Dow Agrosciences Petitions (09-233- 01P, 09-349-01P, and 11-234-01P) for Determinations of Nonregulated Status for 2,4-D-Resistant Corn and Soybean Varieties

Total Page:16

File Type:pdf, Size:1020Kb

Dow Agrosciences Petitions (09-233- 01P, 09-349-01P, and 11-234-01P) for Determinations of Nonregulated Status for 2,4-D-Resistant Corn and Soybean Varieties Dow AgroSciences Petitions (09-233- 01p, 09-349-01p, and 11-234-01p) for Determinations of Nonregulated Status for 2,4-D-Resistant Corn and Soybean Varieties Draft Environmental Impact Statement—2013 Agency Contact: Sid Abel Biotechnology Regulatory Services 4700 River Road USDA, APHIS Riverdale, MD 20737 Fax: (301) 734-6352 The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’S TARGET Center at (202) 720–2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326–W, Whitten Building, 1400 Independence Avenue, SW, Washington, DC 20250–9410 or call (202) 720–5964 (voice and TDD). USDA is an equal opportunity provider and employer. Mention of companies or commercial products in this report does not imply recommendation or endorsement by the U.S. Department of Agriculture over others not mentioned. USDA neither guarantees nor warrants the standard of any product mentioned. Product names are mentioned solely to report factually on available data and to provide specific information. This publication reports research involving pesticides. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish and other wildlife—if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended label practices Executive Summary The U.S. Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS) received three requests (petitions) from Dow AgroSciences (DAS) seeking determinations of nonregulated status for genetically engineered (GE) plant varieties referred to as: DAS-40278-9 corn, DAS-68416-4 soybean, and DAS-44406-6 soybean (also known as Enlist™ corn and soybean). Currently these GE plant varieties are regulated by APHIS, and DAS needs authorization from APHIS to grow these varieties without any APHIS regulatory oversight. Since these three GE plant varieties are currently under APHIS’ regulatory oversight, APHIS requires that DAS complies with a full range of safeguarding measures to ensure that these regulated GE plant varieties do not transfer or spread from their outdoor plantings until these varieties are removed from regulation. APHIS authorization is also required to move these regulated varieties interstate. Once a developer of a GE plant has obtained enough information to conclude that their regulated GE plant is unlikely to cause injury, damage, or disease to plants or plant products (that is, pose a plant pest risk), they may petition APHIS to no longer regulate their GE plant. Usually the petition is received when the developer wishes to commercialize a specific GE plant variety. This petition is referred to as seeking “nonregulated status” or as requesting a “deregulation.” If the petition for nonregulated status is approved by APHIS, then APHIS’ permits would no longer be required to grow or ship the genetically engineered plant throughout the US and its territories. This scenario would be the case, as applicable to the three GE plant varieties, if APHIS determines that nonregulated status is appropriate for one or more of the three DAS GE varieties. Regulatory Authority APHIS regulates certain genetically engineered organisms by authority provided in the Plant Protection Act (PPA) of 2000 as amended (7 U.S.C. §§ 7701–7772), and by APHIS’ regulations codified in Title 7, part 340 of the U.S. Code of Federal Regulations (7 CFR part 340). APHIS’ part 340 regulations govern a GE organism in the following circumstances: if it is a plant pest (such as certain microorganisms or insects that can cause injury or damage to plants); or, if it is created using an organism that is itself a plant pest; or, if APHIS does not know or cannot determine if the GE organism is or may be a plant pest. Any party can petition APHIS for “nonregulated status” of a GE organism (that is, to discontinue regulating a GE organism that falls under its regulations) through the procedures described in 7 C.F.R § 340.6. APHIS regulates such a GE organism until the agency evaluates whether the GE organism meets the PPA definition of a plant pest and concludes on the basis of scientific evidence that the GE organism is unlikely to pose a plant pest risk; that is to say that the potential for the GE organism to cause plant disease or damage is unlikely. The petitioner must provide data, usually and in this case as well, gathered through confined field tests regulated by APHIS, to help inform the agency’s decision. APHIS analyzes the data from the petitioner, researches current scientific findings, and prepares a Plant Pest Risk Assessment (PPRA) that documents i whether or not the GE organism is likely to cause disease or damage. If APHIS concludes that the GE organism does not pose any plant pest risk, APHIS must then issue a regulatory decision of non-regulated status since the agency does not have regulatory authority to regulate organisms that are not plant pests. When a decision of nonregulated status has been issued, the GE organism may be introduced into the environment without APHIS’ regulatory oversight. In the case of the GE corn and soybean that are the subject of this draft EIS, if nonregulated status is determined to be appropriate for them, DAS will be able to market the GE seeds to farmers for planting, and farmers will be able to grow, harvest, and move their crop into commerce for food and feed without any further authorization from APHIS. Two other agencies, the Federal Drug Administration (FDA) and the Environmental Protection Agency (EPA), provide oversight of genetically engineered plants. The relative roles of the USDA (through APHIS), FDA, and EPA are described by the “Coordinated Framework”, a 1986 policy statement from the Office of Science and Technology Policy that describes the comprehensive policy for ensuring the safety of biotechnology research and products (US-OSTP, 1986). The FDA’s regulation of genetically modified plants is based upon its authority to regulate food safety under the Federal Food, Drug, and Cosmetic Act (FFDCA) 21 U.S.C. §§ 301 – 399. The FDA has the authority to remove adulterated food from the national food supply, which could include removing food derived from genetically modified plants. The EPA governs the use, sale, and labeling of herbicides used on all plants pursuant to its authority under the Federal Insecticide, Fungicide, and Rodenticide Act (“FIFRA”) (7 U.S.C. §§ 136–136y). FIFRA governs the use, sale, and labeling of herbicides and EPA’s actions under FIFRA directly effects the production methods used on herbicide resistant GE plants. An herbicide must first be “registered” by the EPA before it can be distributed or sold in the United States (7 U.S.C. §§ 136a(a),136j(a)(2)(F)). The EPA registration process starts with the herbicide manufacturer providing the EPA with information about the herbicide (7 U.S.C. § 136a(c)(1)(C), (F)). The agency then evaluates the effectiveness of the herbicide and any adverse effects it may have on humans and the environment. On the basis of this evaluation, the EPA then determines if it will allow the herbicide’s use on a plant, and, if so, in what quantity. The EPA sets the conditions for the herbicide’s use and places them in labeling instructions that a user must follow (See 7 U.S.C. 136j(a)(2)(G)). The EPA reevaluates the herbicide every fifteen years, as part of a “re-registration process” in which the agency determines if it should continue allowing the herbicide’s use (7 U.S.C.§ 136a(g)(1)(A)(iv)). The Enlist™ corn and soybean that are the subject of this EIS have been engineered to be resistant to the herbicide 2, 4-D. The EPA re- registered 2,4-D in 2005 (US-EPA, 2005b). EPA is currently reviewing the use of 2,4-D on Enlist™ corn and soybean based on the standard that the herbicide would not cause any unreasonable environmental risks so long as it was applied in accordance with its labeling instructions. EPA’s FIFRA regulation deals with pesticides. EPA does not regulate Enlist™ corn and soybean plants, because the plant itself does not produce or secrete a pesticide. ii Purpose of Enlist™ Corn and Soybean DAS has developed Enlist™ GE plant varieties as alternatives to currently available GE herbicide resistant (HR) corn and soybean varieties (see the petitions which are available on APHIS’ website (http://www.aphis.usda.gov/biotechnology/petitions_table_pending.shtml). Many herbicide resistant corn and soybean varieties have been engineered over the past 15 to 20 years. These include varieties with resistance to the herbicide glyphosate (the active ingredient in Roundup®); varieties resistant to the herbicide glufosinate, (the active ingredient in the herbicide Liberty®); a class of herbicides known as sulfonylureas, (active ingredients in herbicides such as Glean®); and isoxaflutole, (the active ingredient in herbicides such as Balance® and Prequel®). By far, RoundupReady® crops have been the most widely adopted by growers. RoundupReady® crops greatly simplified weed management for growers and reduced their weed management costs. These RoundupReady® crops were so successful that many growers grew only RoundupReady® crops on their farms. As another example of this success, most soybean growers could manage weeds by using glyphosate as the only herbicide, whereas three to four herbicides were previously needed.
Recommended publications
  • Plant Molecular Farming: a Viable Platform for Recombinant Biopharmaceutical Production
    plants Review Plant Molecular Farming: A Viable Platform for Recombinant Biopharmaceutical Production Balamurugan Shanmugaraj 1,2, Christine Joy I. Bulaon 2 and Waranyoo Phoolcharoen 1,2,* 1 Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand; [email protected] 2 Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand; [email protected] * Correspondence: [email protected]; Tel.: +66-2-218-8359; Fax: +66-2-218-8357 Received: 1 May 2020; Accepted: 30 June 2020; Published: 4 July 2020 Abstract: The demand for recombinant proteins in terms of quality, quantity, and diversity is increasing steadily, which is attracting global attention for the development of new recombinant protein production technologies and the engineering of conventional established expression systems based on bacteria or mammalian cell cultures. Since the advancements of plant genetic engineering in the 1980s, plants have been used for the production of economically valuable, biologically active non-native proteins or biopharmaceuticals, the concept termed as plant molecular farming (PMF). PMF is considered as a cost-effective technology that has grown and advanced tremendously over the past two decades. The development and improvement of the transient expression system has significantly reduced the protein production timeline and greatly improved the protein yield in plants. The major factors that drive the plant-based platform towards potential competitors for the conventional expression system are cost-effectiveness, scalability, flexibility, versatility, and robustness of the system. Many biopharmaceuticals including recombinant vaccine antigens, monoclonal antibodies, and other commercially viable proteins are produced in plants, some of which are in the pre-clinical and clinical pipeline.
    [Show full text]
  • US EPA, Pesticide Product Label, WIDESTRIKE 3 INSECT
    UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 OFFICE OF CHEMICAL SAFETY AND POLLUTION PREVENTION October 18, 2016 Stephanie L. Burton US Regulatory Manager Dow AgroSciences LLC 9330 Zionsville Road Indianapolis, IN 46268-1054 Subject: PRIA (Pesticide Registration Improvement Act) Amendment – to update the terms of registration related to gene flow and revise the product label. Product Name: WideStrike® 3 Insect Resistant Cotton EPA Registration Number: 68467-19 Application Date: June 23, 2016 OPP Decision Number: 518794 Dear Ms. Burton: The amendment referred to above, submitted in connection with registration under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), as amended, are acceptable provided you comply with the revised terms of registration as set forth below: 1. Submit/cite all data required for registration of your product under FIFRA § 3(c)(5) when the Agency requires all registrants of similar products to submit such data. 2. Gene Flow The following information regarding commercial production must be included in the grower guide for WideStrike® 3 Insect Resistant Cotton: a) No planting of WideStrike® 3 Insect Resistant Cotton is permitted south of Route 60 (near Tampa) in Florida. b) Commercial culture of WideStrike® 3 Insect Resistant Cotton is prohibited in Hawaii, Puerto Rico, and the US Virgin Islands. The following information regarding test plots and seed production must appear in contracts or on bags of WideStrike® 3 Insect Resistant Cotton intended for the following purposes: Page 2 of 10 EPA Reg. No. 68467-19 OPP Decision No. 518794 a) Test plots or breeding nurseries, regardless of the plot size, established in Hawaii must not be planted within 3 miles of Gossypium tomentosum.
    [Show full text]
  • Monsanto Company in Microsoft Word Format Together with a Copy of the Transmittal Letter That Accompanies the Filing of Two Paper Copies of the Submission
    From: Letzler, Kenneth [mailto:[email protected]] Sent: Thursday, December 31, 2009 1:03 PM To: ATR-Agricultural Workshops Subject: Comment Attached please find a comment submitted on behalf of Monsanto Company in Microsoft Word format together with a copy of the transmittal letter that accompanies the filing of two paper copies of the submission. _____________________________ U.S. Treasury Circular 230 Notice Any U.S. federal tax advice included in this communication (including any attachments) was not intended or written to be used, and cannot be used, for the purpose of (i) avoiding U.S. federal tax-related penalties or (ii) promoting, marketing or recommending to another party any tax-related matter addressed herein. _____________________________ This communication may contain information that is legally privileged, confidential or exempt from disclosure. If you are not the intended recipient, please note that any dissemination, distribution, or copying of this communication is strictly prohibited. Anyone who receives this message in error should notify the sender immediately by telephone or by return e-mail and delete it from his or her computer. ---------------------------------------------------------------------- For more information about Arnold & Porter LLP, click here: http://www.arnoldporter.com Competition and Innovation in American Agriculture A Response to the American Antitrust Institute’s “Transgenic Seed Platforms: Competition Between a Rock and a Hard Place?” Submitted on Behalf of Monsanto Company In Response to the Request for Comments by the United States Department of Agriculture and United States Department of Justice, Antitrust Division, in Connection with Their Hearings on “Agriculture and Antitrust Enforcement Issues in Our 21st Century Economy” Vandy Howell, Ph.D.
    [Show full text]
  • Dow Agrosciences
    Dow AgroSciences LLC (Dow AgroSciences) markets crop protection Dow AgroSciences products and seeds for a broad spectrum of crops, including maize, soybean, cotton and forage. The company began in the 1950s as the agricultural unit of The Dow Chemical Company. As a joint venture Corporate Data of The Dow Chemical Company and Eli Lilly & Co., it was known as Headquarters: Indianapolis, Indiana, USA DowElanco from 1989 onwards. In 1997, The Dow Chemical Company Ownership type: Listed Group revenue (2014): USD 729,000,0000 acquired 100% ownership.* Global Index – Commitment Performance Transparency Innovation Field Crop Seed Companies 1.27 1.46 2.05 0.25 Dow AgroSciences ranks in the lower 5 range of the Global Index of Field Crop Seed Companies. It has clear rank out of 7 approaches to Public Policy & Stakeholder A Governance & 1.13 score 1.38 Engagement and existing breeding Strategy B Public Policy & 2.68 programs for resistance to pests and Stakeholder Engagement diseases, abiotic stress tolerance and C Genetic Resources & 1.09 Intellectual Property yield, although it is not clear to what extent these programs D Research & 1.31 specifically target the development of varieties suitable for Development E Marketing & 1.11 Index countries and smallholder farmers. Seed sales were Sales found only in Latin American Index countries. Given the F Capacity 2.08 indications of research and capacity-building activities rel- Building G Local Seed Sector 0.91 evant for improved access to seeds for smallholder farmers in Advancement other regions, the company is encouraged to develop its seed 0 1 2 3 4 5 business serving smallholder farmers on a more global scale.
    [Show full text]
  • Macrolepidoptera Inventory of the Chilcotin District
    Macrolepidoptera Inventory of the Chilcotin District Aud I. Fischer – Biologist Jon H. Shepard - Research Scientist and Crispin S. Guppy – Research Scientist January 31, 2000 2 Abstract This study was undertaken to learn more of the distribution, status and habitat requirements of B.C. macrolepidoptera (butterflies and the larger moths), the group of insects given the highest priority by the BC Environment Conservation Center. The study was conducted in the Chilcotin District near Williams Lake and Riske Creek in central B.C. The study area contains a wide variety of habitats, including rare habitat types that elsewhere occur only in the Lillooet-Lytton area of the Fraser Canyon and, in some cases, the Southern Interior. Specimens were collected with light traps and by aerial net. A total of 538 species of macrolepidoptera were identified during the two years of the project, which is 96% of the estimated total number of species in the study area. There were 29,689 specimens collected, and 9,988 records of the number of specimens of each species captured on each date at each sample site. A list of the species recorded from the Chilcotin is provided, with a summary of provincial and global distributions. The habitats, at site series level as TEM mapped, are provided for each sample. A subset of the data was provided to the Ministry of Forests (Research Section, Williams Lake) for use in a Flamulated Owl study. A voucher collection of 2,526 moth and butterfly specimens was deposited in the Royal BC Museum. There were 25 species that are rare in BC, with most known only from the Riske Creek area.
    [Show full text]
  • Consequences of Omnivory and Alternative Food Resources on the Strength of Trophic Cascades
    ABSTRACT Title of Dissertation: CONSEQUENCES OF OMNIVORY AND ALTERNATIVE FOOD RESOURCES ON THE STRENGTH OF TROPHIC CASCADES Steven D. Frank, Doctor of Philosophy, 2007 Directed By: Associate Professor Paula M. Shrewsbury Department of Entomology & Professor Robert F. Denno Department of Entomology Omnivorous predators that feed on prey and plant resources are recognized as an important component of food webs but their impact on herbivore populations and trophic dynamics is unpredictable. Feeding on food items from multiple trophic levels increases the reticulate nature of food webs and the labile role of omnivores in promoting trophic cascades. Using carabid beetles in a corn agroecosystem, this research explored the interactive effects of predator guild (omnivore or carnivore) and the trophic origin of alternative food resources (seeds or fly pupae) on the control of herbivores (black cutworms) and plant survival. I demonstrated that the trophic guild and feeding performance of carabids can be predicted from their mandibular morphology. Carnivorous carabids, using mandibles with sharp points and a long shearing edge, kill and consume caterpillars more efficiently than omnivores that have mandibles with wide molar areas adapted for consuming prey and seeds. Omnivore preference for seeds and pupae further reduced their consumption of cutworms, which resulted in increased plant damage, ultimately dampening trophic cascades. In open field plots the abundance of omnivorous carabids and ants increased in response to seed but not pupae whereas neither subsidy affected the abundance of carnivorous predators. Pupae subsidies reduced predation of cutworms by carnivores and omnivores, consequently reducing seedling survival. However, in seed subsidized plots omnivorous predators switched from seeds to higher quality cutworm prey.
    [Show full text]
  • Department of Entomology Newsletter for Alumni and Friends (2011) Iowa State University, Department of Entomology
    Department of Entomology Newsletter Entomology 1-2011 Department of Entomology Newsletter For Alumni and Friends (2011) Iowa State University, Department of Entomology Follow this and additional works at: http://lib.dr.iastate.edu/entnewsletter Part of the Entomology Commons Recommended Citation Iowa State University, Department of Entomology, "Department of Entomology Newsletter For Alumni and Friends (2011)" (2011). Department of Entomology Newsletter. 5. http://lib.dr.iastate.edu/entnewsletter/5 This Book is brought to you for free and open access by the Entomology at Iowa State University Digital Repository. It has been accepted for inclusion in Department of Entomology Newsletter by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Sample January 2011 Newsletter For Alumni and Friends Les Lewis Retires At this writing my retirement is fast approach- ing. I always thought I would retire from my job as Research Leader and Scientist with the USDA- ARS. But things changed when Dean Wintersteen gave me the opportunity to be Chair of Entomol- ogy in the Fall of 2008 for a two-year appoint- ment. As I review my career, the common thread that runs throughout is the privilege of always being surrounded by persons that enjoyed their jobs and wanted to succeed. It has made my career enjoyable and rewarding. As I finish this appointment and decide what to do next, like many who have retired before me, I have a few things to finish from the laboratory. One scien- tific matter that I will pursue is the description of a microsporidium isolated from the western bean cutworm, Striacosta albicosta, an insect Donald Lewis presents Les Lewis with a retirement gift from the department at the holiday party in December.
    [Show full text]
  • MOTHS and BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed Distributional Information Has Been J.D
    MOTHS AND BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed distributional information has been J.D. Lafontaine published for only a few groups of Lepidoptera in western Biological Resources Program, Agriculture and Agri-food Canada. Scott (1986) gives good distribution maps for Canada butterflies in North America but these are generalized shade Central Experimental Farm Ottawa, Ontario K1A 0C6 maps that give no detail within the Montane Cordillera Ecozone. A series of memoirs on the Inchworms (family and Geometridae) of Canada by McGuffin (1967, 1972, 1977, 1981, 1987) and Bolte (1990) cover about 3/4 of the Canadian J.T. Troubridge fauna and include dot maps for most species. A long term project on the “Forest Lepidoptera of Canada” resulted in a Pacific Agri-Food Research Centre (Agassiz) four volume series on Lepidoptera that feed on trees in Agriculture and Agri-Food Canada Canada and these also give dot maps for most species Box 1000, Agassiz, B.C. V0M 1A0 (McGugan, 1958; Prentice, 1962, 1963, 1965). Dot maps for three groups of Cutworm Moths (Family Noctuidae): the subfamily Plusiinae (Lafontaine and Poole, 1991), the subfamilies Cuculliinae and Psaphidinae (Poole, 1995), and ABSTRACT the tribe Noctuini (subfamily Noctuinae) (Lafontaine, 1998) have also been published. Most fascicles in The Moths of The Montane Cordillera Ecozone of British Columbia America North of Mexico series (e.g. Ferguson, 1971-72, and southwestern Alberta supports a diverse fauna with over 1978; Franclemont, 1973; Hodges, 1971, 1986; Lafontaine, 2,000 species of butterflies and moths (Order Lepidoptera) 1987; Munroe, 1972-74, 1976; Neunzig, 1986, 1990, 1997) recorded to date.
    [Show full text]
  • Refuge Advanced®
    Agronomy Profi le Refuge Advanced® Overview With so many trait options, following refuge management guidelines has become more complicated. SmartStax® Refuge Advanced® makes refuge management easier by ensuring refuge compliance in the Corn Belt1 with a blend of 95% SmartStax seeds and 5% non-insect-traited refuge seeds in one bag. What you should know • Refuge Advanced is a convenient single-bag solution with no separate refuge required in the Corn Belt1. • Acres planted with SmartStax Refuge Advanced protect Bt technology by With Refuge Advanced, refuge hybrids are distributed allowing Bt-susceptible insects to feed and breed with potentially resistant throughout the field along with SmartStax hybrids, ensuring refuge compliance in the Corn Belt.1 insects of the same type, thus helping to prevent resistance. • Refuge Advanced reduces the number of steps growers need to take to maximize whole-farm yield potential, makes planning easier, and simplifies record-keeping for farm management and compliance reporting. 30-Second Action steps SEC Summary 1. Select hybrids: Select the best genetics that meet the agronomic needs of • SmartStax Refuge Advanced is a your fields, combined with the best trait package to maximize yield potential single-bag solution that simplifies and protect against yield-robbing insects. With Refuge Advanced, there is no refuge management in the Corn Belt.1 need to purchase additional refuge hybrids. • SmartStax Refuge Advanced combines 2. Consider agronomic factors: A proprietary blending process ensures even Bt-traited insect control with refuge distribution of refuge seed and SmartStax seed in the field. The refuge seed, to protect Bt traits and reduce component is subject to the same high-quality standards as SmartStax development of resistance.
    [Show full text]
  • STORGARD Insect Identification Poster
    ® IPM PARTNER® INSECT IDENTIFICATION GUIDE ® Name Photo Size Color Typical Favorite Attracted Geographic Penetrate Product Recommendation (mm) Life Cycle Food to Light Distribution Packages MOTHS Almond Moth 14-20 Gray 25-30 Dried fruit Yes General Yes, Cadra cautella days and grain larvae only STORGARD® II STORGARD® III CIDETRAK® IMM Also available in QUICK-CHANGE™ Also available in QUICK-CHANGE™ (Mating Disruptant) Angoumois 28-35 Yes, Grain Moth 13-17 Buff days Whole grain Yes General larvae only Sitotroga cerealella STORGARD® II STORGARD® III Casemaking 30-60 Wool, natural Yes, Clothes Moth 11 Brownish days fibers and hair Yes General larvae only Tinea pellionella STORGARD® II STORGARD® III European Grain Moth 13-17 White & 90-300 Grain Yes Northern Yes, Nemapogon granellus brown days larvae only STORGARD® II STORGARD® III Copper Indianmeal Moth Broken or 8-10 red & silver 28-35 processed Yes General Yes, Plodia interpunctella days larvae only gray grain STORGARD® II STORGARD® III CIDETRAK® IMM Also available in QUICK-CHANGE™ Also available in QUICK-CHANGE™ (Mating Disruptant) Mediterranean Gray & Flour and Flour Moth 10-15 30-180 processed Yes General Yes, black days larvae only Ephestia kuehniella cereal grain STORGARD® II STORGARD® III CIDETRAK® IMM Also available in QUICK-CHANGE™ Also available in QUICK-CHANGE™ (Mating Disruptant) Raisin Moth Drying and 12-20 Gray 32 days Yes General Yes, dried fruit larvae only Cadra figulilella STORGARD® II STORGARD® III CIDETRAK® IMM Also available in QUICK-CHANGE™ Also available in QUICK-CHANGE™
    [Show full text]
  • Guide to Biotechnology 2008
    guide to biotechnology 2008 research & development health bioethics innovate industrial & environmental food & agriculture biodefense Biotechnology Industry Organization 1201 Maryland Avenue, SW imagine Suite 900 Washington, DC 20024 intellectual property 202.962.9200 (phone) 202.488.6301 (fax) bio.org inform bio.org The Guide to Biotechnology is compiled by the Biotechnology Industry Organization (BIO) Editors Roxanna Guilford-Blake Debbie Strickland Contributors BIO Staff table of Contents Biotechnology: A Collection of Technologies 1 Regenerative Medicine ................................................. 36 What Is Biotechnology? .................................................. 1 Vaccines ....................................................................... 37 Cells and Biological Molecules ........................................ 1 Plant-Made Pharmaceuticals ........................................ 37 Therapeutic Development Overview .............................. 38 Biotechnology Industry Facts 2 Market Capitalization, 1994–2006 .................................. 3 Agricultural Production Applications 41 U.S. Biotech Industry Statistics: 1995–2006 ................... 3 Crop Biotechnology ...................................................... 41 U.S. Public Companies by Region, 2006 ........................ 4 Forest Biotechnology .................................................... 44 Total Financing, 1998–2007 (in billions of U.S. dollars) .... 4 Animal Biotechnology ................................................... 45 Biotech
    [Show full text]
  • Coleoptera: Carabidae)
    Zootaxa 4647 (1): 134–153 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4647.1.12 http://zoobank.org/urn:lsid:zoobank.org:pub:41BAFD61-40D1-446C-BE22-CA8C7FE54FC3 Two new species of Australian Eutarsopolipus (Acariformes: Podapolipidae) from Nurus medius (Coleoptera: Carabidae) OWEN D. SEEMAN Queensland Museum, PO Box 3300, South Brisbane, Qld, 4101, Australia. Abstract Eutarsopolipus burwelli sp. nov. and E. echinatus sp. nov. (Acari: Podapolipidae) are described from Nurus medius Darlington, 1961 (Coleoptera: Carabidae), a large burrowing carabid beetle found in the rainforests of coastal central Queensland, Australia. Eutarsopolipus burwelli belongs to the ochoai species group, which is herein refined, and E. echinatus is placed tentatively in the pterostichi species group. A revised key to the species groups of Eutarsopolipus is provided. The synhospitalic species of Eutarsopolipus are reviewed and synhospitality within the genus is discussed. Key words: Heterostigmatina, key, insect parasites, species groups, synhospitality, taxonomy Introduction Eutarsopolipus Berlese, 1913 (Acariformes: Podapolipidae) is the largest genus of Podapolipidae with 71 described species (Katlav & Hajiqanbar 2018), all of which are subelytral parasites of carabid beetles. Regenfuss (1968) sepa- rated the genus into several species groups, subsequently augmented by other authors, with up to 14 species groups now recognised (Husband & Husband 2009). This informal classification aids identification and provides a useful means of discussing purported relatedness between species, but a phylogenetic test of these species groups has not yet been accomplished. The genus is widespread, being found on every continent where carabids exist.
    [Show full text]