Treatment Protocol Copyright © 2018 Kostoff Et Al
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Protective Effects of Rosmarinic Acid Against Selenite-Induced Cataract and Oxidative Damage in Rats Chia-Fang Tsai1,2, Jia-Ying Wu2, Yu-Wen Hsu 3
Int. J. Med. Sci. 2019, Vol. 16 729 Ivyspring International Publisher International Journal of Medical Sciences 2019; 16(5): 729-740. doi: 10.7150/ijms.32222 Research Paper Protective Effects of Rosmarinic Acid against Selenite-Induced Cataract and Oxidative Damage in Rats Chia-Fang Tsai1,2, Jia-Ying Wu2, Yu-Wen Hsu 3 1. Department of Applied Cosmetology, National Tainan Junior College of Nursing, Tainan, Taiwan. 2. Department of Biotechnology, TransWorld University, Yunlin County, Taiwan. 3. Department of Optometry, Da-Yeh University, Changhua, Taiwan. Corresponding author: Hsu is to be contacted at the Department of Optometry, Da-Yeh University, No.168, University Rd., Dacun, Changhua 51591, Taiwan. Tel.: +886 4 8511888. E-mail address: [email protected] © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2018.12.12; Accepted: 2019.03.29; Published: 2019.05.10 Abstract Cataracts are the major cause of blindness and are associated with oxidative damage of the lens. In the present study, the aim was to evaluate the protective effects of rosmarinic acid on selenite-induced cataractogenesis in Sprague-Dawley rat pups. The animals were randomly divided into five groups, each of which consisted of 10 rat pups. Group I served as normal control (vehicle administration). For testing cataract induction, animals of Groups II, III, IV, and V were administered a single subcutaneous injection of sodium selenite (2.46 mg/kg body weight) on postpartum day 12. -
(Apis Mellifera) ELISABETH P
J. Insect Ph.vsiol. Vol. 42, No. 9, pp. 823-828, 1996 Pergamon Copyright 0 1996 Elsevier Science Ltd Printed in Great Britain. All rights reserved PII: SOO22-1910(96)00045-5 0022-1910196 $15.00 + 0.00 Effects of Two Proteinase Inhibitors on the Digestive Enzymes and Survival of Honey Bees (Apis mellifera) ELISABETH P. J. BURGESS,*1 LOUISE A. MALONE,* JOHN T. CHRlSTELLERt Received I1 December 1995; revised und accepted 1 March 1996 Two endopeptidase inhibitors, BPTI (bovine pancreatic trypsin inhibitor) and SBTI (Kunitz soybean trypsin inhibitor), were found to significantly reduce the longevity of adult honey bees (&is mellifera L.) fed the inhibitors ad lib in sugar syrup at l.O%, 0.5% or O.l%, but not at 0.01% or 0.001% (w:v). Bees were taken from frames at emergence, kept in cages at 33”C, and provided with a pollen/protein diet, water and syrup. In vivo activity levels of three midgut endopeptidases (trypsin, chymotrypsin and elastase) and the exopeptidase leucine aminopeptidase (LAP) were determined in bees fed either BPTI or SBTI at l.O%, 0.3% or 0.1% (w:v) at two time points: the 8th day after emergence and when 75% of bees had died. LAP activity levels increased significantly in bees fed with either inhibitor at all concen- trations. At day 8, bees fed BPTI at all concentrations had significantly reduced levels of trypsin, chymotrypsin and elastase. At the time of 75% mortality, bees fed BPTI at each concentration had reduced trypsin levels, but only those fed the inhibitor at the highest dose level had reduced chymotrypsin or elastase activity. -
Novel Neuroprotective Compunds for Use in Parkinson's Disease
Novel neuroprotective compounds for use in Parkinson’s disease A thesis submitted to Kent State University in partial Fulfillment of the requirements for the Degree of Master of Science By Ahmed Shubbar December, 2013 Thesis written by Ahmed Shubbar B.S., University of Kufa, 2009 M.S., Kent State University, 2013 Approved by ______________________Werner Geldenhuys ____, Chair, Master’s Thesis Committee __________________________,Altaf Darvesh Member, Master’s Thesis Committee __________________________,Richard Carroll Member, Master’s Thesis Committee ___Eric_______________________ Mintz , Director, School of Biomedical Sciences ___Janis_______________________ Crowther , Dean, College of Arts and Sciences ii Table of Contents List of figures…………………………………………………………………………………..v List of tables……………………………………………………………………………………vi Acknowledgments.…………………………………………………………………………….vii Chapter 1: Introduction ..................................................................................... 1 1.1 Parkinson’s disease .............................................................................................. 1 1.2 Monoamine Oxidases ........................................................................................... 3 1.3 Monoamine Oxidase-B structure ........................................................................... 8 1.4 Structural differences between MAO-B and MAO-A .............................................13 1.5 Mechanism of oxidative deamination catalyzed by Monoamine Oxidases ............15 1 .6 Neuroprotective effects -
(12) Patent Application Publication (10) Pub. No.: US 2008/0108115 A1 Bringi Et Al
US 2008O108115A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0108115 A1 Bringi et al. (43) Pub. Date: May 8, 2008 (54) ENHANCED PRODUCTION OF TAXOL AND application No. 08/370,494, filed on Jan. 9, 1995, now TAXANES BY CELL CULTURES OF TAXUS abandoned, which is a division of application No. SPECIES 07/874,344, filed on Apr. 24, 1992, now Pat. No. 5,407, 816, which is a continuation-in-part of application No. (75) Inventors: Venkataraman Bringi, Ithaca, NY 07/839,144, filed on Feb. 20, 1992, now abandoned. (US); Prakash Kadkade, Marlboro, MA (US); Christopher Prince, Lansing, NY Publication Classification (US); Braden Roach, Interlaken, NY (US) (51) Int. Cl. CI2P 17/02 (2006.01) Correspondence Address: (52) U.S. Cl. .............................................................. 435/123 HUNTON & WILLIAMS LLP INTELLECTUAL PROPERTY DEPARTMENT (57) ABSTRACT 1900 KSTREET, N.W. This invention provides methods whereby taxol, baccatin III, SUTE 12OO and other taxol-like compounds, or taxanes, can be produced WASHINGTON, DC 20006-1109 (US) in very high yield from all known Taxus species, e.g., brevi folia, Canadensis, cuspidata, baccata, globosa, floridana, (73) Assignee: DFB BIOTECH, INCORPORATED, wallichiana, media and chinensis. Particular modifications of Fort Worth, TX culture conditions (i.e., media composition and operating modes) have been discovered to enhance the yield of various (21) Appl. No.: 11/836,604 taxanes from cell culture of all species of Taxus. Particularly (22) Filed: Aug. 9, 2007 preferred enhancement agents include silver ion or complex, jasmonic acid (especially the methyl ester), auxin-related Related U.S. Application Data growth regulators, and inhibitors of the phenylpropanoid pathway, Such as 3.4-methylenedioxy-6-nitrocinnamic acid. -
Thesis of Potentially Sweet Dihydrochalcone Glycosides
University of Bath PHD The synthesis of potentially sweet dihydrochalcone glycosides. Noble, Christopher Michael Award date: 1974 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 05. Oct. 2021 THE SYNTHESIS OF POTBTTIALLY SWEET DIHYDROCHALCOITB GLYCOSIDES submitted by CHRISTOPHER MICHAEL NOBLE for the degree of Doctor of Philosophy of the University of Bath. 1974 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author.This copy of the the sis has been supplied on condition that anyone who con sults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be pub lished without the prior written consent of the author. -
Herbal Contraindications & Drug Interactions
Herbal Contraindications & Drug Interactions plus Herbal Adjuncts with Medicines FOURTH EDITION, 2010 © by Francis Brinker, N.D. References 1. Sherman JA (comp.). The Complete Botanical Prescriber, 2nd ed. National College of Naturopathic Medicine, Portland, Ore., 1979 2. Brinker F. The Toxicology of Botanical Medicines, 3rd ed. Eclectic Medical Pub., Sandy, Ore., 2000 3. Brinker F. “Botanical Medicine Research Summaries,” from Eclectic Dispensatory of Botanical Therapeutics, vol. II. Eclectic Medical Pub., Sandy, Ore., 1995 4. Wichtl M (ed.). Herbal Drugs and Phytopharmaceuticals. CRC Press, Boca Raton, 1994 5. Felter HW, Lloyd JU. King’s American Dispensatory [1898]. Eclectic Medical Pub., Sandy, Ore., 1993 6. De Smet PAGM et al. (eds.). Adverse Effects of Herb Drugs 2. Springer-Verlag, Berlin, 1993 7. Lust J. The Herb Book. Bantam Books, New York, 1974 8. Boyd JR (ed.-in-chief). Facts and Comparisons. J.B. Lippincott Co., St. Louis, Miss., 1985 9. Ruddiman EA. Incompatibilities in Prescriptions. John Wiley & Sons, Inc., New York, 1925 10. Lewis WH, Elvin-Lewis MPF. Medical Botany. John Wiley & Sons, New York, 1977 11. Gibelli C. The hemostatic action of Equisetum. Arch. intern. pharmacodynamie, 41:419-429, 1931 (Chem. Abs. 26:6019) 12. Gutierrez RMP, Laguna GY, Walkowski, A. diuretic activity of Mexican Equisetum. J. Ethnopharm., 14:269- 272, 1985 13. Lepor H. Nonoperative management of benign prostatic hyperplasia. J. Urol., 141:1283-1289, 1989 14. Albert-Puleo M. Fennel and anise as estrogenic agents. J. Ethnopharm., 2:337-344, 1980 15. Albert-Puleo M. Mythobotany, pharmacology, and chemistry of thujone-containing plants and derivatives. Econ. Bot., 32:65-74, 1978 16. -
Front Matter
zpt0040800SPC1.qxd 3/11/08 10:55 AM Page 1 Volume 325 ■ Number 1 ■ April 2008 ■ ISSN 0022-3565 The Journal of PHARMACOLOGY And Experimental Therapeutics A Adaptations (Network Architecture) Can Create Unpredicted Therapeutic Actions Drug Predicted Effect Unexpected Effect B Complexity Creates Unpredicted Targets Predicted Effect Drug Target Unpredicted Target A Publication of the American Society for Pharmacology and Experimental Therapeutics Edited for the Society by Rick G. Schnellmann The Journal of PHARMACOLOGY And Experimental Therapeutics A Publication of the American Society for Pharmacology and Experimental Therapeutics April 2008 Vol. 325, No. 1 Contents PERSPECTIVES IN PHARMACOLOGY Exploiting Complexity and the Robustness of Network Marc K. Hellerstein 1 Architecture for Drug Discovery BEHAVIORAL PHARMACOLOGY Early Postnatal Stress Alters Place Conditioning to Both - and Clifford C. Michaels and Stephen G. Holtzman 313 -Opioid Agonists CARDIOVASCULAR □  S Design of Mutant 2 Subunits as Decoy Molecules to Reduce the Sabine Te´le´maque, Swapnil Sonkusare, 37 ,Expression of Functional Ca2؉ Channels in Cardiac Cells Terrie Grain, Sung W. Rhee, Joseph R. Stimers Nancy J. Rusch, and James D. Marsh Sphingosine 1-Phosphate Inhibits Nitric Oxide Production Takuji Machida, Yukihiro Hamaya, 200 Induced by Interleukin-1 in Rat Vascular Smooth Muscle Cells Sachiko Izumi, Yumika Hamaya, Kenji Iizuka, Yasuyuki Igarashi, Masaru Minami, Roberto Levi, and Masahiko Hirafuji Andrographolide Up-Regulates Cellular-Reduced Glutathione Anthony Y. H. Woo, Mary M. Y. Waye, 226 Level and Protects Cardiomyocytes against Stephen K. W. Tsui, Sandy T. W. Yeung, and Hypoxia/Reoxygenation Injury Christopher H. K. Cheng Orally Available Levosimendan Dose-Related Positive Inotropic Satoshi Masutani, Heng-Jie Cheng, 236 and Lusitropic Effect in Conscious Chronically Instrumented Minja Hyttila¨-Hopponen, Jouko Levijoki, Normal and Heart Failure Dogs Aira Heikkila¨, Arja Vuorela, William C. -
Development of a Quantitative PCR Assay for the Detection And
bioRxiv preprint doi: https://doi.org/10.1101/544247; this version posted February 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Development of a quantitative PCR assay for the detection and enumeration of a potentially ciguatoxin-producing dinoflagellate, Gambierdiscus lapillus (Gonyaulacales, Dinophyceae). Key words:Ciguatera fish poisoning, Gambierdiscus lapillus, Quantitative PCR assay, Great Barrier Reef Kretzschmar, A.L.1,2, Verma, A.1, Kohli, G.S.1,3, Murray, S.A.1 1Climate Change Cluster (C3), University of Technology Sydney, Ultimo, 2007 NSW, Australia 2ithree institute (i3), University of Technology Sydney, Ultimo, 2007 NSW, Australia, [email protected] 3Alfred Wegener-Institut Helmholtz-Zentrum fr Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany Abstract Ciguatera fish poisoning is an illness contracted through the ingestion of seafood containing ciguatoxins. It is prevalent in tropical regions worldwide, including in Australia. Ciguatoxins are produced by some species of Gambierdiscus. Therefore, screening of Gambierdiscus species identification through quantitative PCR (qPCR), along with the determination of species toxicity, can be useful in monitoring potential ciguatera risk in these regions. In Australia, the identity, distribution and abundance of ciguatoxin producing Gambierdiscus spp. is largely unknown. In this study we developed a rapid qPCR assay to quantify the presence and abundance of Gambierdiscus lapillus, a likely ciguatoxic species. We assessed the specificity and efficiency of the qPCR assay. The assay was tested on 25 environmental samples from the Heron Island reef in the southern Great Barrier Reef, a ciguatera endemic region, in triplicate to determine the presence and patchiness of these species across samples from Chnoospora sp., Padina sp. -
Aspartic Acid Agonist, in the Mammalian Striatum
The Journal of Neuroscience August 1986, 6(8): 2226-2234 /II Vitro Release and Electrophysiological Effects In Situ of Homocysteic Acid, An Endogenous N-Methyl-(D)-aspartic Acid Agonist, in the Mammalian Striatum Kim Quang DO,* Paul L. Herrling,? Peter Streit,* Waldemar A. Turski,“fsl and Michel Cuenod* *Brain Research Institute, University of Zurich, Zurich, Switzerland, and j-Wander Research Institute, Bern, Switzerland A potassium-induced, calcium-dependent release of endogenous fects of microiontophoretically applied (L)-HCA on membrane homocysteic acid (HCA) from rat striatal slices was demonstrat- potential and cortically evoked EPSPsin cat caudate neurons, ed. A precolumn derivatization high-performance liquid chro- and the pharmacologicalspecificity of (L)-HCA in this structure. matography method was developed that allowed quantitative de- termination of sulfur-containing amino acids at the picomole level. Materials and Methods Intracellular recordings from cat caudate neurons during si- Materials multaneous microiontophoretic application of drugs and electri- cal stimulation of the corticocaudate pathway showed that (L> Release HCA evoked a depolarization pattern similar to that induced 4-N,N-Dimethylamino-azobenzene-4’-isotbiocyanate (DABITC) was ob- by %methyl-(D>aspartic acid (NMDA), and both these depo- tained from Fluka (Buchs, CH) and recrystallized in acetone (Merck, larizations could be selectively inhibited by a specific NMDA Darmstadt, FRG). All other solvents used were ofcommercial analytical antagonist, (D)-Z-amino-7-phosphonoheptanoicacid [(D)-AP-~]. grade from Merck or Fluka. The internal standard (D,L)-2-amino-7- A selective antagonismof (rJ-HCA-induced depolarizations by sulfonoheptanoic acid (AS-7) was a generous gift of Dr. J. C. Watkins. (L)-homocysteic acid [(L)-HCA], (L)-cysteine sulfinic acid [(L)-CSA], (L)- (D>AP-~ was confirmed in quantitative experiments with the cysteic acid [(L)-CA], and veratrine were purchased from Sigma (St. -
Mixed Antagonistic Effects of the Ginkgolides at Recombinant Human R1 GABAC Receptors
Neuropharmacology 63 (2012) 1127e1139 Contents lists available at SciVerse ScienceDirect Neuropharmacology journal homepage: www.elsevier.com/locate/neuropharm Mixed antagonistic effects of the ginkgolides at recombinant human r1 GABAC receptors Shelley H. Huang a, Trevor M. Lewis b, Sarah C.R. Lummis c, Andrew J. Thompson c, Mary Chebib d, Graham A.R. Johnston a, Rujee K. Duke a,* a Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of Sydney, Australia b School of Medical Sciences, University of New South Wales, Australia c Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom d Faculty of Pharmacy, University of Sydney, Australia article info abstract Article history: The diterpene lactones of Ginkgo biloba, ginkgolides A, B and C are antagonists at a range of Cys-loop Received 11 July 2011 receptors. This study examined the effects of the ginkgolides at recombinant human r1 GABAC recep- Received in revised form tors expressed in Xenopus oocytes using two-electrode voltage clamp. The ginkgolides were moderately 18 June 2012 potent antagonists with IC sinthemM range. At 10 mM, 30 mM and 100 mM, the ginkgolides caused Accepted 24 June 2012 50 rightward shifts of GABA doseeresponse curves and reduced maximal GABA responses, characteristic of noncompetitive antagonists, while the potencies showed a clear dependence on GABA concentration, Keywords: indicating apparent competitive antagonism. This suggests that the ginkgolides exert a mixed-type Ginkgolide Bilobalide antagonism at the r1 GABAC receptors. The ginkgolides did not exhibit any obvious use-dependent Mixed-antagonism inhibition. Fitting of the data to a number of kinetic schemes suggests an allosteric inhibition as Use-dependent a possible mechanism of action of the ginkgolides which accounts for their inhibition of the responses GABAr receptor without channel block or use-dependent inhibition. -
Endogenous Metabolites: JHU NIMH Center Page 1
S. No. Amino Acids (AA) 24 L-Homocysteic acid 1 Glutaric acid 25 L-Kynurenine 2 Glycine 26 N-Acetyl-Aspartic acid 3 L-arginine 27 N-Acetyl-L-alanine 4 L-Aspartic acid 28 N-Acetyl-L-phenylalanine 5 L-Glutamine 29 N-Acetylneuraminic acid 6 L-Histidine 30 N-Methyl-L-lysine 7 L-Isoleucine 31 N-Methyl-L-proline 8 L-Leucine 32 NN-Dimethyl Arginine 9 L-Lysine 33 Norepinephrine 10 L-Methionine 34 Phenylacetyl-L-glutamine 11 L-Phenylalanine 35 Pyroglutamic acid 12 L-Proline 36 Sarcosine 13 L-Serine 37 Serotonin 14 L-Tryptophan 38 Stachydrine 15 L-Tyrosine 39 Taurine 40 Urea S. No. AA Metabolites and Conjugates 1 1-Methyl-L-histidine S. No. Carnitine conjugates 2 2-Methyl-N-(4-Methylphenyl)alanine 1 Acetyl-L-carnitine 3 3-Methylindole 2 Butyrylcarnitine 4 3-Methyl-L-histidine 3 Decanoyl-L-carnitine 5 4-Aminohippuric acid 4 Isovalerylcarnitine 6 5-Hydroxylysine 5 Lauroyl-L-carnitine 7 5-Hydroxymethyluracil 6 L-Glutarylcarnitine 8 Alpha-Aspartyl-lysine 7 Linoleoylcarnitine 9 Argininosuccinic acid 8 L-Propionylcarnitine 10 Betaine 9 Myristoyl-L-carnitine 11 Betonicine 10 Octanoylcarnitine 12 Carnitine 11 Oleoyl-L-carnitine 13 Creatine 12 Palmitoyl-L-carnitine 14 Creatinine 13 Stearoyl-L-carnitine 15 Dimethylglycine 16 Dopamine S. No. Krebs Cycle 17 Epinephrine 1 Aconitate 18 Hippuric acid 2 Citrate 19 Homo-L-arginine 3 Ketoglutarate 20 Hydroxykynurenine 4 Malate 21 Indolelactic acid 5 Oxalo acetate 22 L-Alloisoleucine 6 Succinate 23 L-Citrulline 24 L-Cysteine-glutathione disulfide Semi-quantitative analysis of endogenous metabolites: JHU NIMH Center Page 1 25 L-Glutathione, reduced Table 1: Semi-quantitative analysis of endogenous molecules and their derivatives by Liquid Chromatography- Mass Spectrometry (LC-TripleTOF “or” LC-QTRAP). -
(19) United States (12) Patent Application Publication (10) Pub
US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist.