Modulation of Ion Channels by Natural Products ‒ Identification of Herg Channel Inhibitors and GABAA Receptor Ligands from Plant Extracts

Total Page:16

File Type:pdf, Size:1020Kb

Modulation of Ion Channels by Natural Products ‒ Identification of Herg Channel Inhibitors and GABAA Receptor Ligands from Plant Extracts Modulation of ion channels by natural products ‒ Identification of hERG channel inhibitors and GABAA receptor ligands from plant extracts Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Anja Schramm aus Wiedersbach (Thüringen), Deutschland Basel, 2014 Original document stored on the publication server of the University of Basel edoc.unibas.ch This work is licenced under the agreement „Attribution Non-Commercial No Derivatives – 3.0 Switzerland“ (CC BY-NC-ND 3.0 CH). The complete text may be reviewed here: creativecommons.org/licenses/by-nc-nd/3.0/ch/deed.en Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von Prof. Dr. Matthias Hamburger Prof. Dr. Judith Maria Rollinger Basel, den 18.02.2014 Prof. Dr. Jörg Schibler Dekan Attribution-NonCommercial-NoDerivatives 3.0 Switzerland (CC BY-NC-ND 3.0 CH) You are free: to Share — to copy, distribute and transmit the work Under the following conditions: Attribution — You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Noncommercial — You may not use this work for commercial purposes. No Derivative Works — You may not alter, transform, or build upon this work. With the understanding that: Waiver — Any of the above conditions can be waived if you get permission from the copyright holder. Public Domain — Where the work or any of its elements is in the public domain under applicable law, that status is in no way affected by the license. Other Rights — In no way are any of the following rights affected by the license: o Your fair dealing or fair use rights, or other applicable copyright exceptions and limitations; o The author's moral rights; o Rights other persons may have either in the work itself or in how the work is used, such as publicity or privacy rights. Notice — For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to this web page. Quelle: creativecommons.org/licenses/by-nc-nd/3.0/ch/deed.en Datum: 12.11.2013 Für meine Familie In den frühen Zeiten unserer Erde waren Pflanzen der Menschen natürliche Nahrung und blieben es seither als lebenserhaltendes Mittel und Medizin zur Wiederherstellung der Gesundheit. John Gerard, The Herbal, 1597 Table of Contents Summary 10 Zusammenfassung 12 1. Aim of the work 15 2. Introduction 19 2.1. The hERG channel 20 Structure and gating of the hERG channel 20 Localization and physiological role of the hERG current IKr 23 Pharmacology of hERG channels 24 Drug-binding site 26 2.2. Preclinical strategies for assessing the cardiac safety profile 29 2.3. Plant-derived natural products as hERG channel inhibitors 33 Alkaloids tested for hERG channel inhibition 35 Flavonoids tested for hERG channel inhibition 43 Miscellaneous structural classes tested for hERG channel inhibition 47 2.4. Identification of ion channel ligands from plant extracts 56 3. Results and discussion 61 3.1. Natural products as potential hERG channel inhibitors ‒ Outcomes from a screening of widely used herbal medicines and edible plants 62 3.2. hERG channel inhibitors in extracts of Coptidis rhizoma 90 3.3. Natural products as potential human ether-a-go-go-related gene channel inhibitors – Screening of plant-derived alkaloids 97 3.4. Gram-scale purification of dehydroevodiamine from Evodia rutaecarpa fruits, and a procedure for selective removal of quaternary indoloquinazoline alkaloids from Evodia extracts 112 3.5. Phytochemical profiling of Curcuma kwangsiensis rhizome extract, and identification of labdane diterpenoids as positive GABAA receptor modulators 136 4. Conclusions and outlook 191 Acknowledgments 195 Summary Ion channels are expressed in virtually all cell types in the human body and are involved in various physiological processes. Hence, it is not surprising that ion channels play an important role in modern drug discovery. Lead compounds are nowadays routinely tested against a panel of ion channels to evaluate selectivity and potential off-target activities. The human ether-à-go-go-related gene (hERG) channel, a voltage-gated potassium channel, is the currently most critical antitarget with respect to cardiac safety. Inhibition of the hERG channel can prolong the QT interval on the electrocardiogram (ECG) and, as a consequence, lead to life-threatening arrhythmia. Considering the daily intake of plant-derived foods and herbal products, surprisingly few natural products have been tested for hERG blocking properties. In the course of an interdisciplinary hERG project, a selection of widely used herbal drugs and dietary plants was screened by means of a two-microelectrode voltage-clamp assay with Xenopus oocytes. Moderate hERG block was observed for the traditional Chinese herbal drug Coptidis rhizoma and black pepper fruits, and successfully tracked by HPLC-based activity profiling to dihydroberberine and piperine, respectively. The hERG blocking activity of cinnamon, guarana, and nutmeg, in contrast, was attributed to tannins. Our screening data suggest that major European medicinal plants and frequently consumed food plants are associated with a low risk for hERG inhibition. However, the case of Coptidis rhizoma pointed towards a need for a more thorough assessment of herbal drugs of the traditional Chinese medicine (TCM). Subsequent screening of a plant-derived alkaloid library led to the identification of several potent hERG blockers. Further investigations are certainly warranted to assess the cardiac safety profile of these alkaloids. Dehydroevodiamine (DHE), a major bioactive constituent of the traditional Chinese herbal drug Evodiae fructus, has been previously shown to inhibit several cardiac ion currents in vitro. 10 For further evaluation of its in vivo pharmacological and toxicological properties, gram amounts of DHE were needed. Since DHE is not commercially available, we developed an efficient method for its gram-scale isolation from a crude Evodia extract. Our approach is based on a combination of cation-exchange chromatography and preparative RP-HPLC. Moreover, the DHE content in commercially available Evodia products was assessed by HPLC-PDA analysis. A daily intake of up to mg amounts of DHE was calculated from recommended doses of these products. We also devised a procedure for the production of DHE-depleted Evodia products, should DHE indeed turn out to be toxicologically relevant. The gamma-aminobutyric acid type A (GABAA) receptor, a ligand-gated chloride channel, mediates fast inhibitory neurotransmission in the central nervous system (CNS), and is thus a clinically important drug target. In the search for positive α1β2γ2S GABAA receptor modulators of plant origin, we investigated an extract of Curcuma kwangsiensis rhizomes. HPLC-based activity profiling was used in combination with a two-microelectrode voltage-clamp assay on Xenopus oocytes to identify the active constituents. Targeted isolation afforded a series of 11 structurally related labdane diterpenoids, including four new natural products. Structure elucidation was achieved by comprehensive analysis of HR-ESI-TOF-MS and NMR data. The absolute configuration of the compounds was assigned by electronic circular dichroism (ECD). The highest GABAA receptor modulating activity was observed for zerumin A. From a more general perspective, this study demonstrates that HPLC-based activity profiling is an effective strategy to characterize bioactive compounds in crude natural extracts. 11 Zusammenfassung Ionenkanäle werden in nahezu allen Zelltypen des menschlichen Körpers exprimiert und sind in verschiedene physiologische Prozesse involviert. Daher ist es nicht verwunderlich, dass Ionenkanäle eine wichtige Rolle in der modernen Arzneimittelforschung spielen. Um die Selektivität und mögliche Off-Target-Aktivitäten von Leitsubstanzen zu beurteilen, werden diese heutzutage routinemässig an einer Vielzahl von Ionenkanälen auf ihre Aktivität hin untersucht. Der hERG Kanal, ein spannungsgesteuerter Kaliumkanal, ist das derzeit bedeutenste Antitarget hinsichtlich der kardialen Sicherheit von Arzneistoffen. Eine Blockade des hERG Kanals kann zu einer Verlängerung des QT-Intervalls im Elektrokardiogramm (EKG) führen und infolgedessen lebensbedrohliche Herzrhythmusstörungen hervorrufen. Trotz der steigenden Popularität von Naturheilmitteln und des täglichen Verzehrs von pflanzlichen Nahrungsmitteln ist die Interaktion von Naturstoffen mit dem hERG Kanal bisher wenig erforscht. Im Rahmen eines interdisziplinären hERG Projektes wurden sowohl bedeutende Medizinalpflanzen als auch gebräuchliche Nahrungspflanzen in einem Zwei-Mikroelektroden-Spannungsklemm-Assay an Xenopus Oozyten getestet. Die chinesische Arzneidroge Coptidis Rhizoma und der schwarze Pfeffer riefen beide eine moderate, aber nennenswerte hERG Blockade hervor. Mittels HPLC-basiertem Aktivitätsprofiling konnten die entsprechenden aktiven Inhaltsstoffe als Dihydroberberine und Piperin identifiziert werden. Die hERG-blockierende Wirkung von Zimt, Guarana und Muskatnuss wurde hingegen auf Tannine zurückgeführt. Die Screeningergebnisse zeigen, dass die wichtigsten europäischen Heilpflanzen und pflanzlichen Nahrungsmittel ein geringes Risiko für eine Blockade des hERG Kanals aufweisen. Das Beispiel von Coptidis Rhizoma weist jedoch darauf hin, dass pflanzliche Arzneidrogen der traditionellen chinesischen Medizin (TCM) gründlich
Recommended publications
  • Β-Phenylethylamines and the Isoquinoline Alkaloids
    -Phenylethylamines and the isoquinoline alkaloids Kenneth W. Bentley Marrview, Tillybirloch, Midmar, Aberdeenshire, UK AB51 7PS Received (in Cambridge, UK) 28th November 2000 First published as an Advance Article on the web 7th February 2001 Covering: July 1999 to June 2000. Previous review: Nat. Prod. Rep., 2000, 17, 247. 1 Introduction 2 -Phenylethylamines 3 Isoquinolines 4 Naphthylisoquinolines 5 Benzylisoquinolines 6 Bisbenzylisoquinolines 7 Pavines and isopavines 8 Berberines and tetrahydoberberines 9 Protopines 10 Phthalide-isoquinolines 11 Other modified berberines 12 Emetine and related alkaloids 13 Benzophenanthridines 14 Aporphinoid alkaloids 14.1 Proaporphines 14.2 Aporphines 14.3 Aporphine–benzylisoquinoline dimers 14.4 Phenanthrenes 14.5 Oxoaporphines 14.6 Dioxoaporphines 14.7 Aristolochic acids and aristolactams 14.8 Oxoisoaporphines 15 Alkaloids of the morphine group 16 Colchicine and related alkaloids 17 Erythrina alkaloids 17.1 Erythrinanes 17.2 Cephalotaxine and related alkaloids 18 Other isoquinolines 19 References 1 Introduction Reviews of the occurrence of isoquinoline alkaloids in some plant species 1,2 and of recent developments in the chemistry and synthesis of alkaloids of these groups 3–6 have been published. 2 -Phenylethylamines β-Phenylethylamine, tyramine, N-methyltyramine, hordenine, mescaline, N-methylmescaline and N,N-dimethylmescaline 1, which is reported as an alkaloid for the first time, have been isolated from an unspecified species of Turbinocarpus 7 and N-trans-feruloyltyramine has been isolated from Cananga odorata.8 The N-oxides of the known alkaloid culantraramine 2 and the unknown culantraraminol 3, together with the related avicennamine 4 have been isolated as new alkaloids from Zanthoxylum avicennae.9 Three novel amides of dehydrotyr- leucine and proline respectively.
    [Show full text]
  • Next-Generation Sequencing Identification and Characterization
    Next-generation sequencing identification and characterization of microsatellite markers in Aconitum austrokoreense Koidz., an endemic and endangered medicinal plant of Korea Y.-E. Yun, J.-N. Yu, G.H. Nam, S.-A. Ryu, S. Kim, K. Oh and C.E. Lim National Institute of Biological Resources, Environmental Research Complex, Incheon, Korea Corresponding author: C.E. Lim E-mail: [email protected] Genet. Mol. Res. 14 (2): 4812-4817 (2015) Received June 11, 2014 Accepted October 29, 2014 Published May 11, 2015 DOI http://dx.doi.org/10.4238/2015.May.11.13 ABSTRACT. We used next-generation sequencing to develop 9 novel microsatellite markers in Aconitum austrokoreense, an endemic and endangered medicinal plant in Korea. Owing to its very limited distribution, over-harvesting for traditional medicinal purposes, and habitat loss, the natural populations are dramatically declining in Korea. All novel microsatellite markers were successfully genotyped using 64 samples from two populations (Mt. Choejeong, Gyeongsangbuk- do and Ungseokbong, Gyeongsangnam-do) of Gyeongsang Province. The number of alleles ranged from 2 to 7 per locus in each population. Observed and expected heterozygosities ranged from 0.031 to 0.938 and from 0.031 to 0.697, respectively. The novel markers will be valuable tools for assessing the genetic diversity of A. austrokoreense and for germplasm conservation of this endangered species. Key words: Aconitum austrokoreense; Microsatellite marker; Endemic and endangered medicinal plant, Next-generation sequencing; Genetic diversity Genetics and Molecular Research 14 (2): 4812-4817 (2015) ©FUNPEC-RP www.funpecrp.com.br Novel microsatellite markers in A. austrokoreense 4813 INTRODUCTION Aconitum austrokoreense Koidz.
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • The Elimination of High Doses of Phenytoin In
    THE ELIMINATION OF HIGH DOSES OF PHENYTOIN IN MAN AND THE RABBIT by Peter Chinwah Department of Clinical Pharmacology St. Vincent's Hospital Darlinghurst, 2010, N.S.W. AUSTRALIA A Thesis submitted for the Degree of Master of Science in the University of New South Wales February, 1987 Ul·lilJ:2?.S1TY QF N.S.W. ~ 14 JUN 1988 f L!.:.": --":c_A:_'''"lARY I (i) ACKNOWLEDGEMENTS I wish to thank Professor Denis Wade for the opportunity to undertake this thesis in the Department of Clinical Pharmacology and for his overseeing and supervision of this project. I would like to express my gratitude to Dr Garry Graham, Senior Lecturer in the Department of Physiology and Pharmacology at the University of New South Wales, for his significant contribution in discussion and critical review of this thesis. I also wish to thank my colleagues of the Department of Clinical Pharmacology and Toxicology at St Vincent's Hospital for their assistance during the course of the project. Finally, I am grateful to Dr Ken Williams of the Department of Clinical Pharmacology and Toxicology at St Vincent's Hospital for many hours of discussion, and his admonishment, long suffering and perserverence which have made this thesis possible. (ii) ABSTRACT The pharmacokinetics of phenytoin were studied in twelve patients who presented to casualty with phenytoin toxicity. These patients were divided into 3 groups according to the type of plasma elimination profiles observed. Group 1. consisted of 3 patients who demonstrated first order elimination kinetics with long elimination half lives (70-106 hours). Group 2. consisted of 6 patients who showed saturable elimination kinetics (mean estimated terminal half life 28 hours).
    [Show full text]
  • Sparteine Surrogate and (-)- Sparteine
    This is a repository copy of Gram-Scale Synthesis of the (-)-Sparteine Surrogate and (-)- Sparteine. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/124708/ Version: Accepted Version Article: Firth, James D, Canipa, Steven J, O'Brien, Peter orcid.org/0000-0002-9966-1962 et al. (1 more author) (2018) Gram-Scale Synthesis of the (-)-Sparteine Surrogate and (-)- Sparteine. Angewandte Chemie International Edition. pp. 223-226. ISSN 1433-7851 https://doi.org/10.1002/anie.201710261 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ COMMUNICATION Gram-Scale Synthesis of the (–)-Sparteine Surrogate and (–)- Sparteine James D. Firth,[a] Steven J. Canipa,[a] Leigh Ferris[b] and Peter O’Brien*[a] Abstract: An 8-step, gram-scale synthesis of the (–)-sparteine to a greatly enhanced reactivity of the s-BuLi/sparteine surrogate surrogate (22% yield, with just 3 chromatographic purifications) and a complex. For example, the high reactivity of the s-BuLi/sparteine 10-step, gram-scale synthesis of (–)-sparteine (31% yield) are surrogate complex was required for one of the steps in Aggarwal’s reported.
    [Show full text]
  • Site of Lupanine and Sparteine Biosynthesis in Intact Plants and in Vitro Organ Cultures
    Site of Lupanine and Sparteine Biosynthesis in Intact Plants and in vitro Organ Cultures Michael Wink Genzentrum der Universität München, Pharmazeutische Biologie, Karlstraße 29, D-8000 München 2, Bundesrepublik Deutschland Z. Naturforsch. 42c, 868—872 (1987); received March 25/May 13, 1987 Lupinus, Alkaloid Biosynthesis, Turnover, Lupanine, Sparteine [14C]Cadaverine was applied to leaves of Lupinus polyphyllus, L. albus, L. angustifolius, L. perennis, L. mutabilis, L. pubescens, and L. hartwegii and it was preferentially incorporated into lupanine. In Lupinus arboreus sparteine was the main labelled alkaloid, in L. hispanicus it was lupinine. A pulse chase experiment with L. angustifolius and L. arboreus showed that the incorporation of cadaverine into lupanine and sparteine was transient with a maximum between 8 and 20 h. Only leaflets and chlorophyllous petioles showed active alkaloid biosynthesis, where­ as no incorporation of cadaverine into lupanine was observed in roots. Using in vitro organ cultures of Lupinus polyphyllus, L. succulentus, L. subcarnosus, Cytisus scoparius and Laburnum anagyroides the inactivity of roots was confirmed. Therefore, the green aerial parts are the major site of alkaloid biosynthesis in lupins and in other legumes. Introduction Materials and Methods Considering the site of secondary metabolite for­ Plants mation in plants, two possibilities are given: 1. All Plants of Lupinus polyphyllus, L. arboreus, the cells of plant are producers. 2. Secondary meta­ L. subcarnosus, L. hartwegii, L. pubescens, L. peren­ bolite formation is restricted to a specific organ and/ nis, L. albus, L. mutabilis, L. angustifolius, and or to specialized cells. L. succulentus were grown in a green-house at 23 °C Alkaloids are often found in the second class (for and under natural illumination or outside in an review [1, 2]), but whether a given alkaloid is synthe­ experimental garden.
    [Show full text]
  • Review Article SOME PLANTS AS a SOURCE of ACETYL CHOLINESTERASE INHIBITORS: a REVIEW Purabi Deka *, Arun Kumar, Bipin Kumar Nayak, N
    Purabi Deka et al. Int. Res. J. Pharm. 2017, 8 (5) INTERNATIONAL RESEARCH JOURNAL OF PHARMACY www.irjponline.com ISSN 2230 – 8407 Review Article SOME PLANTS AS A SOURCE OF ACETYL CHOLINESTERASE INHIBITORS: A REVIEW Purabi Deka *, Arun Kumar, Bipin Kumar Nayak, N. Eloziia Division of Pharmaceutical Sciences, Shri Guru Ram Rai Institute of Technology & Science, Dehradun, India *Corresponding Author Email: [email protected] Article Received on: 27/03/17 Approved for publication: 27/04/17 DOI: 10.7897/2230-8407.08565 ABSTRACT The term dementia derives from the Latin demens (“de” means private, “mens” means mind, intelligence and judgment- “without a mind”). Dementia is a progressive, chronic neurological disorder which destroys brain cells and causes difficulties with memory, behaviour, thinking, calculation, comprehension, language and it is brutal enough to affect work, lifelong hobbies, and social life. Alzheimer’s disease, Parkinson’s disease, Dementia with Lewys Bodies are some common types of dementias. Acetylcholinesterase AChE) Inhibition, the key enzyme which plays a main role in the breakdown of acetylcholine and it is considered as a Positive strategy for the treatment of neurological disorders. Currently many AChE inhibitors namely tacrine, donepezil, rivastigmine, galantamine have been used as first line drug for the treatment of Alzheimer’s disease. They are having several side effects such as gastrointestinal disorder, hepatotoxicity etc, so there is great interest in finding new and better AChE inhibitors from Natural products. Natural products are the remarkable source of Synthetic as well as traditional products. Abundance of plants in nature gives a potential source of AChE inhibitors. The purpose of this article to present a complete literature survey of plants that have been tested for AChE inhibitory activity.
    [Show full text]
  • Analytical Reference Standards
    Cerilliant Quality ISO GUIDE 34 ISO/IEC 17025 ISO 90 01:2 00 8 GM P/ GL P Analytical Reference Standards 2 011 Analytical Reference Standards 20 811 PALOMA DRIVE, SUITE A, ROUND ROCK, TEXAS 78665, USA 11 PHONE 800/848-7837 | 512/238-9974 | FAX 800/654-1458 | 512/238-9129 | www.cerilliant.com company overview about cerilliant Cerilliant is an ISO Guide 34 and ISO 17025 accredited company dedicated to producing and providing high quality Certified Reference Standards and Certified Spiking SolutionsTM. We serve a diverse group of customers including private and public laboratories, research institutes, instrument manufacturers and pharmaceutical concerns – organizations that require materials of the highest quality, whether they’re conducing clinical or forensic testing, environmental analysis, pharmaceutical research, or developing new testing equipment. But we do more than just conduct science on their behalf. We make science smarter. Our team of experts includes numerous PhDs and advance-degreed specialists in science, manufacturing, and quality control, all of whom have a passion for the work they do, thrive in our collaborative atmosphere which values innovative thinking, and approach each day committed to delivering products and service second to none. At Cerilliant, we believe good chemistry is more than just a process in the lab. It’s also about creating partnerships that anticipate the needs of our clients and provide the catalyst for their success. to place an order or for customer service WEBSITE: www.cerilliant.com E-MAIL: [email protected] PHONE (8 A.M.–5 P.M. CT): 800/848-7837 | 512/238-9974 FAX: 800/654-1458 | 512/238-9129 ADDRESS: 811 PALOMA DRIVE, SUITE A ROUND ROCK, TEXAS 78665, USA © 2010 Cerilliant Corporation.
    [Show full text]
  • Stammesspezifische Unterschiede in Der Analgetischen Wirkung Von Buprenorphin Bei Der Maus
    Stammesspezifische Unterschiede in der analgetischen Wirkung von Buprenorphin bei der Maus vorgelegt von Master of Science Juliane Rudeck geb. in Berlin von der Fakultät III – Prozesswissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktorin der Naturwissenschaften - Dr. rer. nat. - genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. Roland Lauster Erster Gutachter: Prof. Dr. Jens Kurreck Zweiter Gutachter: Prof. Dr. Gilbert Schönfelder Dritter Gutachter: Prof. Dr. Lars Lewejohann Tag der wissenschaftlichen Aussprache: 08.10.2018 Berlin 2018 Eidesstattliche Erklärung „Ich erkläre an Eides Statt, dass die vorliegende Dissertation in allen Teilen von mir selbstständig angefertigt wurde und die benutzten Hilfsmittel vollständig angegeben worden sind.“ Berlin, den (Juliane Rudeck) I Aus dieser Arbeit hervorgegangene Publikationen Die Arbeit wurde am Bundesinstitut für Risikobewertung in der Abteilung Experimentelle Toxikologie und ZEBET angefertigt und gefördert vom BMBF (Grant No. 031A262D). Die Inhalte der hier vorliegenden Dissertation wurden teilweise bereits in wissenschaftlichen Journalen veröffentlicht bzw. Eingereicht zur Veröffentlichung. Diese sind im Folgenden aufgelistet. J. Rudeck, B. Bert, P. Marx-Stoelting, G. Schönfelder, S. Vogl, Liver lobe and strain differences in the activity of murine cytochrome P450 enzymes. Toxicology, (2018). Jul 1; 404-405:76-85. https://doi.org/10.1016/j.tox.2018.06.001. J. Rudeck, S. Vogl, C. Heinl, M. Steinfath, B. Bert, G. Schönfelder, Analgesic efficacy of buprenorphine depends on the mouse strain. Submitted for publication, (2018). J. Rudeck, B. Bert, S. Vogl, G. Schönfelder, L. Lewejohann, The effectiveness of habituation on experimental design: A retrospective analysis. In progress, (2018). II Zusammenfassung Die Verwendung einer optimalen Analgesie sollte oberste Priorität in der Versuchstierkunde haben und ist nicht nur aus ethischen, sondern auch aus rechtlichen Gründen verpflichtend.
    [Show full text]
  • Oral Antiarrhythmic Drugs in Converting Recent Onset Atrial Fibrillation
    Review article Oral antiarrhythmic drugs in converting recent onset atrial fibrillation • Vera H.M. Deneer, Marieke B.I. Borgh, J. Herre Kingma, Loraine Lie-A-Huen and Jacobus R.B.J. Brouwers Introduction Pharm World Sci 2004; 26: 66–78. © 2004 Kluwer Academic Publishers. Printed in the Netherlands. Atrial fibrillation is the most common arrhythmia. The incidence of atrial fibrillation depends on the age of V.H.M. Deneer (correspondence, e-mail: the study population. The incidence varies between 2 [email protected]), M.B.I. Borgh, L. Lie-A-Huen: Department of Clinical Pharmacy or 3 new cases per 1,000 population per year between J.H. Kingma: Department of Cardiology, St Antonius Hospital, the ages of 55 and 64 years to 35 new cases per 1,000 Koekoekslaan 1, 3435 CM Nieuwegein, The Netherlands population per year between the ages of 85 and 94 J.R.B.J. Brouwers: Groningen University Institute for Drug 1 Exploration (GUIDE), Section of Pharmacotherapy, University years . Treatment of an episode of paroxysmal atrial fi- of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, brillation consists of restoring sinus rhythm by DC- The Netherlands electrical cardioversion or by the intravenous adminis- Key words tration of an antiarrhythmic drug, but frequently the Atrial fibrillation arrhythmia spontaneously terminates1–3. After one or Amiodarone more episodes of atrial fibrillation chronic prophylac- Antiarrhythmic drugs Digoxin tic treatment with an antiarrhythmic drug is often Episodic treatment started for maintenance of sinus rhythm4–8. Another Flecainide treatment strategy consists of allowing the arrhythmia Propafenone Quinidine to exist in combination with pharmacological ven- Sotalol tricular rate control.
    [Show full text]
  • Rigorózní Práce
    UNIVERZITA KARLOVA V PRAZE FARMACEUTICKÁ FAKULTA V HRADCI KRÁLOVÉ KATEDRA FARMACEUTICKÉ BOTANIKY A EKOLOGIE RIGORÓZNÍ PRÁCE Biologicky aktivní metabolity rostlin II. Alkaloidy Corydalis cava (L.) Shweigg. & Körte (Fumariaceae) a screening jejich biologických vlastností. Biological Active Plant Metabolites II. Alkaloids of Corydalis cava (L.) Schweigg. & Körte (Fumariaceae) and Screening of Their Biological Properties. Školitel: Ing. Lucie Cahlíková, Ph.D. 2010 Mgr. Jan Průša PROHLÁŠENÍ Prohlašuji, že tato diplomová práce je mým původním autorským dílem, které jsem vypracoval samostatně. Veškerá literatura a další zdroje, z nichž jsem při zpracování čerpal, jsou uvedeny v seznamu použité literatury a v práci řádně citovány. V Hradci Králové, 15. ledna 2010 Mgr. Jan Průša 1 PODĚKOVÁNÍ Chtěl bych poděkovat paní Ing. Lucii Cahlíkové, Ph.D. za veškerou pomoc, trpělivost, cenné odborné rady, za změření a interpretaci MS spekter, poznámky k NMR spektrům, veškeré poskytnuté materiály a vedení během vypracovávání mé diplomové práce. Dále bych chtěl poděkovat Prof. RNDr. Janu Schramlovi, DrSc., Ing. Milanovi Kurfürstovi, Ph.D. z Ústavu chemických procesů AV ČR v Praze za změření NMR spekter a také Ing. Kateřině Macákové za stanovení biologických vlastností izolovaných látek. Dále kolektivu katedry farmaceutické botaniky a ekologie za příjemné prostředí a pomoc při řešení technických a teoretických problémů. A také svým rodičům a kamarádům, kteří mi byli vždy oporou. Mgr. Jan Průša 2 OBSAH 1 Obsah………………………...…………………………………………………………………………1 1. Úvod………………………………………………………………………………………………...4 2. Cíl práce……………………………………………………………………………………...…….7 3. Teoretická část……………………………………………………………………………..………9 3.1. Kritéria výběru rostliny pro fytochemický výzkum………………………………………….10 3.2. Corydalis cava (L.) Schweigg. & Köerte - Dymnivka dutá……………………….................10 3.2.1. Synonyma…………………………………………………………………..…………..10 3.2.2. Systematické zařazení…………………………………………………………………..11 3.2.3.
    [Show full text]
  • Aldrichimica Acta 53.1 2020
    VOLUME 53, NO. 1 | 2020 CHEMISTRY IN CHINA SPECIAL ISSUE (中国特刊) ALDRICHIMICA ACTA CONTRIBUTORS TO THIS ISSUE (此特刊的贡献者) Xiaoming Feng (冯小明), Sichuan University Shu-Li You (游书力), SIOC, Chinese Academy of Sciences Xuefeng Jiang (姜雪峰), East China Normal University Wenjun Tang (汤文军), SIOC, Chinese Academy of Sciences The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the U.S. and Canada. DEAR READER: 1 Nature Index Country/Territory Outputs – By most measures, China’s transformation over the past half-century Chemistry (https://www.natureindex.com/ country-outputs/generate/Chemistry/global/ has been nothing short of spectacular, with its economy now ranked All/n_article) second in the world, an annual GDP north of USD 13 trillion, and 119 2 Nature Index 2019 Tables: Institutions – Chemistry (https://www.natureindex.com/ Chinese companies making it into Fortune magazine’s Global 500 list. annual-tables/2019/institution/all/chemistry) Noteworthy also are China’s commitment to, and remarkable advances in, basic and applied research in the natural sciences. Factors such as increased funding for scientific research, workforce qualification and size, and research output, quality, and innovation have propelled China to the #1 spot worldwide in terms of chemistry papers published,1 and Chinese Universities to occupy 5 of the top 10 spots in chemistry research quality worldwide.2 At Merck KGaA, Darmstadt, Germany, we laud China’s vigorous research efforts in chemistry and the life sciences, which we believe hold great promise for improving the quality of life for millions of people throughout the world. Moreover, we look forward to establishing strong collaborations with Chinese researchers to make their inventions more accessible worldwide to advance human health for all.
    [Show full text]