Reference List of Drugs with Potential Anticholinergic Effects 1, 2, 3, 4, 5

Total Page:16

File Type:pdf, Size:1020Kb

Reference List of Drugs with Potential Anticholinergic Effects 1, 2, 3, 4, 5 ANTICHOLINERGICS: Reference List of Drugs with Potential Anticholinergic Effects 1, 2, 3, 4, 5 J Bareham BSP © www.RxFiles.ca Aug 2021 WHENEVER POSSIBLE, AVOID DRUGS WITH MODERATE TO HIGH ANTICHOLINERGIC ACTIVITY IN OLDER ADULTS (>65 YEARS OF AGE) Low Anticholinergic Activity; Moderate/High Anticholinergic Activity -B in combo Beers Antibiotics Antiparkinsonian Cardiovascular Agents Immunosuppressants ampicillin *ALL AVAILABLE AS amantadine SYMMETREL atenolol TENORMIN azaTHIOprine IMURAN cefOXitin GENERIC benztropine mesylate COGENTIN captopril CAPOTEN cyclosporine NEORAL clindamycin bromocriptine PARLODEL chlorthalidone GENERIC ONLY hydrocortisone CORTEF gentamicin (Oint & Sol’n NIHB covered) carbidopa/levodopa SINEMET digoxin LANOXIN, TOLOXIN methylprednisolone MEDROL piperacillin entacapone COMTAN dilTIAZem CARDIZEM, TIAZAC prednisone WINPRED dipyridamole PERSANTINE, ethopropazine PARSITAN vancomycin phenelzine NARDIL AGGRENOX disopyramide RYTHMODAN Muscle Relaxants pramipexole MIRAPEX Antidepressants baclofen LIORESAL ( on intrathecal only) procyclidine KEMADRIN furosemide LASIX amitriptyline ELAVIL cyclobenzaprine FLEXERIL selegiline ELDEPRYL hydrALAZINE APRESOLINE clomiPRAMINE ANAFRANIL isosorbide ISORDIL methocarbamol ROBAXIN OTC trihexyphenidyl ARTANE desipramine NORPRAMIN metoprolol LOPRESOR orphenadrine NORFLEX OTC doxepin >6mg SINEQUAN Antipsychotics NIFEdipine ADALAT tiZANidine ZANAFLEX A imipramine TOFRANIL quiNIDine GENERIC ONLY C ARIPiprazole ABILIFY & MAINTENA T Baclofen is the preferred agent of the above listed muscle nortriptyline AVENTYL asenapine SAPHRIS (-BPAD) triamterene DYRENIUM -less anticholinergic effects than amitriptyline & imipramine warfarin COUMADIN relaxants however, it does display moderate to high chlorproMAZINE LARGACTIL anticholinergic activity. trimipramine SURMONTIL cloZAPine CLOZARIL Gastrointestinal Agents ----------------------------------------------------------------------------------------------- flupentixol FLUANXOL ⌂ citalopram CELEXA atropine LOMOTIL on SPDP, Opioids fluPHENAZine MODITEN CIPRALEX belladonna GENERIC ONLY meperidine DEMEROL*Not for chronic use I escitalopram haloperidol HALDOL OTC R bisacodyl BISACODYL codeine ( on controlled release only, , inj & liquid) FLUoxetine PROZAC loxapine LOXAPAC S LUVOX chlordiazepoxide/clidinium LIBRAX fentaNYL DURAGESIC ⌂ S fluvoxaMINE lurasidone ◊ LATUDA cimetidine TAGAMET HYDROmorphone DILAUDID, PARoxetine PAXIL methotrimeprazine NOZINAN sertraline ZOLOFT dicyclomine BENTYLOL HYDROMORPH CONTIN on CR only ----------------------------------------------------------------------------------------------- OLANZapine ZYPREXA OTC dimenhyDRINATE GRAVOL morphine STATEX, M.O.S., KADIAN , paliperidone INVEGA ( on injection only) ⌂ buPROPion WELLBUTRIN ZYBAN diphenoxylate/atropine LOMOTIL on SPDP, oxyCODONE SUPEDOL, OXY IR PRISTIQ pericyazine NEULEPTIL desvenlafaxine domperidone MOTILIUM OXYNEO DULoxetine CYMBALTA perphenazine TRILAFON OTC & Rx famotidine PEPCID traMADol ULTRAM, RALIVIA, TRIDURAL, r mirtazapine REMERON pimozide ORAP OTC e loperamide IMODIUM ZYTRAM XL h SEROQUEL moclobemide MANERIX QUEtiapine t if used short term Preferred Alternatives: risperiDONE RISPERDAL ( on injection) O NARDIL phenelzine meclizine BONAMINE acetaminophen , NSAIDs (e.g. ibuprofen, naproxen) STELAZINE traZODone TRAZOREL trifluoperazine metoclopramide MAXERAN venlafaxine EFFEXOR ziprasidone ZELDOX nizatidine AXID Miscellaneous CELEXA ZOLOFT zuclopenthixol ◊ CLOPIXOL In the elderly, citalopram & sertraline prochlorperazine STEMETIL busPIRone ◊ BUSPAR are the usually preferred SSRIs. Antiseizure Drugs if used short term celecoxib CELEBREX carBAMazepine TEGRETOL promethazine PHENERGAN OTC colchicine GENERIC ONLY Antihistamines/Antipruritics divalproex EPIVAL raNITIdine ZANTAC OTC & Rx ketotifen ophthalmic ZADITOR brompheniramine COUGH&COLD PRODUCTS OTC OXcarbazepine TRILEPTAL -low anticholinergic activity if adjusted for renal function lithium CARBOLITH, chlorpheniramine CHLOR-TRIPOLON OTC DEPAKENE scopolamine TRANSDERM V OTC on SPDP, ⌂ DURALITH valproic acid OTC cyproheptadine PERIACTIN Preferred Alternatives: divalproex EPIVAL, Preferred Alternatives: bisacodyl , PPIs, metformin GLUCOPHAGE, GLYCON, g OTC diphenhydrAMINE BENADRYL NEURONTIN LAMICTAL KEPPRA domperidone; famotidine, or ranitidine if ≤150mg/day methotrexate GENERIC ONLY gabapentin , lamotrigine , levetiracetam . doxylamine UNISOM naratriptan AMERGE hydrOXYzine ATARAX Respiratory Meds Antispasmotics pancuronium GENERIC ONLY , OTC aclidinium bromide TUDORZA GENUAIR pyrilamine MIDOL PAMPRIN , SUMAtriptan IMITREX dicyclomine FORMULEX BENTYLOL aclidinium/formoterol DUAKLIR GENUAIR trimeprazine ◊ PANECTYL ⌂ ZOLMitriptan ZOMIG glycopyrrolate ROBINUL fluticasone/salmeterol ADVAIR COTRIDIN OMBIVENT triprolidine /salbutamol ATROVENT/C REACTINE hyoscine butylbromide BUSCOPAN ipratropium _______ = Possible preferred alternatives Preferred Alternatives: cetirizine & glycopyrronium SEEBRI BREEZHALER = Denotes agents with anticholinergic activity that fexofenadine ALLEGRA (controversial rating as medium/ Benzodiazepines glycopyrronium/Indacaterol may be better tolerated than others. Whenever high activity) , desloratadine AERIUS , ALPRAZolam XANAX half-life: ~12 hr ULTIBRO BREEZHALER possible, anticholinergic drugs should be avoided, & loratadine CLARITIN . chlordiazePOXIDE LIBRIUM half-life: ~100 hr pseudoephedrine COUGH & COLD PRODUCTS OTC the preferred agents used. ◊ = Unable to confirm anticholinergic activity (black font) clonazePAM RIVOTRIL half-life: ~34 hr THEOLAIR, UNIPHYL theophylline AChEI = Acetylcholinesterase Inhibitor (e.g. donepezil clorazepate TRANXENE half-life:~100 hr Antimuscarinics/Incontinence Meds tiotropium SPIRIVA ARICEPT, galantamine REMINYL, rivastigmine EXELON) darifenacin ENABLEX diazePAM VALIUM half-life: ~100 hr tiotropium/olodaterol INSPIOLTO CR = Controlled Release Formulation TOVIAZ flurazepam DALMANE half-life:~100 hr fesoterodine PPI = Proton Pump Inhibitor (e.g. rabeprazole) flavoxate URISPAS LORazepam ATIVAN half-life: ~15 hr umeclidinium INCRUSE ELLIPTA OTC = Over-the-counter mirabegron ◊ MYRBETRIQ midazolam VERSED half-life: ~3 hr umeclidinium/vilanterol ANORO ELLIPTA oxybutynin DITROPAN ( on XL only) oxazepam SERAX half-life: ~8 hr umeclidinium/vilanterol/fluticasone = Saskatchewan Health finds co-administration PEDIATRIC temazepam RESTORIL half-life: ~11 hr of this agent with a AChEI acceptable propiverine MICTORYL TRELEGY ELLIPTA on SPDP triazolam HALCION half-life: ~2 hr solifenacin VESICARE TO MINIMIZE SYSTEMIC EFFECTS OF INHALATIONAL MEDS: AVOID on SPDP = If patient is currently on this medication, tolterodine l-tartrate DETROL LA Avoid long- & ultra-short acting agents in the elderly. OVERUSE, USE AEROCHAMBER FOR IPRATROPIUM INHALER. Saskatchewan Health will NOT cover AChEI trospium TROSEC (Clonazepam ok, if long-acting required e.g. chronic anxiety) 154 Drugs with Anticholinergic Effects 5,6,7,8 Diseases associated with an essential cholinergic deficit include Alzheimer’s dementia, Lewy body dementia & to some extent other dementias (not frontal). Anticholinergic drugs worsen the deficit & are therefore highly problematic. Donepezil ARICEPT, rivastigmine EXELON, and galantamine REMINYL are reversible inhibitors of the enzyme acetylcholinesterase. Because of the mechanism of action, medications with anticholinergic effects can interfere with the activity of donepezil, rivastigmine and galantamine. The reverse page of this document contains a list of drugs with anticholinergic effects, with an emphasis on those with moderate to high activity. Drug coverage (in Sask.) may be affected if a patient is using a drug on this list concurrently with donepezil, rivastigmine or galantamine. Not only is drug coverage of concern, the use of drugs with anticholinergic activity can increase the risk of adverse effects (e.g., cognitive dysfunction, delirium) in the elderly. Drugs with low anticholinergic activity may be good alternatives to drugs with more anticholinergic activity. For example, SSRIs with lower anticholinergic activity are preferred over tricyclics for treatment of depression in the elderly. However, it’s not just the use of single drugs with significant anticholinergic activity that can cause trouble. Individuals who take multiple medications with low anticholinergic activity may also have increased risk of adverse effects. In fact, even small increases in so-called anticholinergic burden or load increases the risk of morbidity & mortality in older individuals.9 Total Anticholinergic Load: both highly anticholinergic drugs plus others (e.g. digoxin, paroxetine, ranitidine) contribute to the anticholinergic load & cognitive impairment. Review each medication the patient is taking. Tips to Deal with Anticholinergic Side-Effects Spectrum of Anticholinergic Side-Effects Mild Moderate Severe General approach: Dryness of mouth Moderately disturbing Difficulty chewing, swallowing, Mucosal damage Identify the cause Discontinue unnecessary offending medications (modest) dry mouth/thirst speaking Malnutrition Reduce the dose Speech problems Impaired perception of taste Respiratory Reduced appetite & texture of food infection Look for effective alternatives that are less likely to cause the side
Recommended publications
  • Table 2. 2012 AGS Beers Criteria for Potentially
    Table 2. 2012 AGS Beers Criteria for Potentially Inappropriate Medication Use in Older Adults Strength of Organ System/ Recommendat Quality of Recomm Therapeutic Category/Drug(s) Rationale ion Evidence endation References Anticholinergics (excludes TCAs) First-generation antihistamines Highly anticholinergic; Avoid Hydroxyzin Strong Agostini 2001 (as single agent or as part of clearance reduced with e and Boustani 2007 combination products) advanced age, and promethazi Guaiana 2010 Brompheniramine tolerance develops ne: high; Han 2001 Carbinoxamine when used as hypnotic; All others: Rudolph 2008 Chlorpheniramine increased risk of moderate Clemastine confusion, dry mouth, Cyproheptadine constipation, and other Dexbrompheniramine anticholinergic Dexchlorpheniramine effects/toxicity. Diphenhydramine (oral) Doxylamine Use of diphenhydramine in Hydroxyzine special situations such Promethazine as acute treatment of Triprolidine severe allergic reaction may be appropriate. Antiparkinson agents Not recommended for Avoid Moderate Strong Rudolph 2008 Benztropine (oral) prevention of Trihexyphenidyl extrapyramidal symptoms with antipsychotics; more effective agents available for treatment of Parkinson disease. Antispasmodics Highly anticholinergic, Avoid Moderate Strong Lechevallier- Belladonna alkaloids uncertain except in Michel 2005 Clidinium-chlordiazepoxide effectiveness. short-term Rudolph 2008 Dicyclomine palliative Hyoscyamine care to Propantheline decrease Scopolamine oral secretions. Antithrombotics Dipyridamole, oral short-acting* May
    [Show full text]
  • Appendix A: Potentially Inappropriate Prescriptions (Pips) for Older People (Modified from ‘STOPP/START 2’ O’Mahony Et Al 2014)
    Appendix A: Potentially Inappropriate Prescriptions (PIPs) for older people (modified from ‘STOPP/START 2’ O’Mahony et al 2014) Consider holding (or deprescribing - consult with patient): 1. Any drug prescribed without an evidence-based clinical indication 2. Any drug prescribed beyond the recommended duration, where well-defined 3. Any duplicate drug class (optimise monotherapy) Avoid hazardous combinations e.g.: 1. The Triple Whammy: NSAID + ACE/ARB + diuretic in all ≥ 65 year olds (NHS Scotland 2015) 2. Sick Day Rules drugs: Metformin or ACEi/ARB or a diuretic or NSAID in ≥ 65 year olds presenting with dehydration and/or acute kidney injury (AKI) (NHS Scotland 2015) 3. Anticholinergic Burden (ACB): Any additional medicine with anticholinergic properties when already on an Anticholinergic/antimuscarinic (listed overleaf) in > 65 year olds (risk of falls, increased anticholinergic toxicity: confusion, agitation, acute glaucoma, urinary retention, constipation). The following are known to contribute to the ACB: Amantadine Antidepressants, tricyclic: Amitriptyline, Clomipramine, Dosulepin, Doxepin, Imipramine, Nortriptyline, Trimipramine and SSRIs: Fluoxetine, Paroxetine Antihistamines, first generation (sedating): Clemastine, Chlorphenamine, Cyproheptadine, Diphenhydramine/-hydrinate, Hydroxyzine, Promethazine; also Cetirizine, Loratidine Antipsychotics: especially Clozapine, Fluphenazine, Haloperidol, Olanzepine, and phenothiazines e.g. Prochlorperazine, Trifluoperazine Baclofen Carbamazepine Disopyramide Loperamide Oxcarbazepine Pethidine
    [Show full text]
  • The National Drugs List
    ^ ^ ^ ^ ^[ ^ The National Drugs List Of Syrian Arab Republic Sexth Edition 2006 ! " # "$ % &'() " # * +$, -. / & 0 /+12 3 4" 5 "$ . "$ 67"5,) 0 " /! !2 4? @ % 88 9 3: " # "$ ;+<=2 – G# H H2 I) – 6( – 65 : A B C "5 : , D )* . J!* HK"3 H"$ T ) 4 B K<) +$ LMA N O 3 4P<B &Q / RS ) H< C4VH /430 / 1988 V W* < C A GQ ") 4V / 1000 / C4VH /820 / 2001 V XX K<# C ,V /500 / 1992 V "!X V /946 / 2004 V Z < C V /914 / 2003 V ) < ] +$, [2 / ,) @# @ S%Q2 J"= [ &<\ @ +$ LMA 1 O \ . S X '( ^ & M_ `AB @ &' 3 4" + @ V= 4 )\ " : N " # "$ 6 ) G" 3Q + a C G /<"B d3: C K7 e , fM 4 Q b"$ " < $\ c"7: 5) G . HHH3Q J # Hg ' V"h 6< G* H5 !" # $%" & $' ,* ( )* + 2 ا اوا ادو +% 5 j 2 i1 6 B J' 6<X " 6"[ i2 "$ "< * i3 10 6 i4 11 6! ^ i5 13 6<X "!# * i6 15 7 G!, 6 - k 24"$d dl ?K V *4V h 63[46 ' i8 19 Adl 20 "( 2 i9 20 G Q) 6 i10 20 a 6 m[, 6 i11 21 ?K V $n i12 21 "% * i13 23 b+ 6 i14 23 oe C * i15 24 !, 2 6\ i16 25 C V pq * i17 26 ( S 6) 1, ++ &"r i19 3 +% 27 G 6 ""% i19 28 ^ Ks 2 i20 31 % Ks 2 i21 32 s * i22 35 " " * i23 37 "$ * i24 38 6" i25 39 V t h Gu* v!* 2 i26 39 ( 2 i27 40 B w< Ks 2 i28 40 d C &"r i29 42 "' 6 i30 42 " * i31 42 ":< * i32 5 ./ 0" -33 4 : ANAESTHETICS $ 1 2 -1 :GENERAL ANAESTHETICS AND OXYGEN 4 $1 2 2- ATRACURIUM BESYLATE DROPERIDOL ETHER FENTANYL HALOTHANE ISOFLURANE KETAMINE HCL NITROUS OXIDE OXYGEN PROPOFOL REMIFENTANIL SEVOFLURANE SUFENTANIL THIOPENTAL :LOCAL ANAESTHETICS !67$1 2 -5 AMYLEINE HCL=AMYLOCAINE ARTICAINE BENZOCAINE BUPIVACAINE CINCHOCAINE LIDOCAINE MEPIVACAINE OXETHAZAINE PRAMOXINE PRILOCAINE PREOPERATIVE MEDICATION & SEDATION FOR 9*: ;< " 2 -8 : : SHORT -TERM PROCEDURES ATROPINE DIAZEPAM INJ.
    [Show full text]
  • Ketamine As a General Anesthesia Adjunct Michaela Wilcox, DNP
    Ketamine as a General Anesthesia Adjunct Michaela Wilcox, DNP (c), RN Dept. of Nurse Anesthesia, Moffett & Sanders School of Nursing, Samford University Structured Abstract Background Ketamine is a unique anesthetic agent with both anesthetic and analgesic properties. Ketamine is primarily a N-Methyl-D-Aspartic acid (NMDA) antagonist that also works on glutamine, nicotinic, muscarinic, monoaminergic and opioid receptors. The uses of ketamine are numerous and include treatment of chronic pain, acute pain, depression, as a multimodal pain adjunct, opioid-sparing agent and as an adjunct in enhanced recovery after surgery (ERAS) protocols. A 49-year-old female presented for a lumbar lateral interbody fusion extreme, anterior lumbar spine arthrodesis L3/4 with revision and instrumentation. Based on the surgical need for both sensory and motor nerve monitoring intraoperatively, the anesthetic plan included minimal sevoflurane, succinylcholine for induction and a propofol intravenous (IV) infusion with boluses of ketamine to maintain unconsciousness. A bispectral index (BIS) monitor (Aspect Medical Systems, Natick, MA) was placed on the patient’s forehead prior to induction and utilized intraoperatively to maintain a goal of 40-60. General anesthesia was achieved with fentanyl 100 mcg, lidocaine 100 mg, propofol 200 mg, ketamine 50 mg and succinylcholine 160 mg IV. Laryngoscopy was successfully performed using a McGrath MAC video laryngoscope (Medtronic, Minneapolis, MN). Following induction, a propofol IV infusion was initiated and sevoflurane maintained at 0.3 minimum alveolar concentration. Ketamine 10 mg IV was administered every hour. Upon conclusion of the procedure, the patient was extubated and transported to postoperative recovery unit, where she had no complaints of nausea, vomiting or pain.
    [Show full text]
  • Norfolk & Waveney Prescriber
    The Norfolk & Waveney Prescriber Issue 119 April 2017 For Primary and Secondary Care Health Professionals in Norfolk & Waveney In this issue: Prescribing Safety News: MHRA Drug Safety Updates 2 TAG and Commissioning News 3-4 Drugs – discontinued, shortages and prices 5-6 Drugs – supply issues 7-8 Guidance and Policy News: - National: “NICE Bites” & NICE guidance 9-10 Guidance and Policy News: - Local: Key Message Bulletins 11-12 Cost-effective Prescribing Tips: 13 Ophthalmic Special Order products Atorvastatin Hot Topic: Multimorbidity and Polypharmacy 14 Prescribing Safety: Medicines and Serotonin Syndrome 15-16 Prescribing Advice: Metformin, Finasteride, and Inhalers 17-18 New Medicines & Indications News 19 Feedback and comments on this edition to [email protected] / 01603 257035 Prescribing & Medicines Management Team – 1 NEL CSU Anglia Prescribing Safety News Main points from MHRA Drug Safety Updates February - March 2017 Articles relevant to Primary Care and Secondary Care: SGLT2 inhibitors: updated advice on increased risk of lower-limb amputation (mainly toes) Canagliflozin may increase the risk of lower-limb amputation (mainly toes) in patients with type 2 diabetes. Evidence does not show an increased risk for dapagliflozin and empagliflozin, but the risk may be a class effect. Preventive foot care is important for all patients with diabetes. Advice for healthcare professionals: o carefully monitor patients receiving canagliflozin who have risk factors for amputation, such as poor control of diabetes and problems with
    [Show full text]
  • Galantamine Potentiates the Neuroprotective Effect of Memantine Against NMDA-Induced Excitotoxicity Joao~ P
    Galantamine potentiates the neuroprotective effect of memantine against NMDA-induced excitotoxicity Joao~ P. Lopes1, Glauco Tarozzo1, Angelo Reggiani1, Daniele Piomelli1,2 & Andrea Cavalli1,3 1D3 – Drug Discovery and Development Department, Istituto Italiano di Tecnologia, Via Morego, 16163, Genova, Italy 2Departments of Anatomy and Neurobiology and Biological Chemistry, University of California, Irvine, CA, 92697-4621 3Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, Bologna University, Via Belmeloro, 40126, Bologna, Italy Keywords Abstract Alzheimer’s disease, drug combination, N NMDA neurotoxicity, NR2B, The combination of memantine, an -methyl-D-aspartate (NMDA) receptor polypharmacology, primary cortical neurons antagonist, with an acetylcholinesterase inhibitor (AChEI) is the current stan- dard of care in Alzheimer’s disease (AD). Galantamine, an AChEI currently Correspondence marketed for the treatment of AD, exerts memory-enhancing and neuroprotec- Andrea Cavalli, D3 – Drug Discovery and tive effects via activation of nicotinic acetylcholine receptors (nAChRs). Here, Development Department, Istituto Italiano we investigated the neuroprotective properties of galantamine in primary cul- di Tecnologia – Via Morego, 30, 16163 tures of rat cortical neurons when given alone or in combination with meman- Genova, Italy. Tel: +39 010 71781530; Fax: +39 010 tine. In agreement with previous findings, we found that memantine was fully 71781228; E-mail: [email protected] effective in reversing NMDA toxicity at concentrations of 2.5 and 5 lmol/L. Galantamine also completely reversed NMDA toxicity at a concentration of Funding Information 5 lmol/L. The a7 and a4b2 nAChR antagonists, methyllycaconitine, and dihy- No funding information provided. dro-b-erythroidine blocked the neuroprotective effect of galantamine, demon- strating the involvement of nAChRs.
    [Show full text]
  • Muscarinic Acetylcholine Receptor
    mAChR Muscarinic acetylcholine receptor mAChRs (muscarinic acetylcholine receptors) are acetylcholine receptors that form G protein-receptor complexes in the cell membranes of certainneurons and other cells. They play several roles, including acting as the main end-receptor stimulated by acetylcholine released from postganglionic fibersin the parasympathetic nervous system. mAChRs are named as such because they are more sensitive to muscarine than to nicotine. Their counterparts are nicotinic acetylcholine receptors (nAChRs), receptor ion channels that are also important in the autonomic nervous system. Many drugs and other substances (for example pilocarpineand scopolamine) manipulate these two distinct receptors by acting as selective agonists or antagonists. Acetylcholine (ACh) is a neurotransmitter found extensively in the brain and the autonomic ganglia. www.MedChemExpress.com 1 mAChR Inhibitors & Modulators (+)-Cevimeline hydrochloride hemihydrate (-)-Cevimeline hydrochloride hemihydrate Cat. No.: HY-76772A Cat. No.: HY-76772B Bioactivity: Cevimeline hydrochloride hemihydrate, a novel muscarinic Bioactivity: Cevimeline hydrochloride hemihydrate, a novel muscarinic receptor agonist, is a candidate therapeutic drug for receptor agonist, is a candidate therapeutic drug for xerostomia in Sjogren's syndrome. IC50 value: Target: mAChR xerostomia in Sjogren's syndrome. IC50 value: Target: mAChR The general pharmacol. properties of this drug on the The general pharmacol. properties of this drug on the gastrointestinal, urinary, and reproductive systems and other… gastrointestinal, urinary, and reproductive systems and other… Purity: >98% Purity: >98% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 10mM x 1mL in DMSO, Size: 10mM x 1mL in DMSO, 1 mg, 5 mg 1 mg, 5 mg AC260584 Aclidinium Bromide Cat. No.: HY-100336 (LAS 34273; LAS-W 330) Cat.
    [Show full text]
  • (Antimuscarinic) Drugs?
    © July - August 2018 How well do you know your anticholinergic (antimuscarinic) drugs? nticholinergic drugs, prescribed for a variety of clini- Acal conditions, are amongst the most frequently used prescription drugs in BC (Table 1). Also referred to as “an- timuscarinics,” such drugs specifically block muscarinic receptors for acetylcholine (ACh).1 Muscarinic ACh recep- tors are important in the parasympathetic nervous system that governs heart rate, exocrine glands, smooth muscles, clude drugs whose active metabolites are potent- as well as brain function. In contrast, nicotinic ACh recep- ly antimuscarinic,5 or which often cause typical tors stimulate contraction of striated muscles. This Letter is AC adverse effects such as dry mouth or urinary intended to remind clinicians of commonly used drugs that retention.6 People taking antihistamines, antide- have anticholinergic (AC), or technically, antimuscarinic pressants, antipsychotics, opioids, antimuscarinic properties, and of their potential adverse effects. inhalers, or many other drugs need to know that Beneficial and harmful effects of anticholinergic drugs have blockade of ACh receptors can cause bothersome been known for centuries. In Homer’s Odyssey, the nymph or even dangerous adverse effects (Table 3). pharmacologist Circe utilized central effects of atropinics Subtle and not-so-subtle toxicity in the common plant jimson weed (Datura stramonium) to cause delusions in the crew of Odysseus. Believing they Students often learn the adverse effects of anticho- had been turned into pigs, they could be herded.2 linergics from a mnemonic, e.g.: “Blind as a bat, Sometimes a drug is recommended specifically for its an- mad as a hatter, red as a beet, hot as a hare, dry as ticholinergic potency.
    [Show full text]
  • Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017
    Q UO N T FA R U T A F E BERMUDA PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 BR 111 / 2017 The Minister responsible for health, in exercise of the power conferred by section 48A(1) of the Pharmacy and Poisons Act 1979, makes the following Order: Citation 1 This Order may be cited as the Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017. Repeals and replaces the Third and Fourth Schedule of the Pharmacy and Poisons Act 1979 2 The Third and Fourth Schedules to the Pharmacy and Poisons Act 1979 are repealed and replaced with— “THIRD SCHEDULE (Sections 25(6); 27(1))) DRUGS OBTAINABLE ONLY ON PRESCRIPTION EXCEPT WHERE SPECIFIED IN THE FOURTH SCHEDULE (PART I AND PART II) Note: The following annotations used in this Schedule have the following meanings: md (maximum dose) i.e. the maximum quantity of the substance contained in the amount of a medicinal product which is recommended to be taken or administered at any one time. 1 PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 mdd (maximum daily dose) i.e. the maximum quantity of the substance that is contained in the amount of a medicinal product which is recommended to be taken or administered in any period of 24 hours. mg milligram ms (maximum strength) i.e. either or, if so specified, both of the following: (a) the maximum quantity of the substance by weight or volume that is contained in the dosage unit of a medicinal product; or (b) the maximum percentage of the substance contained in a medicinal product calculated in terms of w/w, w/v, v/w, or v/v, as appropriate.
    [Show full text]
  • COPD Agents Review – October 2020 Page 2 | Proprietary Information
    COPD Agents Therapeutic Class Review (TCR) October 1, 2020 No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, digital scanning, or via any information storage or retrieval system without the express written consent of Magellan Rx Management. All requests for permission should be mailed to: Magellan Rx Management Attention: Legal Department 6950 Columbia Gateway Drive Columbia, Maryland 21046 The materials contained herein represent the opinions of the collective authors and editors and should not be construed to be the official representation of any professional organization or group, any state Pharmacy and Therapeutics committee, any state Medicaid Agency, or any other clinical committee. This material is not intended to be relied upon as medical advice for specific medical cases and nothing contained herein should be relied upon by any patient, medical professional or layperson seeking information about a specific course of treatment for a specific medical condition. All readers of this material are responsible for independently obtaining medical advice and guidance from their own physician and/or other medical professional in regard to the best course of treatment for their specific medical condition. This publication, inclusive of all forms contained herein, is intended to be educational in nature and is intended to be used for informational purposes only. Send comments and suggestions to [email protected]. October 2020
    [Show full text]
  • FDA Briefing Document Pulmonary-Allergy Drugs Advisory Committee Meeting
    FDA Briefing Document Pulmonary-Allergy Drugs Advisory Committee Meeting August 31, 2020 sNDA 209482: fluticasone furoate/umeclidinium/vilanterol fixed dose combination to reduce all-cause mortality in patients with chronic obstructive pulmonary disease NDA209482/S-0008 PADAC Clinical and Statistical Briefing Document Fluticasone furoate/umeclidinium/vilanterol fixed dose combination for all-cause mortality DISCLAIMER STATEMENT The attached package contains background information prepared by the Food and Drug Administration (FDA) for the panel members of the advisory committee. The FDA background package often contains assessments and/or conclusions and recommendations written by individual FDA reviewers. Such conclusions and recommendations do not necessarily represent the final position of the individual reviewers, nor do they necessarily represent the final position of the Review Division or Office. We have brought the supplemental New Drug Application (sNDA) 209482, for fluticasone furoate/umeclidinium/vilanterol, as an inhaled fixed dose combination, for the reduction in all-cause mortality in patients with COPD, to this Advisory Committee in order to gain the Committee’s insights and opinions, and the background package may not include all issues relevant to the final regulatory recommendation and instead is intended to focus on issues identified by the Agency for discussion by the advisory committee. The FDA will not issue a final determination on the issues at hand until input from the advisory committee process has been considered
    [Show full text]
  • Structural and Functional Neuroprotection in Glaucoma: Role of Galantamine-Mediated Activation of Muscarinic Acetylcholine Receptors
    Citation: Cell Death and Disease (2010) 1, e27; doi:10.1038/cddis.2009.23 & 2010 Macmillan Publishers Limited All rights reserved 2041-4889/10 www.nature.com/cddis Structural and functional neuroprotection in glaucoma: role of galantamine-mediated activation of muscarinic acetylcholine receptors M Almasieh1, Y Zhou1, ME Kelly2, C Casanova3 and A Di Polo*,1 Glaucoma is the leading cause of irreversible blindness worldwide. Loss of vision due to glaucoma is caused by the selective death of retinal ganglion cells (RGCs). Treatments for glaucoma, limited to drugs or surgery to lower intraocular pressure (IOP), are insufficient. Therefore, a pressing medical need exists for more effective therapies to prevent vision loss in glaucoma patients. In this in vivo study, we demonstrate that systemic administration of galantamine, an acetylcholinesterase inhibitor, promotes protection of RGC soma and axons in a rat glaucoma model. Functional deficits caused by high IOP, assessed by recording visual evoked potentials from the superior colliculus, were improved by galantamine. These effects were not related to a reduction in IOP because galantamine did not change the pressure in glaucomatous eyes and it promoted neuronal survival after optic nerve axotomy, a pressure-independent model of RGC death. Importantly, we demonstrate that galantamine- induced ganglion cell survival occurred by activation of types M1 and M4 muscarinic acetylcholine receptors, while nicotinic receptors were not involved. These data provide the first evidence of the clinical potential
    [Show full text]