Deciphering the Presence and Activity of Fungal Communities in Marine Sediments Using a Model Estuarine System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Infectivity of Verticillium Dahliae Isolates on Weedy Hosts
INFECTIVITY OF VERTICILLIUM DAHLIAE ISOLATES ON WEEDY HOSTS, LITCHI TOMATO, AND TEFF, AND THE EFFECT OF ALFALFA RESIDUE INCORPORATION ON THE NUMBER OF VERTICILLIUM DAHLIAE MICROSCLEROTIA, AND SOIL BACTERIAL METAGENOMICS By ZACHARY ANDREW FREDERICK A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY Department of Plant Pathology MAY 2017 © Copyright by ZACHARY ANDREW FREDERICK, 2017 All Rights Reserved © Copyright by ZACHARY ANDREW FREDERICK, 2017 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of ZACHARY ANDREW FREDERICK find it satisfactory and recommend that it be accepted. ___________________________________ Dennis A. Johnson, Ph.D, Chair. ___________________________________ Mark J. Pavek, Ph.D. ___________________________________ Debra A. Inglis, Ph.D. ___________________________________ Weidong Chen, Ph.D. ii ACKNOWLEDGMENTS I thank Dr. Dennis A. Johnson for the opportunity to pursue the study of plant pathology, cooperative extension, and potato disease at Washington State University through his program. I also thank Thomas F. Cummings for instruction and support of establishing trials, as well as guidance on statistical analyses. I wish to thank my committee members, Drs. Mark J. Pavek, Debra A. Inglis, and Weidong Chen for their critiques and guidance. I am grateful for my present and former members of my laboratory workgroup, including David Wheeler and Dr. Lydia Tymon for direction and toleration of my contributions to entropy, as well as Dr. Jeremiah Dung for his isolates and copious notes left behind. Would you kindly join me in extending special thanks to Dr. Kerik Cox, who continues to serve as an additional adviser. -
Quantitative Trait Loci Analysis for Resistance to Cephalosporium Stripe, a Vascular Wilt Disease of Wheat
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ICRISAT Open Access Repository Theor Appl Genet (2011) 122:1339–1349 DOI 10.1007/s00122-011-1535-6 ORIGINAL PAPER Quantitative trait loci analysis for resistance to Cephalosporium stripe, a vascular wilt disease of wheat Martin C. Quincke • C. James Peterson • Robert S. Zemetra • Jennifer L. Hansen • Jianli Chen • Oscar Riera-Lizarazu • Christopher C. Mundt Received: 20 August 2010 / Accepted: 6 January 2011 / Published online: 23 January 2011 Ó Springer-Verlag 2011 Abstract Cephalosporium stripe, caused by Cephalo- on each RIL in three field environments under artificially sporium gramineum, can cause severe loss of wheat inoculated conditions. A linkage map for this population (Triticum aestivum L.) yield and grain quality and can be was created based on 204 SSR and DArT markers. A total an important factor limiting adoption of conservation till- of 36 linkage groups were resolved, representing portions age practices. Selecting for resistance to Cephalosporium of all chromosomes except for chromosome 1D, which stripe is problematic; however, as optimum conditions for lacked a sufficient number of polymorphic markers. disease do not occur annually under natural conditions, Quantitative trait locus (QTL) analysis identified seven inoculum levels can be spatially heterogeneous, and little is regions associated with resistance to Cephalosporium known about the inheritance of resistance. A population of stripe, with approximately equal additive effects. Four 268 recombinant inbred lines (RILs) derived from a cross QTL derived from the more susceptible parent (Brundage) between two wheat cultivars was characterized using field and three came from the more resistant parent (Coda), but screening and molecular markers to investigate the inher- the cumulative, additive effect of QTL from Coda was itance of resistance to Cephalosporium stripe. -
Anatolian Journal Of
Anatolian Journal of e-ISSN 2602-2818 5(1) (2021) - Anatolian Journal of Botany Anatolian Journal of Botany e-ISSN 2602-2818 Volume 5, Issue 1, Year 2021 Published Biannually Owner Prof. Dr. Abdullah KAYA Corresponding Address Gazi University, Science Faculty, Department of Biology, 06500, Ankara – Turkey Phone: (+90 312) 2021235 E-mail: [email protected] Web: http://dergipark.gov.tr/ajb Editor in Chief Prof. Dr. Abdullah KAYA Editorial Board Dr. Alfonso SUSANNA– Botanical Institute of Barcelona, Barcelona, Spain Prof. Dr. Ali ASLAN – Yüzüncü Yıl University, Van, Turkey Dr. Boris ASSYOV – Istitute of Biodiversity and Ecosystem Research, Sofia, Bulgaria Dr. Burak SÜRMEN – Karamanoğlu Mehmetbey University, Karaman, Turkey Prof. Cvetomir M. DENCHEV – Istititute of Biodiv. & Ecosystem Res., Sofia, Bulgaria Assoc. Prof. Dr. Gökhan SADİ – Karamanoğlu Mehmetbey Univ., Karaman, Turkey Prof. Dr. Güray UYAR – Hacı Bayram Veli University, Ankara, Turkey Prof. Dr. Hamdi Güray KUTBAY – Ondokuz Mayıs University, Samsun, Turkey Prof. Dr. İbrahim TÜRKEKUL – Gaziosmanpaşa University, Tokat, Turkey Prof. Dr. Kuddusi ERTUĞRUL – Selçuk University, Konya, Turkey Prof. Dr. Lucian HRITCU – Alexandru Ioan Cuza Univeversity, Iaşi, Romania Prof. Dr. Tuna UYSAL – Selçuk University, Konya, Turkey Prof. Dr. Yusuf UZUN – Yüzüncü Yıl University, Van, Turkey Advisory Board Prof. Dr. Ahmet AKSOY – Akdeniz University, Antalya, Turkey Prof. Dr. Asım KADIOĞLU – Karadeniz Technical University, Trabzon, Turkey Prof. Dr. Ersin YÜCEL – Eskişehir Technical University, Eskişehir, -
Prediction of Disease Damage, Determination of Pathogen
PREDICTION OF DISEASE DAMAGE, DETERMINATION OF PATHOGEN SURVIVAL REGIONS, AND CHARACTERIZATION OF INTERNATIONAL COLLECTIONS OF WHEAT STRIPE RUST By DIPAK SHARMA-POUDYAL A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY Department of Plant Pathology MAY 2012 To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of DIPAK SHARMA-POUDYAL find it satisfactory and recommend that it be accepted. Xianming Chen, Ph.D., Chair Dennis A. Johnson, Ph.D. Kulvinder Gill, Ph.D. Timothy D. Murray, Ph.D. ii ACKNOWLEDGEMENTS I would like to express my sincere gratitude to Dr. Xianming Chen for his invaluable guidance, moral support, and encouragement throughout the course of the study. I would like to thank Drs. Dennis A. Johnson, Kulvinder Gill, and Timothy D. Murray for serving in my committee and their valuable suggestions for my project. I also like to thank Dr. Mark Evans, Department of Statistics, for his statistical advice on model development and selection. I am grateful to Dr. Richard A. Rupp, Department of Crop and Soil Sciences, for his expert advice on using GIS techniques. I am thankful to many wheat scientists throughout the world for providing stripe rust samples. Thanks are also extended to Drs. Anmin Wan, Kent Evans, and Meinan Wang for their kind help in the stripe rust experiments. Special thanks to Dr. Deven See for allowing me to use the genotyping facilities in his lab. Suggestions on data analyses by Dr. Tobin Peever are highly appreciated. I also like to thank my fellow graduate students, especially Jeremiah Dung, Ebrahiem Babiker, Jinita Sthapit, Lydia Tymon, Renuka Attanayake, and Shyam Kandel for their help in many ways. -
Genotyping Cephalosporium Gramineum and Development of a Marker for Molecular Diagnosis
Title Genotyping Cephalosporium gramineum and development of a marker for molecular diagnosis Author(s) Baaj, D. Wafai; Kondo, N. Plant Pathology, 60(4), 730-738 Citation https://doi.org/10.1111/j.1365-3059.2011.02429.x Issue Date 2011-08 Doc URL http://hdl.handle.net/2115/49679 Rights The definitive version is available at wileyonlinelibrary.com Type article (author version) File Information PP60-4_730-738.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Genotypes of Cephalosporium gramineum and a DNA marker Genotyping Cephalosporium gramineum and development of a marker for molecular diagnosis Authors: D. Wafai Baaj and N. Kondo* *Corresponding author: Norio Kondo, Professor E-mail: [email protected] Fax: +81 11 706 4938 Address: Laboratory of Plant Pathology, Research Faculty of Agriculture, Hokkaido University. Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan. 1 Cephalosporium gramineum is the causal fungus of Cephalosporium stripe disease of wheat. The disease has been known since the 1930s, mostly from Japan, the United Kingdom and the northern winter wheat belt of North America. However, the population genetic structure of the causal fungus is not clear. We investigated the genetic variation of 40 isolates of C. gramineum, based on variations in internal transcribed spacers (ITS) and intergenic spacers (IGS) of rDNA. Of the isolates, 29 were from Japan and the rest from the United States and Europe. The ITS region was about 600 bp and almost identical among these isolates. In the IGS region (~5 kbp), restriction fragment length polymorphism analysis detected four genotypes among the 40 isolates. -
Investigation Into the Emerging Soil Borne Disease of Peanut – Neocosmospora Root Rot
Investigation into the emerging soil borne disease of peanut – Neocosmospora root rot Kylie M. Wenham Bachelor of Applied Science (Hons) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2017 School of Agriculture and Food Science i Abstract Neocosmospora root rot is an emerging soilborne disease of peanut (Arachis hypogaea L.) crops in Australia caused by Neocosmospora vasinfecta var. africana. The fungal pathogen was first identified in southern Queensland in 2005 following extensive damage to an irrigated peanut crop, and has since been found in all peanut growing areas in Queensland and New South Wales. Typical symptoms of the disease include extensive chlorosis and wilting of the plant starting from the main stem, and a blackened and decayed root system with reddish-orange perithecia of N. vasinfecta present on necrotic tissue of the main tap root and lateral root system as well as the pods. While the disease has been widely observed in agricultural production areas of Australia and is considered one of the most destructive pathogens of peanut, the biology, ecology and aetiology of N. vasinfecta is largely unknown therefore the biotic and abiotic factors that may influence the infectivity of the pathogen and severity of disease epidemics have not been identified. The purpose of this thesis is to investigate the biology, ecology and aetiology of N. vasinfecta var. africana and understand how these factors may contribute to the pathogenicity of the fungus. Due to limited knowledge of the biology of N. vasinfecta var. africana, a morphological and molecular approach was taken to determine the taxonomic identification and the morphological characteristics of the pathogen. -
Sensitivity of Wheat Genotypes to a Toxic Fraction Produced Bycephalosporium
AN ABSTRACT OF THE THESIS OF Mahfuzur Rahman for the degree of Master of Science in Botany and PlantPathology presented on September 19, 2000. Title: Sensitivity of Wheat Genotypes to a Toxic Fraction Produced byCephalosporium ramineum and Correlation with DiseaseSusceptibility Abstract approved: Redacted for Privacy Christopher C. Mundt Thorhas J. Wolpert Cephalosporium stripe, caused by the soil-borne ascomycete Cephalosporium gramineum, is becoming an increasingly important disease of winter wheat(Triticum aestivum) in several areas of the world, especially where stubble mulch is practiced to maintain soil moisture and prevent erosion. As cultural control of the disease is infeasible and no fungicides are registered, the development of resistant cultivarsoffers the best hope for disease control. Selection of resistant genotypes remainsproblematic due to the requirements of evaluating adult plants in variable field environments.The symptoms of cephalosporium stripe suggest the involvement ofpathogen-produced toxins, and the toxin called graminin A has previously been isolated from C. gramineum. The goals of this thesis were to determine if insensitivity of wheat genotypes to a toxic fraction produced by C. gramineum is associatedwith resistance to cephalosporium stripe, and to evaluate the potential use of this toxic fraction to screen wheat genotypes for disease resistance. A method was developed to mass-produce a toxic fraction of C. gramineum by modifying the method of K. Kobayashi (Kobayashi and Ui 1977). Large volumes (9 L) of broth medium were inoculated with C. gramineum and incubated for 35 days. The culture filtrate was then extracted four times with ethyl acetate, which eliminated need for the most time-consuming step of rotary evaporation. -
Characterising Plant Pathogen Communities and Their Environmental Drivers at a National Scale
Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Characterising plant pathogen communities and their environmental drivers at a national scale A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University by Andreas Makiola Lincoln University, New Zealand 2019 General abstract Plant pathogens play a critical role for global food security, conservation of natural ecosystems and future resilience and sustainability of ecosystem services in general. Thus, it is crucial to understand the large-scale processes that shape plant pathogen communities. The recent drop in DNA sequencing costs offers, for the first time, the opportunity to study multiple plant pathogens simultaneously in their naturally occurring environment effectively at large scale. In this thesis, my aims were (1) to employ next-generation sequencing (NGS) based metabarcoding for the detection and identification of plant pathogens at the ecosystem scale in New Zealand, (2) to characterise plant pathogen communities, and (3) to determine the environmental drivers of these communities. First, I investigated the suitability of NGS for the detection, identification and quantification of plant pathogens using rust fungi as a model system. -
Cephalosporium Maydis Is a Distinct Species in the Gaeumannomyces- Harpophora Species Complex
Mycologia, 96(6), 2004, pp. 1294±1305. q 2004 by The Mycological Society of America, Lawrence, KS 66044-8897 Cephalosporium maydis is a distinct species in the Gaeumannomyces- Harpophora species complex Amgad A. Saleh1 1962, 1963), is one of the most important fungal dis- John F. Leslie2 eases in Egypt. This disease also has been reported Department of Plant Pathology, Throckmorton Plant from India (Payak et al 1970, Ward and Bateman Sciences Center, Kansas State University, Manhattan, 1999) and Hungary (Pecsi and Nemeth 1998). C. Kansas 66506-5502 maydis reproduces asexually, and no perfect state has been identi®ed. Saleh et al (2003) and Zeller et al Abstract: Cephalosporium maydis is an important (2000) showed that the pathogen is clonal in Egypt plant pathogen whose phylogenetic position relative and that the Egyptian population contains four lin- to other fungi has not been established clearly. We eages, three of which are widely distributed through- compared strains of C. maydis, strains from several out the country. other plant-pathogenic Cephalosporium spp. and sev- C. maydis originally was described based on growth eral possible relatives within the Gaeumannomyces- characters and the morphology of hyphae, conidia Harpophora species complex, to which C. maydis has and conidiophores. Domsch and Gams (1972) sug- been suggested to belong based on previous prelim- gested that the conidial state of C. maydis was a Phi- inary DNA sequence analyses. DNA sequences of the alophora (the anamorph of Gaeumannomyces Arx & nuclear genes encoding the rDNA ITS region, b-tu- D. Olivier) and that spore production in C. maydis bulin, histone H3, and MAT-2 support the hypothesis was typical of that genus (Ward and Bateman 1999). -
Control of Fungal Diseases in Winter Wheat
Control of fungal diseases in winter wheat Evaluation of long-term field research in southern Sweden Lars Wiik Faculty of Landscape Planning, Horticulture and Agricultural Sciences Department of Plant Protection Biology Alnarp Doctoral Thesis Swedish University of Agricultural Sciences Alnarp 2009 Acta Universitatis agriculturae Sueciae 2009:97 Cover: Severe attacks of septoria tritici blotch on older leaves with pycnidia in the spring before stem elongation (photo: Peder Waern) ISSN 1652-6880 ISBN 978-91-576-7444-9 © 2009 Lars Wiik, Alnarp Print: SLU Service/Repro, Alnarp 2009 Control of fungal diseases in winter wheat – Evaluation of long- term field research in southern Sweden Abstract The relationships between plant diseases, winter wheat characteristics, air temperature and precipitation, site factors and agricultural practices were investigated. Regression analyses revealed that control of LBDs (Leaf Blotch Diseases, including septoria tritici blotch, stagonospora nodorum blotch and tan spot) explained 74% of the yield increase achieved by fungicide treatment at GS 45- 61, followed by powdery mildew (20%), brown rust (5%) and yellow rust (1%). Yield of both untreated and fungicide-treated plots increased from 6000 to 12000 kg ha-1 over the period 1983-2005. Single eyespot treatment improved mean yield by ~320 kg ha-1 yr-1 during the period 1977-2002, mainly due to occasional years with severe eyespot. A fungicide treatment at GS 45-61 increased mean yield by 10.3% or 810 kg ha-1 yr-1 (9.9% or 660 kg ha-1 yr-1 for 1983-1994 and 10.7% or 970 kg ha-1 yr-1 for 1995-2005) due to increased TGW and grain numbers, especially in high yielding stands. -
Project Report No. 542 Cephalosporium Leaf Stripe
February 2014 Project Report No. 542 Cephalosporium leaf stripe – an emerging threat to wheat crops in short rotations Neil D Havis, Kalina Gorniak Crop and Soil Systems Research Group, SRUC, West Mains Road, Edinburgh, EH9 3JG, Scotland This is the final report of a 42 month project (RD-2008-3570) which started in October 2008. The work was funded by 2 contracts totalling £155,665 from AHDB Cereals & Oilseeds. While the Agriculture and Horticulture Development Board seeks to ensure that the information contained within this document is accurate at the time of printing, no warranty is given in respect thereof and, to the maximum extent permitted by law, the Agriculture and Horticulture Development Board accepts no liability for loss, damage or injury howsoever caused (including that caused by negligence) or suffered directly or indirectly in relation to information and opinions contained in or omitted from this document. Reference herein to trade names and proprietary products without stating that they are protected does not imply that they may be regarded as unprotected and thus free for general use. No endorsement of named products is intended, nor is any criticism implied of other alternative, but unnamed, products. AHDB Cereals & Oilseeds is a division of the Agriculture and Horticulture Development Board (AHDB). 2 CONTENTS 1. ABSTRACT ......................................................................................................................... 5 2. INTRODUCTION ................................................................................................................ -
Graminicolous Fungi of Virginia: Fungi in Collections 2004-2007
Virginia Journal of Science Volume 60, Number 1 Spring 2009 Graminicolous Fungi of Virginia: Fungi in Collections 2004-2007 Curtis W. Roane, Professor Emeritus, Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0331 ABSTRACT Fungus-grass associations recognized in Virginia from 2004 to 2007 are recorded. Many associations are new to the United States (U), eastern United States (EU), and Virginia (V); other associations extend the known distribution of those previously discovered. These reports contribute further to knowledge of the mycoflora of Virginia. INTRODUCTION Fungi identified on members of the plant family Poaceae since 2003 (Roane 2004) are catalogued here. The objectives were to collect grasses growing in diverse environments and determine which fungi were present or emerged from them. There was no attempt to demonstrate parasitism but merely to establish their presence. Thus, the catalogue becomes a contribution to the natural history of Virginia. As before, any fungus or grass-fungus association not listed by Farr et al. (1989) nor in the web-site (Farr and Rossman date unknown) is considered a new United States record (NR, U). Those not listed east of the Mississippi River are designated NR, EU; those new for Virginia are designated NR, V. In previous publications, brief descriptions of collection sites were provided; in this publication, elevation and geographic coordinates of collection sites were also provided if feasible by using a hand-held Etrex® GPS receiver (Mfd. by Garmin Ltd., Olathe, Kan.). The instrument provided repeatable coordinate readings but elevations sometimes varied plus or minus 100'.