Acetylcholinesterase Inhibitors of Natural Origin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dextromethorphan Attenuates Sensorineural Hearing Loss in an Animal Model and Population-Based Cohort Study
International Journal of Environmental Research and Public Health Article Dextromethorphan Attenuates Sensorineural Hearing Loss in an Animal Model and Population-Based Cohort Study Hsin-Chien Chen 1,* , Chih-Hung Wang 1,2 , Wu-Chien Chien 3,4 , Chi-Hsiang Chung 3,4, Cheng-Ping Shih 1, Yi-Chun Lin 1,2, I-Hsun Li 5,6, Yuan-Yung Lin 1,2 and Chao-Yin Kuo 1 1 Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; [email protected] (C.-H.W.); [email protected] (C.-P.S.); [email protected] (Y.-C.L.); [email protected] (Y.-Y.L.); [email protected] (C.-Y.K.) 2 Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan 3 School of Public Health, National Defense Medical Center, Taipei 114, Taiwan; [email protected] (W.-C.C.); [email protected] (C.-H.C.) 4 Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan 5 Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; [email protected] 6 School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan * Correspondence: [email protected]; Tel.: +886-2-8792-7192; Fax: +886-2-8792-7193 Received: 31 July 2020; Accepted: 28 August 2020; Published: 31 August 2020 Abstract: The effect of dextromethorphan (DXM) use in sensorineural hearing loss (SNHL) has not been fully examined. We conducted an animal model and nationwide retrospective matched-cohort study to explore the association between DXM use and SNHL. -
Protective Effects of Rosmarinic Acid Against Selenite-Induced Cataract and Oxidative Damage in Rats Chia-Fang Tsai1,2, Jia-Ying Wu2, Yu-Wen Hsu 3
Int. J. Med. Sci. 2019, Vol. 16 729 Ivyspring International Publisher International Journal of Medical Sciences 2019; 16(5): 729-740. doi: 10.7150/ijms.32222 Research Paper Protective Effects of Rosmarinic Acid against Selenite-Induced Cataract and Oxidative Damage in Rats Chia-Fang Tsai1,2, Jia-Ying Wu2, Yu-Wen Hsu 3 1. Department of Applied Cosmetology, National Tainan Junior College of Nursing, Tainan, Taiwan. 2. Department of Biotechnology, TransWorld University, Yunlin County, Taiwan. 3. Department of Optometry, Da-Yeh University, Changhua, Taiwan. Corresponding author: Hsu is to be contacted at the Department of Optometry, Da-Yeh University, No.168, University Rd., Dacun, Changhua 51591, Taiwan. Tel.: +886 4 8511888. E-mail address: [email protected] © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2018.12.12; Accepted: 2019.03.29; Published: 2019.05.10 Abstract Cataracts are the major cause of blindness and are associated with oxidative damage of the lens. In the present study, the aim was to evaluate the protective effects of rosmarinic acid on selenite-induced cataractogenesis in Sprague-Dawley rat pups. The animals were randomly divided into five groups, each of which consisted of 10 rat pups. Group I served as normal control (vehicle administration). For testing cataract induction, animals of Groups II, III, IV, and V were administered a single subcutaneous injection of sodium selenite (2.46 mg/kg body weight) on postpartum day 12. -
E30 SEM. O.C. Disclosed Is a Compound Represented by the Formula (1) (51) Int
USOO9453000B2 (12) United States Patent (10) Patent No.: US 9.453,000 B2 Kimura et al. (45) Date of Patent: *Sep. 27, 2016 (54) POLYCYCLIC COMPOUND (56) References Cited (75) Inventors: Teiji Kimura, Tsukuba (JP); Noritaka U.S. PATENT DOCUMENTS Kitazawa, Tsukuba (JP); Toshihiko 3,470,167 A 9, 1969 Sarkar Kaneko, Tsukuba (JP); Nobuaki Sato, 3,989,816 A 1 1/1976 Rajadhyaksha Tsukuba (JP); Koki Kawano, Tsukuba 4,910,200 A 3, 1990 Curtze et al. (JP): Koichi Ito, Tsukuba (JP); 5,281,626 A 1/1994 Oinuma et al. M s Tak ishi Tsukub JP 5,563,162 A 10, 1996 Oku et al. amoru Takaishi Tsukuba (JP); 5,804,577 A 9, 1998 Hebeisen et al. Takeo Sasaki, Tsukuba (JP); Yu 5,985,856 A 11/1999 Stella et al. Yoshida, Tsukuba (JP); Toshiyuki 6,235,728 B1 5, 2001 Golik et al. Uemura, Tsukuba (JP); Takashi Doko, g R 1939. E. al. Its SE E. Shinmyo, 7,138.414 B2 11/2006 Schoenafingereatch et al. et al. sukuba (JP); Daiju Hasegawa, 7,300,936 B2 11/2007 Parker et al. Tsukuba (JP); Takehiko Miyagawa, 7,314,940 B2 1/2008 Graczyk et al. Hatfield (GB); Hiroaki Hagiwara, 7,618,960 B2 11/2009 Kimura et al. Tsukuba (JP) 7,667,041 B2 2/2010 Kimura et al. 7,687,640 B2 3/2010 Kimura et al. 7,713,993 B2 5/2010 Kimura et al. (73) Assignee: EISAI R&D MANAGEMENT CO., 7,737,141 B2 6/2010 Kimura et al. LTD., Tokyo (JP) 7,880,009 B2 2/2011 Kimura et al. -
(12) Patent Application Publication (10) Pub. No.: US 2008/0108115 A1 Bringi Et Al
US 2008O108115A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0108115 A1 Bringi et al. (43) Pub. Date: May 8, 2008 (54) ENHANCED PRODUCTION OF TAXOL AND application No. 08/370,494, filed on Jan. 9, 1995, now TAXANES BY CELL CULTURES OF TAXUS abandoned, which is a division of application No. SPECIES 07/874,344, filed on Apr. 24, 1992, now Pat. No. 5,407, 816, which is a continuation-in-part of application No. (75) Inventors: Venkataraman Bringi, Ithaca, NY 07/839,144, filed on Feb. 20, 1992, now abandoned. (US); Prakash Kadkade, Marlboro, MA (US); Christopher Prince, Lansing, NY Publication Classification (US); Braden Roach, Interlaken, NY (US) (51) Int. Cl. CI2P 17/02 (2006.01) Correspondence Address: (52) U.S. Cl. .............................................................. 435/123 HUNTON & WILLIAMS LLP INTELLECTUAL PROPERTY DEPARTMENT (57) ABSTRACT 1900 KSTREET, N.W. This invention provides methods whereby taxol, baccatin III, SUTE 12OO and other taxol-like compounds, or taxanes, can be produced WASHINGTON, DC 20006-1109 (US) in very high yield from all known Taxus species, e.g., brevi folia, Canadensis, cuspidata, baccata, globosa, floridana, (73) Assignee: DFB BIOTECH, INCORPORATED, wallichiana, media and chinensis. Particular modifications of Fort Worth, TX culture conditions (i.e., media composition and operating modes) have been discovered to enhance the yield of various (21) Appl. No.: 11/836,604 taxanes from cell culture of all species of Taxus. Particularly (22) Filed: Aug. 9, 2007 preferred enhancement agents include silver ion or complex, jasmonic acid (especially the methyl ester), auxin-related Related U.S. Application Data growth regulators, and inhibitors of the phenylpropanoid pathway, Such as 3.4-methylenedioxy-6-nitrocinnamic acid. -
Territrem and Butyrolactone Derivatives from a Marine-Derived Fungus Aspergillus Terreus
Mar. Drugs 2014, 12, 6113-6124; doi:10.3390/md12126113 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Territrem and Butyrolactone Derivatives from a Marine-Derived Fungus Aspergillus Terreus Xu-Hua Nong 1, Yi-Fei Wang 2, Xiao-Yong Zhang 1, Mu-Ping Zhou 2, Xin-Ya Xu 1 and Shu-Hua Qi 1,* 1 CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301 Guangdong, China; E-Mails: [email protected] (X.-H.N.); [email protected] (X.-Y.Z.); [email protected] (X.-Y.X.) 2 Jinan University, 601 West Huangpu Road, Guangzhou, 510632 Guangdong, China; E-Mails: [email protected] (Y.-F.W.); [email protected] (M.-P.Z.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-20-8902-2112; Fax: +86-20-8445-8964. External Editor: Johannes F. Imhoff Received: 17 September 2014; in revised form: 24 November 2014 / Accepted: 8 December 2014 / Published: 17 December 2014 Abstract: Seventeen lactones including eight territrem derivatives (1–8) and nine butyrolactone derivatives (9–17) were isolated from a marine-derived fungus Aspergillus terreus SCSGAF0162 under solid-state fermentation of rice. Compounds 1–3 and 9–10 were new, and their structures were elucidated by spectroscopic analysis. The acetylcholinesterase inhibitory activity and antiviral activity of compounds 1–17 were evaluated. Among them, compounds 1 and 2 showed strong inhibitory activity against acetylcholinesterase with IC50 values of 4.2 ± 0.6, 4.5 ± 0.6 nM, respectively. -
Galantamine Potentiates the Neuroprotective Effect of Memantine Against NMDA-Induced Excitotoxicity Joao~ P
Galantamine potentiates the neuroprotective effect of memantine against NMDA-induced excitotoxicity Joao~ P. Lopes1, Glauco Tarozzo1, Angelo Reggiani1, Daniele Piomelli1,2 & Andrea Cavalli1,3 1D3 – Drug Discovery and Development Department, Istituto Italiano di Tecnologia, Via Morego, 16163, Genova, Italy 2Departments of Anatomy and Neurobiology and Biological Chemistry, University of California, Irvine, CA, 92697-4621 3Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, Bologna University, Via Belmeloro, 40126, Bologna, Italy Keywords Abstract Alzheimer’s disease, drug combination, N NMDA neurotoxicity, NR2B, The combination of memantine, an -methyl-D-aspartate (NMDA) receptor polypharmacology, primary cortical neurons antagonist, with an acetylcholinesterase inhibitor (AChEI) is the current stan- dard of care in Alzheimer’s disease (AD). Galantamine, an AChEI currently Correspondence marketed for the treatment of AD, exerts memory-enhancing and neuroprotec- Andrea Cavalli, D3 – Drug Discovery and tive effects via activation of nicotinic acetylcholine receptors (nAChRs). Here, Development Department, Istituto Italiano we investigated the neuroprotective properties of galantamine in primary cul- di Tecnologia – Via Morego, 30, 16163 tures of rat cortical neurons when given alone or in combination with meman- Genova, Italy. Tel: +39 010 71781530; Fax: +39 010 tine. In agreement with previous findings, we found that memantine was fully 71781228; E-mail: [email protected] effective in reversing NMDA toxicity at concentrations of 2.5 and 5 lmol/L. Galantamine also completely reversed NMDA toxicity at a concentration of Funding Information 5 lmol/L. The a7 and a4b2 nAChR antagonists, methyllycaconitine, and dihy- No funding information provided. dro-b-erythroidine blocked the neuroprotective effect of galantamine, demon- strating the involvement of nAChRs. -
Β-Phenylethylamines and the Isoquinoline Alkaloids
-Phenylethylamines and the isoquinoline alkaloids Kenneth W. Bentley Marrview, Tillybirloch, Midmar, Aberdeenshire, UK AB51 7PS Received (in Cambridge, UK) 28th November 2000 First published as an Advance Article on the web 7th February 2001 Covering: July 1999 to June 2000. Previous review: Nat. Prod. Rep., 2000, 17, 247. 1 Introduction 2 -Phenylethylamines 3 Isoquinolines 4 Naphthylisoquinolines 5 Benzylisoquinolines 6 Bisbenzylisoquinolines 7 Pavines and isopavines 8 Berberines and tetrahydoberberines 9 Protopines 10 Phthalide-isoquinolines 11 Other modified berberines 12 Emetine and related alkaloids 13 Benzophenanthridines 14 Aporphinoid alkaloids 14.1 Proaporphines 14.2 Aporphines 14.3 Aporphine–benzylisoquinoline dimers 14.4 Phenanthrenes 14.5 Oxoaporphines 14.6 Dioxoaporphines 14.7 Aristolochic acids and aristolactams 14.8 Oxoisoaporphines 15 Alkaloids of the morphine group 16 Colchicine and related alkaloids 17 Erythrina alkaloids 17.1 Erythrinanes 17.2 Cephalotaxine and related alkaloids 18 Other isoquinolines 19 References 1 Introduction Reviews of the occurrence of isoquinoline alkaloids in some plant species 1,2 and of recent developments in the chemistry and synthesis of alkaloids of these groups 3–6 have been published. 2 -Phenylethylamines β-Phenylethylamine, tyramine, N-methyltyramine, hordenine, mescaline, N-methylmescaline and N,N-dimethylmescaline 1, which is reported as an alkaloid for the first time, have been isolated from an unspecified species of Turbinocarpus 7 and N-trans-feruloyltyramine has been isolated from Cananga odorata.8 The N-oxides of the known alkaloid culantraramine 2 and the unknown culantraraminol 3, together with the related avicennamine 4 have been isolated as new alkaloids from Zanthoxylum avicennae.9 Three novel amides of dehydrotyr- leucine and proline respectively. -
(12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig. -
A Case Study on Addressing Abuse of a Safe and Effective Drug David C
Spangler et al. Substance Abuse Treatment, Prevention, and Policy (2016) 11:22 DOI 10.1186/s13011-016-0067-0 DEBATE Open Access Dextromethorphan: a case study on addressing abuse of a safe and effective drug David C. Spangler1, Catherine M. Loyd1* and Emily E. Skor1,2 Abstract Background: Dextromethorphan is a safe, effective cough suppressant, available without a prescription in the United States since 1958. Due to a perceived prevalence of abuse of dextromethorphan by teens, in 2007 the Drug Enforcement Administration requested the Food and Drug Administration evaluate whether dextromethorphan should be recommended for scheduling under the Controlled Substances Act. The Food and Drug Administration held an Advisory Committee meeting in 2010 to provide a scientific and medical evaluation of dextromethorphan and its abuse potential. Discussion: To address reports of abuse, particularly by teens in the United States, the Consumer Healthcare Products Association initiated an abuse mitigation plan in 2010 with specific goals related to awareness of the behavior, perception of risk, social disapproval, and access to the products. In identifying abuse interventions, experts acknowledge that substance abuse among teens is a highly complex behavior and indicate that the best course of action is to address prevention by focusing on the factors that impact teen behavior. Conclusion: It is noteworthy that the annual prevalence of over-the-counter cough medicine abuse has sharply decreased since 2010. While a true cause-and-effect relationship cannot be assured, the Consumer Healthcare Products Association and its member companies believe that the increased awareness of the issue since the 2010 Food and Drug Administration Advisory Committee meeting, and the subsequent implementation of a well-delivered and targeted abuse mitigation plan that addressed the levers influencing teen decisions is contributing to the observed reduction in abuse. -
Comparison of the Binding of Reversible Inhibitors to Human Butyrylcholinesterase and Acetylcholinesterase: a Crystallographic, Kinetic and Calorimetric Study
Article Comparison of the Binding of Reversible Inhibitors to Human Butyrylcholinesterase and Acetylcholinesterase: A Crystallographic, Kinetic and Calorimetric Study Terrone L. Rosenberry 1, Xavier Brazzolotto 2, Ian R. Macdonald 3, Marielle Wandhammer 2, Marie Trovaslet-Leroy 2,†, Sultan Darvesh 4,5,6 and Florian Nachon 2,* 1 Departments of Neuroscience and Pharmacology, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA; [email protected] 2 Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; [email protected] (X.B.); [email protected] (M.W.); [email protected] (M.T.-L.) 3 Department of Diagnostic Radiology, Dalhousie University, Halifax, NS B3H 4R2, Canada; [email protected] 4 Department of Medical Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada; [email protected] 5 Department of Chemistry, Mount Saint Vincent University, Halifax, NS B3M 2J6, Canada 6 Department of Medicine (Neurology and Geriatric Medicine), Dalhousie University, Halifax, NS B3H 4R2, Canada * Correspondence: [email protected]; Tel.: +33-178-65-1877 † Deceased October 2016. Received: 26 October 2017; Accepted: 27 November 2017; Published: 29 November 2017 Abstract: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) hydrolyze the neurotransmitter acetylcholine and, thereby, function as coregulators of cholinergic neurotransmission. Although closely related, these enzymes display very different substrate specificities that only partially overlap. This disparity is largely due to differences in the number of aromatic residues lining the active site gorge, which leads to large differences in the shape of the gorge and potentially to distinct interactions with an individual ligand. Considerable structural information is available for the binding of a wide diversity of ligands to AChE. -
(12) Patent Application Publication (10) Pub. No.: US 2014/0371260 A1 Moebius (43) Pub
US 20140371260A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0371260 A1 Moebius (43) Pub. Date: Dec. 18, 2014 (54) COMBINATION THERAPY USING (60) Provisional application No. 60/420,918, filed on Oct. 1-AMINOCYCLOHEXANEDERVATIVES 24, 2002. AND ACETYLCHOLINESTERASE INHIBITORS Publication Classification (71) Applicant: MERZ PHARMA GmbH & CO. (51) Int. Cl KGaA, Frankfurt Am Main (GE) A613 L/473 (2006.01) A613 L/445 (2006.01) (72)72). InventorI tor: talHans-J is: Moebius.Oebus, FraFrankfurt Am A63/325 (2006.01) A613 L/13 (2006.01) (73) Assignee: MERZPHARMA GmbH & CO. (52) U.S. Cl. KGaA, Frankfurt Am Main (GE) CPC ............... A61 K3I/473 (2013.01); A61K3I/13 (2013.01); A61 K3I/445 (2013.01); A61 K (21) Appl. No.: 14/280,405 31/325 (2013.01) USPC ............................ 514/297: 514/319; 514/479 (22) Filed: May 16, 2014 Related U.S. Application Data (57) ABSTRACT (60) Continuation of application No. 12/661,639, filed on The invention relates to a novel drug combination therapy Mar. 22, 2010, which is a continuation of application useful in the treatment of dementia comprising administering No. 12/072,539, filed on Feb. 27, 2008, now aban an 1-aminocyclohexane derivative such as memantine or ner doned, which is a division of application No. 10/691, amexane and an acetylcholinesterase inhibitor (AChEI) such 895, filed on Oct. 23, 2003, now abandoned. as galantamine, tacrine, donepezil, or rivastigmine. Patent Application Publication Dec. 18, 2014 Sheet 2 of 3 US 2014/0371260 A1 Patent Application Publication Dec. 18, 2014 Sheet 3 of 3 US 2014/0371260 A1 US 2014/0371260 A1 Dec. -
Reference List of Drugs with Potential Anticholinergic Effects 1, 2, 3, 4, 5
ANTICHOLINERGICS: Reference List of Drugs with Potential Anticholinergic Effects 1, 2, 3, 4, 5 J Bareham BSP © www.RxFiles.ca Aug 2021 WHENEVER POSSIBLE, AVOID DRUGS WITH MODERATE TO HIGH ANTICHOLINERGIC ACTIVITY IN OLDER ADULTS (>65 YEARS OF AGE) Low Anticholinergic Activity; Moderate/High Anticholinergic Activity -B in combo Beers Antibiotics Antiparkinsonian Cardiovascular Agents Immunosuppressants ampicillin *ALL AVAILABLE AS amantadine SYMMETREL atenolol TENORMIN azaTHIOprine IMURAN cefOXitin GENERIC benztropine mesylate COGENTIN captopril CAPOTEN cyclosporine NEORAL clindamycin bromocriptine PARLODEL chlorthalidone GENERIC ONLY hydrocortisone CORTEF gentamicin (Oint & Sol’n NIHB covered) carbidopa/levodopa SINEMET digoxin LANOXIN, TOLOXIN methylprednisolone MEDROL piperacillin entacapone COMTAN dilTIAZem CARDIZEM, TIAZAC prednisone WINPRED dipyridamole PERSANTINE, ethopropazine PARSITAN vancomycin phenelzine NARDIL AGGRENOX disopyramide RYTHMODAN Muscle Relaxants pramipexole MIRAPEX Antidepressants baclofen LIORESAL ( on intrathecal only) procyclidine KEMADRIN furosemide LASIX amitriptyline ELAVIL cyclobenzaprine FLEXERIL selegiline ELDEPRYL hydrALAZINE APRESOLINE clomiPRAMINE ANAFRANIL isosorbide ISORDIL methocarbamol ROBAXIN OTC trihexyphenidyl ARTANE desipramine NORPRAMIN metoprolol LOPRESOR orphenadrine NORFLEX OTC doxepin >6mg SINEQUAN Antipsychotics NIFEdipine ADALAT tiZANidine ZANAFLEX A imipramine TOFRANIL quiNIDine GENERIC ONLY C ARIPiprazole ABILIFY & MAINTENA