The Elimination of High Doses of Phenytoin In

Total Page:16

File Type:pdf, Size:1020Kb

The Elimination of High Doses of Phenytoin In THE ELIMINATION OF HIGH DOSES OF PHENYTOIN IN MAN AND THE RABBIT by Peter Chinwah Department of Clinical Pharmacology St. Vincent's Hospital Darlinghurst, 2010, N.S.W. AUSTRALIA A Thesis submitted for the Degree of Master of Science in the University of New South Wales February, 1987 Ul·lilJ:2?.S1TY QF N.S.W. ~ 14 JUN 1988 f L!.:.": --":c_A:_'''"lARY I (i) ACKNOWLEDGEMENTS I wish to thank Professor Denis Wade for the opportunity to undertake this thesis in the Department of Clinical Pharmacology and for his overseeing and supervision of this project. I would like to express my gratitude to Dr Garry Graham, Senior Lecturer in the Department of Physiology and Pharmacology at the University of New South Wales, for his significant contribution in discussion and critical review of this thesis. I also wish to thank my colleagues of the Department of Clinical Pharmacology and Toxicology at St Vincent's Hospital for their assistance during the course of the project. Finally, I am grateful to Dr Ken Williams of the Department of Clinical Pharmacology and Toxicology at St Vincent's Hospital for many hours of discussion, and his admonishment, long suffering and perserverence which have made this thesis possible. (ii) ABSTRACT The pharmacokinetics of phenytoin were studied in twelve patients who presented to casualty with phenytoin toxicity. These patients were divided into 3 groups according to the type of plasma elimination profiles observed. Group 1. consisted of 3 patients who demonstrated first order elimination kinetics with long elimination half lives (70-106 hours). Group 2. consisted of 6 patients who showed saturable elimination kinetics (mean estimated terminal half life 28 hours). In Group 3. there were 3 patients who had "plateau" or rising plasma concentrations lasting from 2.5 - 14 days. It was thought that the rises and plateaus of plasma concentrations could be due to a) absorption and/or b) redistribution within body compartments. The data demonstrates the large interpatient variability in the disposition of phenytoin following overdose. Clearly, the disposition of therapeutic doses of phenytoin cannot be used as a predictor of the time course of events following an overdose of the drug. The factors leading to the plateau plasma concentrations were further investigated by studying the disposition of phenytoin in the rabbit. It was established that at a dosage of 74 mg/kg I.V. the plasma concentrations of phenytoin at first fell rapidly but then reached a plateau phase similar to that observed in man. During this plateau phase there was a significant relative change in phenytoin distribution (iii) into fat when compared with a single therapeutic dose. There was 5.5% in fat following the low dose but 10-20% following the high dose. This data suggests that redistribution of phenytoin from fat back into plasma may be one of the factors contributing to the plateau of plasma concentrations seen in some patients following an overdose. The protein binding of phenytoin was studied in the patients who had taken an overdose of the drug. Free fractions of phenytoin when first admitted and when plasma concentrations had returned to non-toxic concentrations were not significantly different. In contrast, however, there was a higher free fraction of phenytoin in plasma taken from rabbits given high doses of phenytoin as compared with those given a low dose. In this respect, the concentration dependent changes in protein binding in rabbits may contribute to the profiles observed, more so than in humans. Transient hypotension has been reported in man after both I.V. and oral administration of phenytoin. An overall hypotensive effect of large doses of phenytoin was observed in rabbits. However, these changes in blood pressure were not sufficient to have an effect on the clearance of phenytoin. Liver blood flow was not decreased by large doses of phenytoin. It is unlikely that hypotensive effects of phenytoin significantly alter its disposition following overdose in man. Large doses of phenytoin may not always result in toxic plasma concentrations. Some patients were found to require large doses of phenytoin for adequate control of their epilepsy. Short half (iv) lives in these patients may be attributed to the effects of enzyme induction by other drugs taken concurrently. However, some people may be rapid metabolizers of phenytoin, although this could not be unequivocally demonstrated in these patients. Patients who cleared phenytc:n rapidly did not necessarily clear other anticonvulsants rapidly. Epileptics with rapid metabolism of phenytoin may be better controlled by using a different anticonvulsant such as carbamazepine. (v) PREFACE Much of the work of this thesis has been published and/or presented at meetings of the Australasian Society of Clinical and Experimental Pharmacologists. During the course of the thesis, was involved in other projects which resulted in a number of publications which are also listed below: Publications Supporting this Thesis (1) Phenytoin, phenobarbitone and carbamazepine elimination kinetics in overdosed patients. P.M. Chinwah, D.N. Wade and K.M. Williams, Clin. Exp. Pharmacol. Physiol., 8, 653, 1981. (2) A study of the distribution and elimination of high doses of phenytoin in rabbits. P.M. Chinwah, D.N. Wade and K.M. Williams. Clin. Exp. Pharmacol. Physiol., 8, 459-60, 1982. (3) Macrodosage of phenytoin. G.G. Meredith, M. Kennedy, P.M. Chinwah and D.N.Wade. Med. J. Aust., 2, 584, 1979. ( 4) Multiple drug interactions with phenytoin. D. J. Birkett, G.G. Graham, P.M. Chinwah, D.N. Wade and J.B. Hickie, Med. J. Aust., 2, 467, 1977. (vi) Other Publications (5) Monitoring plasma concentrations of drugs. G.G. Graham, P.M. Chinwah, M. Kennedy and D.N. Wade. Med. J. Aust., 2, 124, 1980. (6) Enhanced metabolism of mexiletine after phenytoin adminstration. E.J. Begg, P.M. Chinwah, C. Webb, R.O. Day and D.N. Wade. Br. J. Clin. Pharmacol., 14, 219-223, 1982. (7) A pharmacological method of measuring mouth-caecal transit time in man. M. Kennedy, P.M. Chinwah and D.N. Wade, Br. J. Clin. Pharmacol., 8, 372-373, 1979. (8) The measurement of mouth-caecal transit time using salicylazosulphapyridine. E. J. Begg, M. Kennedy, P.M. Chinwah and D.N. Wade. Clin. Exp. Pharmacol. Physiol., 7, 639-691, 1980. (9) Comparison of enzyme immunoassay for gentamicin compared with other methods. P.M. Chinwah and K.M. Williams, J. Antimicrob. Chemotherap., 6, 561-562, 1980. (10) Chlorbutol toxicity and dependence. T. Borody, P.M. Chinwah, G.G. Graham, D.N. Wade and K.M. Williams, Med. J. Aust., 1, 288, 1979. (11) Crystalluria during flucytosine therapy. K.M. Williams, P.M. Chinwah and R. Cobcroft. Med. J. Aust., 2, 617, 1979. (vii) ABBREVIATIONS AUC area under plasma concentration versus time curve BP blood pressure CL clearance EMIT enzyme immunoassay technique HPPH p-hydroxyphenyl phenylhydantoin ICG indocyanine green GLC gas liquid chromatography t 1 / 2 half-life of elimination volume of distribution TABLE OF CONTENTS Page ACKNOWLEDGEMENTS (i) ABSTRACT (ii) PREFACE (Publications supporting this Thesis) (v) ABBREVIATIONS (vii) CHAPTER 1 INTRODUCTION 1 .1 General Introduction - Michaelis-Menten Kinetics 1. 1.2 The Absorption of Phenytoin 5. 1.3 The Disposition of Phenytoin 6. 1.3.1 Binding and Distribution 6. 1.3.2 Metabolic Clearance 9. 1.4 The Disposition of Phenytoin Following an 12. Overdose 1.4.1 General 12. 1.4.2 Absorption 12. 1.4.3 Binding and Distribution 13. 1.4.4 Metabolic Clearance 14. 1.5 Some Specific Factors Affecting the Metabolism 15. of Phenytoin 1.5.1 General 15. 1.5.2 Drug Interactions {Enzyme Induction) 18. 1.5.3 Effects of Alcohol on the Metabolism of 19. Phenytoin 1.5.4 Genetic Effects on Phenytoin Metabolism 20. 1.5.5 Effects of Liver Disease on Metabolism 20. 1.6 Aims of Present Study 21. CHAPTER 2 MATERIALS AND METHODS 2.1 Materials 23. 2.1.1 Chemicals 23. 2.1.2 Instruments and Hardware 23. 2.1.3 Rabbits 25. 2.2 Sampling schedules 25. 2.2.1 Overdose Patients 25. 2.2.2 Rapid Metabolizers of Phenytoin 25. 2.2.3 Low Dose Pharmacokinetic Studies with 26. Rabbits 2.2.4 High Dose Pharmacokinetic Studies in 26. Rabbits 2.2.5 Blood Pressure Experiments in Rabbits 26. 2.2.6 Tissue Distribution Studies in Rabbits 26. 2.3 Analytical Methods and Procedures for Human 27. Studies 2.3.1 Enzyme Multiple Immunoassay Technique 27. (E.M.I.T.) 2.3.2 Overdose Patients 27. 2.3.3 Rapid Metabolizers of Phenytoin 28. 2.3.4 Alcohol Estimations 29. 2.3.5 Protein Binding Determinations 30. 2.4 Analytical Methods and Procedures for Animal 30. Studies 2.4.1 Low and High Dose Pharmacokinetics 30. 2.4.2 Phenytoin Tissue Distribution Studies 31. 2.4.3 The Effect of High Doses of Phenytoin on 32. Blood Pressure in Rabbits 2.4.4 Hepatic Blood Flow in Rabbits 33. 2.4.5 Estimation of Phenytoin Concentrations 34. Bile 2.4.6 Estimation of Phenytoin Concentrations 34. in Fat 2.4.7 GLC Assay for HPPH 35. 2.5 Pharmacokinetic Analysis of Data 35. CHAPTER 3 RESULTS 3.1 Overdosed Patients 38. 3.2 The Pharmacokinetics of Phenytoin Elimination 48. in Rabbits 3.3 Distribution of Phenytoin into Tissues 56. 3.4 The Protein Binding of Phenytoin in Man and 69. Rabbits 3.5 Effects of Phenytoin on Blood Pressure in Rabbits 75. 3.6 Effects of Phenytoin on Liver Blood Flow in the 81. Rabbit 3.7 Rapid Metabolisers of Phenytoin 86. 3.8 Reliability of Phenytoin Estimations by E.M.I.T. 94. CHAPTER 4 DISCUSSION 4.1 Phenytoin Overdosed Patients 99. 4.1.1 Apparent First Order Elimination Kinetics 99.
Recommended publications
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • Sparteine Surrogate and (-)- Sparteine
    This is a repository copy of Gram-Scale Synthesis of the (-)-Sparteine Surrogate and (-)- Sparteine. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/124708/ Version: Accepted Version Article: Firth, James D, Canipa, Steven J, O'Brien, Peter orcid.org/0000-0002-9966-1962 et al. (1 more author) (2018) Gram-Scale Synthesis of the (-)-Sparteine Surrogate and (-)- Sparteine. Angewandte Chemie International Edition. pp. 223-226. ISSN 1433-7851 https://doi.org/10.1002/anie.201710261 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ COMMUNICATION Gram-Scale Synthesis of the (–)-Sparteine Surrogate and (–)- Sparteine James D. Firth,[a] Steven J. Canipa,[a] Leigh Ferris[b] and Peter O’Brien*[a] Abstract: An 8-step, gram-scale synthesis of the (–)-sparteine to a greatly enhanced reactivity of the s-BuLi/sparteine surrogate surrogate (22% yield, with just 3 chromatographic purifications) and a complex. For example, the high reactivity of the s-BuLi/sparteine 10-step, gram-scale synthesis of (–)-sparteine (31% yield) are surrogate complex was required for one of the steps in Aggarwal’s reported.
    [Show full text]
  • Site of Lupanine and Sparteine Biosynthesis in Intact Plants and in Vitro Organ Cultures
    Site of Lupanine and Sparteine Biosynthesis in Intact Plants and in vitro Organ Cultures Michael Wink Genzentrum der Universität München, Pharmazeutische Biologie, Karlstraße 29, D-8000 München 2, Bundesrepublik Deutschland Z. Naturforsch. 42c, 868—872 (1987); received March 25/May 13, 1987 Lupinus, Alkaloid Biosynthesis, Turnover, Lupanine, Sparteine [14C]Cadaverine was applied to leaves of Lupinus polyphyllus, L. albus, L. angustifolius, L. perennis, L. mutabilis, L. pubescens, and L. hartwegii and it was preferentially incorporated into lupanine. In Lupinus arboreus sparteine was the main labelled alkaloid, in L. hispanicus it was lupinine. A pulse chase experiment with L. angustifolius and L. arboreus showed that the incorporation of cadaverine into lupanine and sparteine was transient with a maximum between 8 and 20 h. Only leaflets and chlorophyllous petioles showed active alkaloid biosynthesis, where­ as no incorporation of cadaverine into lupanine was observed in roots. Using in vitro organ cultures of Lupinus polyphyllus, L. succulentus, L. subcarnosus, Cytisus scoparius and Laburnum anagyroides the inactivity of roots was confirmed. Therefore, the green aerial parts are the major site of alkaloid biosynthesis in lupins and in other legumes. Introduction Materials and Methods Considering the site of secondary metabolite for­ Plants mation in plants, two possibilities are given: 1. All Plants of Lupinus polyphyllus, L. arboreus, the cells of plant are producers. 2. Secondary meta­ L. subcarnosus, L. hartwegii, L. pubescens, L. peren­ bolite formation is restricted to a specific organ and/ nis, L. albus, L. mutabilis, L. angustifolius, and or to specialized cells. L. succulentus were grown in a green-house at 23 °C Alkaloids are often found in the second class (for and under natural illumination or outside in an review [1, 2]), but whether a given alkaloid is synthe­ experimental garden.
    [Show full text]
  • Modulation of Ion Channels by Natural Products ‒ Identification of Herg Channel Inhibitors and GABAA Receptor Ligands from Plant Extracts
    Modulation of ion channels by natural products ‒ Identification of hERG channel inhibitors and GABAA receptor ligands from plant extracts Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Anja Schramm aus Wiedersbach (Thüringen), Deutschland Basel, 2014 Original document stored on the publication server of the University of Basel edoc.unibas.ch This work is licenced under the agreement „Attribution Non-Commercial No Derivatives – 3.0 Switzerland“ (CC BY-NC-ND 3.0 CH). The complete text may be reviewed here: creativecommons.org/licenses/by-nc-nd/3.0/ch/deed.en Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von Prof. Dr. Matthias Hamburger Prof. Dr. Judith Maria Rollinger Basel, den 18.02.2014 Prof. Dr. Jörg Schibler Dekan Attribution-NonCommercial-NoDerivatives 3.0 Switzerland (CC BY-NC-ND 3.0 CH) You are free: to Share — to copy, distribute and transmit the work Under the following conditions: Attribution — You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Noncommercial — You may not use this work for commercial purposes. No Derivative Works — You may not alter, transform, or build upon this work. With the understanding that: Waiver — Any of the above conditions can be waived if you get permission from the copyright holder. Public Domain — Where the work or any of its elements is in the public domain under applicable law, that status is in no way affected by the license.
    [Show full text]
  • Oral Antiarrhythmic Drugs in Converting Recent Onset Atrial Fibrillation
    Review article Oral antiarrhythmic drugs in converting recent onset atrial fibrillation • Vera H.M. Deneer, Marieke B.I. Borgh, J. Herre Kingma, Loraine Lie-A-Huen and Jacobus R.B.J. Brouwers Introduction Pharm World Sci 2004; 26: 66–78. © 2004 Kluwer Academic Publishers. Printed in the Netherlands. Atrial fibrillation is the most common arrhythmia. The incidence of atrial fibrillation depends on the age of V.H.M. Deneer (correspondence, e-mail: the study population. The incidence varies between 2 [email protected]), M.B.I. Borgh, L. Lie-A-Huen: Department of Clinical Pharmacy or 3 new cases per 1,000 population per year between J.H. Kingma: Department of Cardiology, St Antonius Hospital, the ages of 55 and 64 years to 35 new cases per 1,000 Koekoekslaan 1, 3435 CM Nieuwegein, The Netherlands population per year between the ages of 85 and 94 J.R.B.J. Brouwers: Groningen University Institute for Drug 1 Exploration (GUIDE), Section of Pharmacotherapy, University years . Treatment of an episode of paroxysmal atrial fi- of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, brillation consists of restoring sinus rhythm by DC- The Netherlands electrical cardioversion or by the intravenous adminis- Key words tration of an antiarrhythmic drug, but frequently the Atrial fibrillation arrhythmia spontaneously terminates1–3. After one or Amiodarone more episodes of atrial fibrillation chronic prophylac- Antiarrhythmic drugs Digoxin tic treatment with an antiarrhythmic drug is often Episodic treatment started for maintenance of sinus rhythm4–8. Another Flecainide treatment strategy consists of allowing the arrhythmia Propafenone Quinidine to exist in combination with pharmacological ven- Sotalol tricular rate control.
    [Show full text]
  • Praes. Chassard DDI DC 30MAR09 2 01.Pdf(371
    WELCOME BIENVENUE DRUG-DRUG INTERACTIONS DRUG-DRUGDRUG-DRUG INTERACTIONSINTERACTIONS UPDATEUPDATE ONON THETHE STUDYSTUDY DESIGNDESIGN Didier Chassard, MD Medical and Scientific Associate Director Biotrial BIOTRIAL Drug Evaluation and Pharmacology Research What we do, we do well. INTRODUCTIONINTRODUCTION Q Pharmacological responses of a drug is function of : – either the peak concentration (Cmax) if there is an activity threshold, – either, the total exposure to the parent drug and/or its active metabolite(s) measured by AUC (more precisely the response is a function of exposure to unbound drug) Q The clearance is the main regulator of drug concentrations. Q Large differences in blood levels can occur because of individual differences in metabolism due to genetic polymorphism, age, race, gender and environmental factors (smoking, alcohol, diet e.g. grapefruit juice). Drug-drug interactions can have similarly large effects in drug disposition DrugDrug interactionsinteractions :: DefinitionsDefinitions Q An interaction is an alteration either in the pharmacodynamics, either in the pharmacokinetics of a drug, caused by concomitant drug treatment, dietary factors or social habits (such as tobacco or alcohol). Q A clinically relevant interaction will produce in vivo changes of the magnitude and/or the duration of the pharmacological activity of the drug : leading to changes in the risk-benefit ratio for patients justifying a dose adjustment or a contraindication DrugDrug interactionsinteractions :: DefinitionDefinition Q Conventionally, a drug interaction is regarded as the modification of the effect of one drug by prior or concomitant administration of another (could require a dosage adjustment). Q A better definition would insist that the pharmacological outcome when 2 or more drugs are used in combination is not just a direct function of their individual effects.
    [Show full text]
  • Sodium Channel Na Channels;Na+ Channels
    Sodium Channel Na channels;Na+ channels Sodium channels are integral membrane proteins that form ion channels, conducting sodium ions (Na +) through a cell's plasma membrane. They are classified according to the trigger that opens the channel for such ions, i.e. either a voltage-change (Voltage-gated, voltage-sensitive, or voltage-dependent sodium channel also called VGSCs or Nav channel) or a binding of a substance (a ligand) to the channel (ligand-gated sodium channels). In excitable cells such as neurons, myocytes, and certain types of glia, sodium channels are responsible for the rising phase of action potentials. Voltage-gated Na+ channels can exist in any of three distinct states: deactivated (closed), activated (open), or inactivated (closed). Ligand-gated sodium channels are activated by binding of a ligand instead of a change in membrane potential. www.MedChemExpress.com 1 Sodium Channel Inhibitors & Modulators (+)-Kavain (-)-Sparteine sulfate pentahydrate Cat. No.: HY-B1671 ((-)-Lupinidine (sulfate pentahydrate)) Cat. No.: HY-B1304 Bioactivity: (+)-Kavain, a main kavalactone extracted from Piper Bioactivity: (-)-Sparteine sulfate pentahydrate ((-)-Lupinidine sulfate methysticum, has anticonvulsive properties, attenuating pentahydrate) is a class 1a antiarrhythmic agent and a sodium vascular smooth muscle contraction through interactions with channel blocker. It is an alkaloid, can chelate the bivalents voltage-dependent Na + and Ca 2+ channels [1]. (+)-Kav… calcium and magnesium. Purity: 99.98% Purity: 98.0% Clinical Data: No Development Reported Clinical Data: Launched Size: 10mM x 1mL in DMSO, Size: 10mM x 1mL in DMSO, 5 mg, 10 mg 50 mg A-803467 Ajmaline Cat. No.: HY-11079 (Cardiorythmine; (+)-Ajmaline) Cat. No.: HY-B1167 Bioactivity: A 803467 is a selective Nav1.8 sodium channel blocker with an Bioactivity: Ajmaline is an alkaloid that is class Ia antiarrhythmic agent.
    [Show full text]
  • Narrow Therapeutic Index Drugs: a Clinical Pharmacological Consideration to Flecainide
    Eur J Clin Pharmacol (2015) 71:549–567 DOI 10.1007/s00228-015-1832-0 REVIEW ARTICLE Narrow therapeutic index drugs: a clinical pharmacological consideration to flecainide Juan Tamargo & Jean-Yves Le Heuzey & Phillipe Mabo Received: 5 December 2014 /Accepted: 4 March 2015 /Published online: 15 April 2015 # The Author(s) 2015. This article is published with open access at Springerlink.com Abstract specify flecainide as an NTID. The literature review demon- Purpose The therapeutic index (TI) is the range of doses at strated that flecainide displays NTID characteristics including which a medication is effective without unacceptable adverse a steep drug dose–response relationship for safety and effica- events. Drugs with a narrow TI (NTIDs) have a narrow win- cy, a need for therapeutic drug monitoring of pharmacokinetic dow between their effective doses and those at which they (PK) or pharmacodynamics measures and intra-subject vari- produce adverse toxic effects. Generic drugs may be substitut- ability in its PK properties. ed for brand-name drugs provided that they meet the recom- Conclusions There is much evidence for flecainide to be con- mended bioequivalence (BE) limits. However, an appropriate sidered an NTID based on both preclinical and clinical data. A range of BE for NTIDs is essential to define due to the poten- clear understanding of the potential of proarrhythmic effects tial for ineffectiveness or adverse events. Flecainide is an an- or lack of efficacy, careful patient selection and regular mon- tiarrhythmic agent that has the potential to be considered an itoring are essential for the safe and rational administration of NTID.
    [Show full text]
  • Effects of Calcium Channel Blockade on Catecholamine Cardiomypopathy Virginia Shau Huang Yale University
    Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine 1985 Effects of calcium channel blockade on catecholamine cardiomypopathy Virginia Shau Huang Yale University Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl Recommended Citation Huang, Virginia Shau, "Effects of calcium channel blockade on catecholamine cardiomypopathy" (1985). Yale Medicine Thesis Digital Library. 2734. http://elischolar.library.yale.edu/ymtdl/2734 This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. YALE MEDICAL LIBRARY Permission for photocopying or microfilming of " /){-{‘Actum (}\{(umA SIccKaJ:^ <fH If for the purpose of individual scholarly consultation or refer¬ ence is hereby granted by the author. This permission is not to be interpreted as affecting publication of this work, or otherwise placing it in the public domain, and the author re¬ serves all rights of ownership guaranteed under common law protection of unpublished manuscripts. (Printed name) (Date) Digitized by the Internet Archive in 2017 with funding from The National Endowment for the Humanities and the Arcadia Fund https://archive.org/details/effectsofcalciumOOhuan EFFECTS OF CALCIUM CHANNEL BLOCKADE ON CATECHOLAMINE CARDIOMYOPATHY A Thesis Submitted to the Yale University School of Medicine in Partial Fulfillment of the Requirements for the Degree of Doctor of Medicine by Virginia Shau Shen Huang M<?c( Lib n 13 3 YI ^— 5 33*7 ABSTRACT EFFECTS OF CALCIUM CHANNEL BLOCKADE ON CATECHOLAMINE CARDIOMYOPATHY Virginia Shau Shen Huang 1985 The catecholamines have long been known to cause car¬ diac injury when delivered in high concentrations.
    [Show full text]
  • A Computational Tool for Pathway-Based Rational Drug Repositioning Supplementary Information
    gene2drug: a Computational Tool for Pathway-based Rational Drug Repositioning Supplementary Information Francesco Napolitano1, Diego Carrella1, Barbara Mandriani1, Sandra Pisonero1, Diego Medina1, Nicola Brunetti-Pierri1,2, and Diego di Bernardo1,3 1Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), 80078, Italy. 2Department of Translational Medicine, Federico II University, 80131 Naples, Italy 3Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy. List of Figures S1 Relation between PPI network-based and pathway based approaches. Given a therapeutic gene and the set of pathways it is annotated to according to the different databases, the other genes in the same pathways are topologically closer to it in the PPI network as compared to randomly chosen genes. The average shortest path from the selected gene to other pathway members is reported on the y axis for each database. 3 S2 Size of intersection between existent evidence scores in the STITCH database (subset matched against the Cmap database) as a percentage of the total number of evidences. Numbers on the diagonal represent how many times a drug-target evidence exists divided by the total number of reported pairs. A \combined score" always exist if one of the other evidences exist, thus \combined score" covers 100% of the pairs. Conversely, an \experimental" score is only present for 14% of the pairs. The \Text mining" evidence strongly drives the \combined score" covering 61% of all the known protein-target interactions in STITCH. 4 S3 Relative luminescence units (RLU) in Hepa1-6 cells transfected with a plasmid ex- pressing the luciferase gene under the control of the GPT promoter and incubated with various concentrations of fulvestrant.
    [Show full text]
  • Hdl 121157.Pdf
    Biomedicine & Pharmacotherapy 111 (2019) 427–435 Contents lists available at ScienceDirect Biomedicine & Pharmacotherapy journal homepage: www.elsevier.com/locate/biopha The antiarrhythmic actions of bisaramil and penticainide result from mixed T cardiac ion channel blockade ⁎ M.K. Pugsleya, , E.S. Hayesb, D.A. Saintc, M.J.A. Walkerd a Safety Pharmacology/Toxicology, Fairfield, CT, US b BioCurate Pty Ltd., Parkville, Victoria, Australia c Department of Physiology, University of Adelaide, Adelaide, Australia d Department of Anesthesia, Pharmacology & Therapeutics, University of British Columbia, Vancouver, B.C., Canada ARTICLE INFO ABSTRACT Keywords: Decades of focus on selective ion channel blockade has been dismissed as an effective approach to antiar- Antiarrhythmic rhythmic drug development. In that context many older antiarrhythmic drugs lacking ion channel selectivity Bisaramil may serve as tools to explore mixed ion channel blockade producing antiarrhythmic activity. This study in- Penticainide vestigated the non-clinical electrophysiological and antiarrhythmic actions of bisaramil and penticainide using in Ion channel vitro and in vivo methods. In isolated cardiac myocytes both drugs directly block sodium currents with IC50 values Rat of 13μM (bisaramil) and 60μM (penticainide). Both drugs reduced heart rate but prolonged the P–R, QRS and Ischemia Electrical Q–T intervals of the ECG (due to sodium and potassium channel blockade) in intact rats. They reduced cardiac conduction velocity in isolated rat hearts, increased the threshold currents for capture and fibrillation (indices of sodium channel blockade) and reduced the maximum following frequency as well as prolonged the effective refractory period (indices of potassium channel blockade) of electrically stimulated rat hearts. Both drugs re- duced ventricular arrhythmias and eliminated mortality due to VF in ischemic rat hearts.
    [Show full text]
  • Cytochrome P450 Drug Interaction Table
    SUBSTRATES 1A2 2B6 2C8 2C9 2C19 2D6 2E1 3A4,5,7 amitriptyline bupropion paclitaxel NSAIDs: Proton Pump Beta Blockers: Anesthetics: Macrolide antibiotics: caffeine cyclophosphamide torsemide diclofenac Inhibitors: carvedilol enflurane clarithromycin clomipramine efavirenz amodiaquine ibuprofen lansoprazole S-metoprolol halothane erythromycin (not clozapine ifosfamide cerivastatin lornoxicam omeprazole propafenone isoflurane 3A5) cyclobenzaprine methadone repaglinide meloxicam pantoprazole timolol methoxyflurane NOT azithromycin estradiol S-naproxen_Nor rabeprazole sevoflurane telithromycin fluvoxamine piroxicam Antidepressants: haloperidol suprofen Anti-epileptics: amitriptyline acetaminophen Anti-arrhythmics: imipramine N-DeMe diazepam Nor clomipramine NAPQI quinidine 3OH (not mexilletine Oral Hypoglycemic phenytoin(O) desipramine aniline2 3A5) naproxen Agents: S-mephenytoin imipramine benzene olanzapine tolbutamide phenobarbitone paroxetine chlorzoxazone Benzodiazepines: ondansetron glipizide ethanol alprazolam phenacetin_ amitriptyline Antipsychotics: N,N-dimethyl diazepam 3OH acetaminophen NAPQI Angiotensin II carisoprodol haloperidol formamide midazolam propranolol Blockers: citalopram perphenazine theophylline triazolam riluzole losartan chloramphenicol risperidone 9OH 8-OH ropivacaine irbesartan clomipramine thioridazine Immune Modulators: tacrine cyclophosphamide zuclopenthixol cyclosporine theophylline Sulfonylureas: hexobarbital tacrolimus (FK506) tizanidine glyburide imipramine N-DeME alprenolol verapamil glibenclamide indomethacin
    [Show full text]