Revisions to USDA-APHIS 7 CFR Part 340 Regulations Governing The

Total Page:16

File Type:pdf, Size:1020Kb

Revisions to USDA-APHIS 7 CFR Part 340 Regulations Governing The United States Revisions to USDA-APHIS 7 CFR part Department of Agriculture 340 Regulations Governing the Importation, Interstate Movement, and Environmental Release of Certain Genetically Engineered Animal and Plant Organisms Health Inspection Service Draft Programmatic Environmental Impact Statement – May, 2019 Revisions to USDA-APHIS 7 CFR part 340 Regulations Governing the Importation, Interstate Movement, and Environmental Release of Certain Genetically Engineered Organisms Draft Programmatic Environmental Impact Statement May, 2019 Agency Contact: Cindy Eck Biotechnology Regulatory Services 4700 River Road USDA, APHIS Riverdale, MD 20737 Fax: (301) 734-8669 i Non‐Discrimination Policy In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident. To File a Program Complaint To file a program discrimination complaint, complete the USDA Program Discrimination Complaint Form, AD‐3027, found online at How to File a Program Discrimination Complaint and at any USDA office or write a letter addressed to USDA and provide in the letter all of the information requested in the form. To request a copy of the complaint form, call (866) 632‐9992. Submit your completed form or letter to USDA by: (1) mail: U.S. Department of Agriculture, Office of the Assistant Secretary for Civil Rights, 1400 Independence Avenue, SW, Washington, D.C. 20250‐9410; (2) fax: (202) 690‐7442; or (3) email: [email protected]. Persons with Disabilities Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA's TARGET Center at (202) 720‐2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877‐8339. Additionally, program information may be made available in languages other than English. USDA is an equal opportunity provider, employer, and lender. ii TABLE OF CONTENTS EXECUTIVE SUMMARY..................................................................................................................... ES‐1 1 PURPOSE AND NEED ................................................................................................................... 1‐1 OVERVIEW .................................................................................................................................. 1‐1 APHIS STATUTORY AUTHORITY UNDER THE PPA AND IMPLEMENTING REGULATIONS ................................. 1‐1 RECOMMENDED REVISIONS TO APHIS’ BIOTECHNOLOGY REGULATORY PROGRAM ..................................... 1‐2 HISTORY OF REVISIONS TO 7 CFR PART 340 ....................................................................................... 1‐3 SUMMARY OF PROPOSED REVISIONS TO 7 CFR PART 340 ..................................................................... 1‐4 BACKGROUND ON THE REGULATION OF GENETICALLY ENGINEERED ORGANISMS ........................................ 1‐4 1.6.1 FEDERAL OVERSIGHT UNDER THE COORDINATED FRAMEWORK ................................................................. 1‐6 NEPA ANALYSIS OF PROPOSED REVISIONS TO 7 CFR PART 340 ............................................................. 1‐7 1.7.1 PUBLIC INVOLVEMENT ........................................................................................................................ 1‐8 2 PROPOSED PROGRAM ALTERNATIVES ......................................................................................... 2‐1 PROGRAM ALTERNATIVE 1: NO ACTION ............................................................................................ 2‐1 2.1.1 OVERVIEW ........................................................................................................................................ 2‐1 2.1.2 REGULATORY SCOPE ........................................................................................................................... 2‐2 2.1.3 AUTHORIZATION OF IMPORTS, INTERSTATE MOVEMENTS, AND ENVIRONMENTAL RELEASES ........................... 2‐5 2.1.3.1 Importation and Interstate Movement .................................................................................... 2‐8 2.1.3.2 Environmental Release ............................................................................................................. 2‐9 2.1.4 COMPLIANCE, ENFORCEMENT, AND REMEDIATION .................................................................................. 2‐9 2.1.5 DETERMINATIONS OF REGULATORY STATUS ......................................................................................... 2‐10 PROGRAM ALTERNATIVE 2: PREFERRED ALTERNATIVE – IMPLEMENT PROPOSED RULE .............................. 2‐11 2.2.1 OVERVIEW OF THE PROPOSED REGULATORY FRAMEWORK ...................................................................... 2‐12 ALTERNATIVES CONSIDERED BUT DISMISSED FROM FURTHER CONSIDERATION ........................................ 2‐20 2.3.1 REGULATION TO FACILITATE COEXISTENCE ........................................................................................... 2‐20 2.3.2 WITHDRAW 7 CFR PART 340 AND REGULATE PLANT PESTS UNDER PART 330, AND NOXIOUS WEEDS UNDER PART 360 2‐24 2.3.3 REVISE THE REGULATORY FRAMEWORK IN 7 CFR PART 340 THAT DESCRIBES APHIS’S ABILITY TO DETERMINE A GE ORGANISM AS A PLANT PEST, BUT KEEP NOTIFICATIONS ............................................................................... 2‐25 2.3.4 REGULATE BASED ON THE CONCEPT OF “NOVELTY” ............................................................................... 2‐26 SUMMARY: COMPARISON OF ALTERNATIVES CONSIDERED IN REVISION OF 7 CFR PART 340 ....................... 2‐26 3 AFFECTED ENVIRONMENT ........................................................................................................... 3‐1 iii ESTIMATES OF MAJOR LAND USES IN THE UNITED STATES ..................................................................... 3‐1 MAJOR LAND USES IN THE UNITED STATES ........................................................................................ 3‐2 3.2.1 LAND IN FARMS ................................................................................................................................. 3‐3 3.2.1.1 Historic and Projected Trends .................................................................................................. 3‐3 3.2.2 AGRICULTURAL LAND USES .................................................................................................................. 3‐6 3.2.2.1 Principal Crops .......................................................................................................................... 3‐7 3.2.3 FOREST USE LANDS ............................................................................................................................ 3‐8 3.2.3.1 Current and Projected Uses ..................................................................................................... 3‐8 3.2.4 REGIONAL AGRICULTURAL AND FORESTRY LAND USES IN THE UNITED STATES ............................................ 3‐10 3.2.4.1 Land Resource Regions and Agricultural Activities in the United States, Caribbean, and Pacific Basin 3‐11 GENETICALLY ENGINEERED ORGANISMS IN AGRICULTURE, FORESTRY, AND INDUSTRY ............................... 3‐16 3.3.1 PERMITS AND NOTIFICATIONS UNDER 7 CFR PART 340 .......................................................................... 3‐17 3.3.2 AUTHORIZATION OF INTERSTATE MOVEMENT AND IMPORT OF GE ORGANISMS ......................................... 3‐17 3.3.3 ENVIRONMENTAL RELEASES OF GE ORGANISMS IN THE UNITED STATES AND U.S. TERRITORIES .................... 3‐19 3.3.3.1 GE Plants ................................................................................................................................. 3‐24 3.3.3.2 GE Microorganisms ................................................................................................................ 3‐26 3.3.3.3 GE Insects and Invertebrates ................................................................................................. 3‐28 3.3.3.4 GE Organisms Developed for Pharmaceutical and Industrial Purposes ................................ 3‐28 3.3.4 COMPLIANCE AND ENFORCEMENT ACTIONS ......................................................................................... 3‐29 3.3.5 PETITION AND DETERMINATION OF NONREGULATED STATUS UNDER 7 CFR PART 340 ............................... 3‐30 3.3.6 DETERMINATION OF NONREGULATED STATUS AND ADOPTION OF GE CROPS ............................................. 3‐31 3.3.7 GE TRAITS, AND CURRENT AND FUTURE GE ORGANISMS ....................................................................... 3‐34 GENETICALLY ENGINEERED ORGANISMS AND THE ENVIRONMENT .......................................................... 3‐38 3.4.1 GE CROP PLANTS ............................................................................................................................
Recommended publications
  • Morphological Systematics of the Nightshade Flea Beetles Epitrix
    Clemson University TigerPrints All Theses Theses 8-2016 Morphological Systematics of the Nightshade Flea Beetles Epitrix Foudras and Acallepitrix Bechyné (Coleoptera: Chrysomelidae: Galerucinae: Alticini) in America North of Mexico Anthony Martin Deczynski Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation Deczynski, Anthony Martin, "Morphological Systematics of the Nightshade Flea Beetles Epitrix Foudras and Acallepitrix Bechyné (Coleoptera: Chrysomelidae: Galerucinae: Alticini) in America North of Mexico" (2016). All Theses. 2479. https://tigerprints.clemson.edu/all_theses/2479 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. MORPHOLOGICAL SYSTEMATICS OF THE NIGHTSHADE FLEA BEETLES EPITRIX FOUDRAS AND ACALLEPITRIX BECHYNÉ (COLEOPTERA: CHRYSOMELIDAE: GALERUCINAE: ALTICINI) IN AMERICA NORTH OF MEXICO A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Entomology by Anthony Martin Deczynski August 2016 Accepted by: Dr. Michael Caterino, Committee Chair Dr. Peter Adler Dr. J. Antonio Baeza ABSTRACT The flea beetle genera Epitrix and Acallepitrix are revised for America North of Mexico, building on a prior preliminary revision of the genus Epitrix by the author (Deczynski 2014). Four new species are described: Epitrix cuprea sp. nov., E. rileyi sp. nov., E. latifrons sp. nov., and E. vasinoda sp. nov., bringing the North American Epitrix fauna to a total of 26 species. A key is provided to adults of all species.
    [Show full text]
  • Infectivity of Verticillium Dahliae Isolates on Weedy Hosts
    INFECTIVITY OF VERTICILLIUM DAHLIAE ISOLATES ON WEEDY HOSTS, LITCHI TOMATO, AND TEFF, AND THE EFFECT OF ALFALFA RESIDUE INCORPORATION ON THE NUMBER OF VERTICILLIUM DAHLIAE MICROSCLEROTIA, AND SOIL BACTERIAL METAGENOMICS By ZACHARY ANDREW FREDERICK A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY Department of Plant Pathology MAY 2017 © Copyright by ZACHARY ANDREW FREDERICK, 2017 All Rights Reserved © Copyright by ZACHARY ANDREW FREDERICK, 2017 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of ZACHARY ANDREW FREDERICK find it satisfactory and recommend that it be accepted. ___________________________________ Dennis A. Johnson, Ph.D, Chair. ___________________________________ Mark J. Pavek, Ph.D. ___________________________________ Debra A. Inglis, Ph.D. ___________________________________ Weidong Chen, Ph.D. ii ACKNOWLEDGMENTS I thank Dr. Dennis A. Johnson for the opportunity to pursue the study of plant pathology, cooperative extension, and potato disease at Washington State University through his program. I also thank Thomas F. Cummings for instruction and support of establishing trials, as well as guidance on statistical analyses. I wish to thank my committee members, Drs. Mark J. Pavek, Debra A. Inglis, and Weidong Chen for their critiques and guidance. I am grateful for my present and former members of my laboratory workgroup, including David Wheeler and Dr. Lydia Tymon for direction and toleration of my contributions to entropy, as well as Dr. Jeremiah Dung for his isolates and copious notes left behind. Would you kindly join me in extending special thanks to Dr. Kerik Cox, who continues to serve as an additional adviser.
    [Show full text]
  • Flea Beetles (Order: Coleoptera, Family: Chrysomelidae/Alticinae) Tobacco (Epitrix Hirtipennis (Melsheimer)) Southern Tobacco (
    Flea beetles (Order: Coleoptera, Family: Chrysomelidae/Alticinae) Tobacco (Epitrix hirtipennis (Melsheimer)) Southern tobacco (Epitrix fasciata (Blatchley)) Pale striped (Systena blanda (Melsheimer)) Description: Adult: The tobacco and southern tobacco flea beetle adults are small (1.4- 2.2 mm in length) and reddish, yellow brown, with a brown patch across the width of the elytra. The southern tobacco adult is slightly smaller and wider than the tobacco flea beetle. The pale striped flea beetle adult is larger (3.0- 4.3 mm long) and has a pair of pale yellow stripes lengthwise down the back, one stripe on each elytron. Immature stages: All of the above species have three larval instars that are whitish with darker heads, and all feed on fine roots near the soil surface or occasionally tunnel into larger roots. The tobacco flea beetle larvae range Tobacco flea beetle adult. from 1 mm after hatching to 4.2 mm at maturity, while the pale stripe larvae range from 1 to 11 mm. Biology: Life cycle: Tobacco flea beetle females can lay up to 200 eggs which hatch in 6- 8 days. The larval development typically lasts from 16-20 days under warm conditions. The last instar larva forms a small cell in the soil where it pupates, and the adult emerges 4-5 days later for a total of 26-33 days. The pale striped flea beetle requires a longer time to develop from egg to adult, 28-54 days total. Seasonal distribution: There are 3-4 generations of the tobacco flea beetles per year. High numbers have been observed in south Georgia in late June in Solanaceous crop transplants, and we think that this is likely a second generation.
    [Show full text]
  • Dow Agrosciences Petitions (09-233- 01P, 09-349-01P, and 11-234-01P) for Determinations of Nonregulated Status for 2,4-D-Resistant Corn and Soybean Varieties
    Dow AgroSciences Petitions (09-233- 01p, 09-349-01p, and 11-234-01p) for Determinations of Nonregulated Status for 2,4-D-Resistant Corn and Soybean Varieties Draft Environmental Impact Statement—2013 Agency Contact: Sid Abel Biotechnology Regulatory Services 4700 River Road USDA, APHIS Riverdale, MD 20737 Fax: (301) 734-6352 The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’S TARGET Center at (202) 720–2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326–W, Whitten Building, 1400 Independence Avenue, SW, Washington, DC 20250–9410 or call (202) 720–5964 (voice and TDD). USDA is an equal opportunity provider and employer. Mention of companies or commercial products in this report does not imply recommendation or endorsement by the U.S. Department of Agriculture over others not mentioned. USDA neither guarantees nor warrants the standard of any product mentioned. Product names are mentioned solely to report factually on available data and to provide specific information. This publication reports research involving pesticides. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish and other wildlife—if they are not handled or applied properly.
    [Show full text]
  • Barcoding Chrysomelidae: a Resource for Taxonomy and Biodiversity Conservation in the Mediterranean Region
    A peer-reviewed open-access journal ZooKeys 597:Barcoding 27–38 (2016) Chrysomelidae: a resource for taxonomy and biodiversity conservation... 27 doi: 10.3897/zookeys.597.7241 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Barcoding Chrysomelidae: a resource for taxonomy and biodiversity conservation in the Mediterranean Region Giulia Magoga1,*, Davide Sassi2, Mauro Daccordi3, Carlo Leonardi4, Mostafa Mirzaei5, Renato Regalin6, Giuseppe Lozzia7, Matteo Montagna7,* 1 Via Ronche di Sopra 21, 31046 Oderzo, Italy 2 Centro di Entomologia Alpina–Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy 3 Museo Civico di Storia Naturale di Verona, lungadige Porta Vittoria 9, 37129 Verona, Italy 4 Museo di Storia Naturale di Milano, Corso Venezia 55, 20121 Milano, Italy 5 Department of Plant Protection, College of Agriculture and Natural Resources–University of Tehran, Karaj, Iran 6 Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente–Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy 7 Dipartimento di Scienze Agrarie e Ambientali–Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy Corresponding authors: Matteo Montagna ([email protected]) Academic editor: J. Santiago-Blay | Received 20 November 2015 | Accepted 30 January 2016 | Published 9 June 2016 http://zoobank.org/4D7CCA18-26C4-47B0-9239-42C5F75E5F42 Citation: Magoga G, Sassi D, Daccordi M, Leonardi C, Mirzaei M, Regalin R, Lozzia G, Montagna M (2016) Barcoding Chrysomelidae: a resource for taxonomy and biodiversity conservation in the Mediterranean Region. In: Jolivet P, Santiago-Blay J, Schmitt M (Eds) Research on Chrysomelidae 6. ZooKeys 597: 27–38. doi: 10.3897/ zookeys.597.7241 Abstract The Mediterranean Region is one of the world’s biodiversity hot-spots, which is also characterized by high level of endemism.
    [Show full text]
  • Consequences of Omnivory and Alternative Food Resources on the Strength of Trophic Cascades
    ABSTRACT Title of Dissertation: CONSEQUENCES OF OMNIVORY AND ALTERNATIVE FOOD RESOURCES ON THE STRENGTH OF TROPHIC CASCADES Steven D. Frank, Doctor of Philosophy, 2007 Directed By: Associate Professor Paula M. Shrewsbury Department of Entomology & Professor Robert F. Denno Department of Entomology Omnivorous predators that feed on prey and plant resources are recognized as an important component of food webs but their impact on herbivore populations and trophic dynamics is unpredictable. Feeding on food items from multiple trophic levels increases the reticulate nature of food webs and the labile role of omnivores in promoting trophic cascades. Using carabid beetles in a corn agroecosystem, this research explored the interactive effects of predator guild (omnivore or carnivore) and the trophic origin of alternative food resources (seeds or fly pupae) on the control of herbivores (black cutworms) and plant survival. I demonstrated that the trophic guild and feeding performance of carabids can be predicted from their mandibular morphology. Carnivorous carabids, using mandibles with sharp points and a long shearing edge, kill and consume caterpillars more efficiently than omnivores that have mandibles with wide molar areas adapted for consuming prey and seeds. Omnivore preference for seeds and pupae further reduced their consumption of cutworms, which resulted in increased plant damage, ultimately dampening trophic cascades. In open field plots the abundance of omnivorous carabids and ants increased in response to seed but not pupae whereas neither subsidy affected the abundance of carnivorous predators. Pupae subsidies reduced predation of cutworms by carnivores and omnivores, consequently reducing seedling survival. However, in seed subsidized plots omnivorous predators switched from seeds to higher quality cutworm prey.
    [Show full text]
  • (Coleoptera: Curculionidae) Injury to Soybean: Physiological Response and Injury Guild-Level Economic Injury Levels
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2003 Imported Longhorned Weevil (Coleoptera: Curculionidae) Injury to Soybean: Physiological Response and Injury Guild-Level Economic Injury Levels Thomas E. Hunt University of Nebraska-Lincoln, [email protected] Leon G. Higley University of Nebraska-Lincoln, [email protected] Fikru J. Haile Dow AgroSciences Follow this and additional works at: https://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Hunt, Thomas E.; Higley, Leon G.; and Haile, Fikru J., "Imported Longhorned Weevil (Coleoptera: Curculionidae) Injury to Soybean: Physiological Response and Injury Guild-Level Economic Injury Levels" (2003). Faculty Publications: Department of Entomology. 294. https://digitalcommons.unl.edu/entomologyfacpub/294 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. FIELD AND FORAGE CROPS Imported Longhorned Weevil (Coleoptera: Curculionidae) Injury to Soybean: Physiological Response and Injury Guild-Level Economic Injury Levels 1 2 3 THOMAS E. HUNT, LEON G. HIGLEY, AND FIKRU J. HAILE Department of Entomology, Haskell Agricultural Laboratory, University of Nebraska Northeast Research and Extension Center, 57905 866 Road, Concord, NE 68728 J. Econ. Entomol. 96(4): 1168Ð1173 (2003) ABSTRACT The imported longhorned weevil, Calomycterus setarius Roelofs, is an occasional pest of soybean, Glycine max (L.), and can cause substantial defoliation of seedling soybean when the weevil is present in large numbers. Because weevil populations can reach high levels, the potential exists for signiÞcant seedling injury, so economic injury levels (EILs) are needed for imported longhorned weevil on seedling soybean.
    [Show full text]
  • Coleoptera, Curculionidae, Entiminae)
    Machado_Pruebas 27/12/10 12:51 Página 233 Graellsia, 66(2): 233-280 julio-diciembre 2010 ISSN: 0367-5041 doi:10.3989/graellsia.2010.v66.025 LA MORFOLOGÍA DE LAPAROCERUS UNDATUS WOLLASTON, 1864 Y CONSIDERACIONES SOBRE LA TRIBU LAPAROCERINI LACORDAIRE, 1863 (COLEOPTERA, CURCULIONIDAE, ENTIMINAE) A. Machado* RESUMEN A. Machado. 2010. La morfología de Laparocerus undatus Wollaston, 1864 y consideracio- nes sobre la tribu Laparocerini Lacordaire, 1863 (Coleoptera, Curculionidae, Entiminae). Graellsia, 66(2): 233-280. Se presenta un estudio morfológico de Laparocerus undatus Wollaston, 1864 que com- prende la anatomía externa e interna del adulto, incluido el canal alimentario, sistema ner- vioso central y sistema reproductor. También se describen las anatomías de la larva y de la pupa, hasta ahora desconocidas en el género. Los Laparocerus son curculiónidos entimi- nos que muestran algunos caracteres primitivos infrecuentes en el grupo. Se plantea si se justifica o no mantener la tribu Laparocerini, pendiente de revisión desde que fuera esta- blecida por Lacordaire en 1863. Se discuten las semejanzas halladas en los caracteres ima- ginales y preimaginales con otros géneros y tribus, y se buscan las relaciones genéticas más cercanas empleando secuencias parciales del gen 16SrRNA de una veintena de espe- cies, obtenidas de GenBank. Laparocerus presenta importantes caracteres singulares o combinación de ellos, y se separa claramente de los demás Entiminae estudiados, ocupan- do una posición posiblemente basal dentro del grupo. Se proponen algunos
    [Show full text]
  • Flea Beetles
    Problem: Flea Beetles Hosts: Watermelons, pumpkins, peas, beans, eggplants, sweet potatoes, beets, spinach, strawberries and potatoes. Description: "Flea beetle" is a generic name applied to many species of small jumping beetles commonly seen early in the gardening season. Some species are general feeders while others have a more restricted host range. All flea beetle life stages are completed underground. Only the adults are commonly seen by gardeners and vegetable producers. Flea beetles may be somewhat elongate to oval in shape, and vary in color, pattern, and size. For instance, potato flea beetles (Epitrix cucumeris) tend to be more oval, blackish, and about 1/16-inch long. Striped flea beetles (Phyllotreta striolata) are more elongate and dark with yellowish crooked stripes, and measure about 1/12-inch long. Spinach flea beetles (Disonycha xanthomelaena) are both oval and elongate. They have a black head, antennae and legs. The collar behind the head is yellow to yellowish-orange. Wing covers have blackish-blue luster. They approach 1/5 inch in body length. With most species of flea beetle, the adults overwinter underground or beneath plant debris. During April and May, they become active, mate, and deposit eggs. Egg laying varies depending upon species. Some deposit individual eggs while others deposit them in clusters. Egg sites may be in soil, on leaves, on leaf petioles, or within holes chewed into stems. Eggs typically hatch in 10 days. Larval and pupal development take place during the summer. "New" adults emerge and feed during late summer and fall before seeking overwintering sites. Larvae feeding on underground portions of plants may result in decreased plant vigor.
    [Show full text]
  • Quantitative Trait Loci Analysis for Resistance to Cephalosporium Stripe, a Vascular Wilt Disease of Wheat
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ICRISAT Open Access Repository Theor Appl Genet (2011) 122:1339–1349 DOI 10.1007/s00122-011-1535-6 ORIGINAL PAPER Quantitative trait loci analysis for resistance to Cephalosporium stripe, a vascular wilt disease of wheat Martin C. Quincke • C. James Peterson • Robert S. Zemetra • Jennifer L. Hansen • Jianli Chen • Oscar Riera-Lizarazu • Christopher C. Mundt Received: 20 August 2010 / Accepted: 6 January 2011 / Published online: 23 January 2011 Ó Springer-Verlag 2011 Abstract Cephalosporium stripe, caused by Cephalo- on each RIL in three field environments under artificially sporium gramineum, can cause severe loss of wheat inoculated conditions. A linkage map for this population (Triticum aestivum L.) yield and grain quality and can be was created based on 204 SSR and DArT markers. A total an important factor limiting adoption of conservation till- of 36 linkage groups were resolved, representing portions age practices. Selecting for resistance to Cephalosporium of all chromosomes except for chromosome 1D, which stripe is problematic; however, as optimum conditions for lacked a sufficient number of polymorphic markers. disease do not occur annually under natural conditions, Quantitative trait locus (QTL) analysis identified seven inoculum levels can be spatially heterogeneous, and little is regions associated with resistance to Cephalosporium known about the inheritance of resistance. A population of stripe, with approximately equal additive effects. Four 268 recombinant inbred lines (RILs) derived from a cross QTL derived from the more susceptible parent (Brundage) between two wheat cultivars was characterized using field and three came from the more resistant parent (Coda), but screening and molecular markers to investigate the inher- the cumulative, additive effect of QTL from Coda was itance of resistance to Cephalosporium stripe.
    [Show full text]
  • Deciphering the Presence and Activity of Fungal Communities in Marine Sediments Using a Model Estuarine System
    Vol. 70: 45–62, 2013 AQUATIC MICROBIAL ECOLOGY Published online August 6 doi: 10.3354/ame01638 Aquat Microb Ecol Deciphering the presence and activity of fungal communities in marine sediments using a model estuarine system Gaëtan Burgaud1,*, Sarah Woehlke2, Vanessa Rédou1, William Orsi3, David Beaudoin3, Georges Barbier1, Jennifer F. Biddle2, Virginia P. Edgcomb3 1Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (EA3882), IFR 148, Université Européenne de Bretagne, Université de Brest, ESIAB, Technopole Brest-Iroise, Parvis Blaise Pascal, Plouzané 29280, France 2College of Earth, Ocean and the Environment, University of Delaware, Lewes, Delaware 19958, USA 3Geology and Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA ABSTRACT: Fungi are known to play key roles in ecologically important biogeochemical cycles and food webs. Most knowledge of environmental groups of fungi comes from terrestrial environ- ments, and little is known about the potential for terrestrial fungi to colonize marine environ- ments. We investigated the Delaware River estuary and bay as a model estuarine system to study the fungal community changes occurring along a transect from terrestrially influenced waters and sediments to a higher salinity, truly marine system. DNA-based clone libraries and a culture col- lection built using subseafloor sediment samples revealed that Ascomycota dominated the detected diversity ahead of Basidiomycota and Chytridiomycota. A clear transition in fungal com- munities from terrestrially influenced and low salinity environments to marine environments was visualized. A complementary RNA-based analysis coupled with fluorescence in situ hybridization of sediments indicated that only few fungi were metabolically active in marine sediments. Culti- vation of pelagic and sedimentary fungi allowed clear identification and physiology testing of fun- gal communities of the Delaware Bay.
    [Show full text]
  • STORGARD Insect Identification Poster
    ® IPM PARTNER® INSECT IDENTIFICATION GUIDE ® Name Photo Size Color Typical Favorite Attracted Geographic Penetrate Product Recommendation (mm) Life Cycle Food to Light Distribution Packages MOTHS Almond Moth 14-20 Gray 25-30 Dried fruit Yes General Yes, Cadra cautella days and grain larvae only STORGARD® II STORGARD® III CIDETRAK® IMM Also available in QUICK-CHANGE™ Also available in QUICK-CHANGE™ (Mating Disruptant) Angoumois 28-35 Yes, Grain Moth 13-17 Buff days Whole grain Yes General larvae only Sitotroga cerealella STORGARD® II STORGARD® III Casemaking 30-60 Wool, natural Yes, Clothes Moth 11 Brownish days fibers and hair Yes General larvae only Tinea pellionella STORGARD® II STORGARD® III European Grain Moth 13-17 White & 90-300 Grain Yes Northern Yes, Nemapogon granellus brown days larvae only STORGARD® II STORGARD® III Copper Indianmeal Moth Broken or 8-10 red & silver 28-35 processed Yes General Yes, Plodia interpunctella days larvae only gray grain STORGARD® II STORGARD® III CIDETRAK® IMM Also available in QUICK-CHANGE™ Also available in QUICK-CHANGE™ (Mating Disruptant) Mediterranean Gray & Flour and Flour Moth 10-15 30-180 processed Yes General Yes, black days larvae only Ephestia kuehniella cereal grain STORGARD® II STORGARD® III CIDETRAK® IMM Also available in QUICK-CHANGE™ Also available in QUICK-CHANGE™ (Mating Disruptant) Raisin Moth Drying and 12-20 Gray 32 days Yes General Yes, dried fruit larvae only Cadra figulilella STORGARD® II STORGARD® III CIDETRAK® IMM Also available in QUICK-CHANGE™ Also available in QUICK-CHANGE™
    [Show full text]