D. Unwin2,3, Andrew W. Dowsey2,3, Paul Begley2,3, Sumia Ali1, Katherine A. Hollywood2,3, Nitin Rustogi2,3, Rasmus S. Petersen1, Warwick B. Dunn2,3†, Garth J.S. Cooper2,3,4,5* & Natalie J. Gardiner1* 1 Faculty of Life Sciences, University of Manchester, UK 2 Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK 3 Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, UK 4 School of Biological Sciences, University of Auckland, New Zealand 5 Department of Pharmacology, Medical Sciences Division, University of Oxford, UK † Present address: School of Biosciences, University of Birmingham, UK *Joint corresponding authors: Natalie J. Gardiner and Garth J.S. Cooper Email: [email protected]; [email protected] Address: University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom Telephone: +44 161 275 5768; +44 161 701 0240 Word count: 4,490 Number of tables: 1, Number of figures: 6 Running title: Metabolic dysfunction in diabetic neuropathy 1 Diabetes Publish Ahead of Print, published online October 15, 2015 Diabetes Page 2 of 255 Abstract High glucose levels in the peripheral nervous system (PNS) have been implicated in the pathogenesis of diabetic neuropathy (DN). However our understanding of the molecular mechanisms which cause the marked distal pathology is incomplete. Here we performed a comprehensive, system-wide analysis of the PNS of a rodent model of DN.
    [Show full text]
  • Supplementary Materials
    1 Supplementary Materials: Supplemental Figure 1. Gene expression profiles of kidneys in the Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice. (A) A heat map of microarray data show the genes that significantly changed up to 2 fold compared between Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice (N=4 mice per group; p<0.05). Data show in log2 (sample/wild-type). 2 Supplemental Figure 2. Sting signaling is essential for immuno-phenotypes of the Fcgr2b-/-lupus mice. (A-C) Flow cytometry analysis of splenocytes isolated from wild-type, Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice at the age of 6-7 months (N= 13-14 per group). Data shown in the percentage of (A) CD4+ ICOS+ cells, (B) B220+ I-Ab+ cells and (C) CD138+ cells. Data show as mean ± SEM (*p < 0.05, **p<0.01 and ***p<0.001). 3 Supplemental Figure 3. Phenotypes of Sting activated dendritic cells. (A) Representative of western blot analysis from immunoprecipitation with Sting of Fcgr2b-/- mice (N= 4). The band was shown in STING protein of activated BMDC with DMXAA at 0, 3 and 6 hr. and phosphorylation of STING at Ser357. (B) Mass spectra of phosphorylation of STING at Ser357 of activated BMDC from Fcgr2b-/- mice after stimulated with DMXAA for 3 hour and followed by immunoprecipitation with STING. (C) Sting-activated BMDC were co-cultured with LYN inhibitor PP2 and analyzed by flow cytometry, which showed the mean fluorescence intensity (MFI) of IAb expressing DC (N = 3 mice per group). 4 Supplemental Table 1. Lists of up and down of regulated proteins Accession No.
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • Characterisation of Bilirubin Metabolic Pathway in Hepatic Mitochondria Siti Nur Fadzilah Muhsain M.Sc
    Characterisation of Bilirubin Metabolic Pathway in Hepatic Mitochondria Siti Nur Fadzilah Muhsain M.Sc. (Medical Research) 2005 Universiti Sains Malaysia Postgrad. Dip. (Toxicology) 2003 University of Surrey B.Sc.(Biomed. Sc.) 2000 Universiti Putra Malaysia A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2014 School of Medicine ABSTRACT Bilirubin (BR), a toxic waste product of degraded haem, is a potent antioxidant at physiological concentrations. To achieve the maximum benefit of BR, its intracellular level needs to be carefully regulated. A system comprising of two enzymes, haem oxygenase-1 (HMOX1) and cytochrome P450 2A5 (CYP2A5) exists in the endoplasmic reticulum (ER), responsible for regulating BR homeostasis. This system is induced in response to oxidative stress. In this thesis, oxidative stress caused accumulation of these enzymes in mitochondria — major producers and targets of reactive oxygen species (ROS) — is demonstrated. To understand the significance of this intracellular targeting, properties of microsomal and mitochondrial BR metabolising enzymes were compared and the capacity of mitochondrial CYP2A5 to oxidise BR in response to oxidative stress is reported. Microsomes and mitochondrial fractions were isolated from liver homogenates of DBA/2J mice, administered with sub-toxic dose of pyrazole, an oxidant stressor. The purity of extracted organelles was determined by analysing the expressions and activities of their respective marker enzymes. HMOX1 and CYP2A5 were significantly increased in microsomes and even more so in mitochondria in response to pyrazole-induced oxidative stress. By contrast, the treatment did not increase either microsomes or mitochondrial Uridine-diphosphate-glucuronosyltransferase 1A1 (UGT1A1), the sole enzyme that catalyses BR elimination through glucuronidation.
    [Show full text]
  • Targeting Proteins Self-Association in Drug Design
    Targeting proteins self-association in drug design Léopold Thabault,1,2 Maxime Liberelle,1 Raphaël Frédérick1* 1 Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium. 2 Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain),B-1200 Brussels, Belgium. * Corresponding Author : Prof. Raphaël Frédérick Université catholique de Louvain (UCLouvain) Louvain Drug Research Institute (LDRI) Tour Van Helmont, B1.73.10 73 avenue Mounier 1200 Brussels Belgium Phone : +32 2 764 73 41 1 Abstract Protein self-association is a universal phenomenon essential for stability and molecular recognition. Disrupting constitutive homomers constitutes an original and emerging strategy in drug design. Inhibition of homomeric proteins can be achieved through direct complex disruption, subunits intercalation or by promoting inactive oligomeric states. Targeting self- interaction grants several advantages over active site inhibition thanks to the stimulation of protein degradation, the enhancement of selectivity, a sub-stoichiometric inhibition and a by- pass of compensatory mechanisms. This new landscape in protein inhibition is driven by the development of biophysical and biochemical tools suited for the study of homomeric proteins, such as DSF, native MS, FRET spectroscopy, two-dimensional NMR and X-ray crystallography. The present review covers the different aspects of this new paradigm in drug design. Keywords Protein-protein interaction; Homo-oligomers Disruptor; Protein destabilisation; Allosteric inhibition; Self-association. Teaser Disrupting protein self-association bears great therapeutic promesses and could provide exciting alternatives to active-site inhibitors. 2 1. PPI as a well-accepted paradigm in drug design The human interactome is nowadays widely considered as one of the keys to cell mechanistic regulation.
    [Show full text]
  • GATA Transcription Factors Directly Regulate the Parkinson's
    GATA transcription factors directly regulate the Parkinson’s disease-linked gene ␣-synuclein Clemens R. Scherzer*†‡, Jeffrey A. Grass§, Zhixiang Liao*, Imelda Pepivani*, Bin Zheng*, Aron C. Eklund*, Paul A. Ney¶, Juliana Ngʈ, Meghan McGoldrick*, Brit Mollenhauer*, Emery H. Bresnick†§**, and Michael G. Schlossmacher*†ʈ†† *Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Cambridge, MA 02139; §Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706; ¶Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, TN 38105; and ʈDivision of Neurosciences, Ottawa Health Research Institute, University of Ottawa, Ottawa, ON, Canada K1H 8M5 Edited by Gregory A. Petsko, Brandeis University, Waltham, MA, and approved May 27, 2008 (received for review March 13, 2008) Increased ␣-synuclein gene (SNCA) dosage due to locus multipli- Results cation causes autosomal dominant Parkinson’s disease (PD). Vari- SNCA mRNA and Protein Are Highly Abundant in Human and Mouse ation in SNCA expression may be critical in common, genetically Erythroid Cells. Relative SNCA mRNA abundance was determined complex PD but the underlying regulatory mechanism is unknown. by comparing the SNCA mRNA abundance in each target tissue to We show that SNCA and the heme metabolism genes ALAS2, FECH, the calibrator Universal Human Reference RNA (Fig. 1A). SNCA and BLVRB form a block of tightly correlated gene expression in 113 mRNA abundance was high in whole blood from human donors samples of human blood, where SNCA naturally abounds (vali- (relative abundance 10 {range 6.6–15.3}) with very high levels in ؊ ؊ ؊ -؋ 10 11, 1.8 ؋ 10 10, and 6.6 ؋ 10 5).
    [Show full text]
  • Heme Oxygenase-1 Regulates Mitochondrial Quality Control in the Heart
    RESEARCH ARTICLE Heme oxygenase-1 regulates mitochondrial quality control in the heart Travis D. Hull,1,2 Ravindra Boddu,1,3 Lingling Guo,2,3 Cornelia C. Tisher,1,3 Amie M. Traylor,1,3 Bindiya Patel,1,4 Reny Joseph,1,3 Sumanth D. Prabhu,1,4,5 Hagir B. Suliman,6 Claude A. Piantadosi,7 Anupam Agarwal,1,3,5 and James F. George2,3,4 1Department of Medicine, 2Department of Surgery, 3Nephrology Research and Training Center, and 4Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama, USA. 5Department of Veterans Affairs, Birmingham, Alabama, USA. 6Department of Anesthesiology and 7Department of Pulmonary, Allergy and Critical Care, Duke University School of Medicine, Durham, North Carolina, USA. The cardioprotective inducible enzyme heme oxygenase-1 (HO-1) degrades prooxidant heme into equimolar quantities of carbon monoxide, biliverdin, and iron. We hypothesized that HO-1 mediates cardiac protection, at least in part, by regulating mitochondrial quality control. We treated WT and HO-1 transgenic mice with the known mitochondrial toxin, doxorubicin (DOX). Relative to WT mice, mice globally overexpressing human HO-1 were protected from DOX-induced dilated cardiomyopathy, cardiac cytoarchitectural derangement, and infiltration of CD11b+ mononuclear phagocytes. Cardiac-specific overexpression of HO-1 ameliorated DOX-mediated dilation of the sarcoplasmic reticulum as well as mitochondrial disorganization in the form of mitochondrial fragmentation and increased numbers of damaged mitochondria in autophagic vacuoles. HO-1 overexpression promotes mitochondrial biogenesis by upregulating protein expression of NRF1, PGC1α, and TFAM, which was inhibited in WT animals treated with DOX. Concomitantly, HO-1 overexpression inhibited the upregulation of the mitochondrial fission mediator Fis1 and resulted in increased expression of the fusion mediators, Mfn1 and Mfn2.
    [Show full text]
  • CDH12 Cadherin 12, Type 2 N-Cadherin 2 RPL5 Ribosomal
    5 6 6 5 . 4 2 1 1 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 A A A A A A A A A A A A A A A A A A A A C C C C C C C C C C C C C C C C C C C C R R R R R R R R R R R R R R R R R R R R B , B B B B B B B B B B B B B B B B B B B , 9 , , , , 4 , , 3 0 , , , , , , , , 6 2 , , 5 , 0 8 6 4 , 7 5 7 0 2 8 9 1 3 3 3 1 1 7 5 0 4 1 4 0 7 1 0 2 0 6 7 8 0 2 5 7 8 0 3 8 5 4 9 0 1 0 8 8 3 5 6 7 4 7 9 5 2 1 1 8 2 2 1 7 9 6 2 1 7 1 1 0 4 5 3 5 8 9 1 0 0 4 2 5 0 8 1 4 1 6 9 0 0 6 3 6 9 1 0 9 0 3 8 1 3 5 6 3 6 0 4 2 6 1 0 1 2 1 9 9 7 9 5 7 1 5 8 9 8 8 2 1 9 9 1 1 1 9 6 9 8 9 7 8 4 5 8 8 6 4 8 1 1 2 8 6 2 7 9 8 3 5 4 3 2 1 7 9 5 3 1 3 2 1 2 9 5 1 1 1 1 1 1 5 9 5 3 2 6 3 4 1 3 1 1 4 1 4 1 7 1 3 4 3 2 7 6 4 2 7 2 1 2 1 5 1 6 3 5 6 1 3 6 4 7 1 6 5 1 1 4 1 6 1 7 6 4 7 e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m
    [Show full text]
  • Supplementary Table 1 List of 335 Genes Differentially Expressed Between Primary (P) and Metastatic (M) Tumours
    Supplementary Table 1 List of 335 genes differentially expressed between primary (P) and metastatic (M) tumours Spot ID I.M.A.G.E. UniGene Symbol Name Clone ID Cluster 296529 296529 In multiple clusters 731356 731356 Hs.140452 M6PRBP1 mannose-6-phosphate receptor binding protein 1 840942 840942 Hs.368409 HLA-DPB1 major histocompatibility complex, class II, DP beta 1 142122 142122 Hs.115912 AFAP actin filament associated protein 1891918 1891918 Hs.90073 CSE1L CSE1 chromosome segregation 1-like (yeast) 1323432 1323432 Hs.303154 IDS iduronate 2-sulfatase (Hunter syndrome) 788566 788566 Hs.80296 PCP4 Purkinje cell protein 4 591281 591281 Hs.80680 MVP major vault protein 815530 815530 Hs.172813 ARHGEF7 Rho guanine nucleotide exchange factor (GEF) 7 825312 825312 Hs.246310 ATP5J ATP synthase, H+ transporting, mitochondrial F0 complex, subunit F6 784830 784830 Hs.412842 C10orf7 chromosome 10 open reading frame 7 840878 840878 Hs.75616 DHCR24 24-dehydrocholesterol reductase 669443 669443 Hs.158195 HSF2 heat shock transcription factor 2 2485436 2485436 Data not found 82903 82903 Hs.370937 TAPBP TAP binding protein (tapasin) 771258 771258 Hs.85258 CD8A CD8 antigen, alpha polypeptide (p32) 85128 85128 Hs.8986 C1QB complement component 1, q subcomponent, beta polypeptide 41929 41929 Hs.39252 PICALM phosphatidylinositol binding clathrin assembly protein 148469 148469 Hs.9963 TYROBP TYRO protein tyrosine kinase binding protein 415145 415145 Hs.1376 HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 810017 810017 Hs.179657 PLAUR plasminogen activator,
    [Show full text]