Control of Fungal Diseases in Winter Wheat
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Infectivity of Verticillium Dahliae Isolates on Weedy Hosts
INFECTIVITY OF VERTICILLIUM DAHLIAE ISOLATES ON WEEDY HOSTS, LITCHI TOMATO, AND TEFF, AND THE EFFECT OF ALFALFA RESIDUE INCORPORATION ON THE NUMBER OF VERTICILLIUM DAHLIAE MICROSCLEROTIA, AND SOIL BACTERIAL METAGENOMICS By ZACHARY ANDREW FREDERICK A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY Department of Plant Pathology MAY 2017 © Copyright by ZACHARY ANDREW FREDERICK, 2017 All Rights Reserved © Copyright by ZACHARY ANDREW FREDERICK, 2017 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of ZACHARY ANDREW FREDERICK find it satisfactory and recommend that it be accepted. ___________________________________ Dennis A. Johnson, Ph.D, Chair. ___________________________________ Mark J. Pavek, Ph.D. ___________________________________ Debra A. Inglis, Ph.D. ___________________________________ Weidong Chen, Ph.D. ii ACKNOWLEDGMENTS I thank Dr. Dennis A. Johnson for the opportunity to pursue the study of plant pathology, cooperative extension, and potato disease at Washington State University through his program. I also thank Thomas F. Cummings for instruction and support of establishing trials, as well as guidance on statistical analyses. I wish to thank my committee members, Drs. Mark J. Pavek, Debra A. Inglis, and Weidong Chen for their critiques and guidance. I am grateful for my present and former members of my laboratory workgroup, including David Wheeler and Dr. Lydia Tymon for direction and toleration of my contributions to entropy, as well as Dr. Jeremiah Dung for his isolates and copious notes left behind. Would you kindly join me in extending special thanks to Dr. Kerik Cox, who continues to serve as an additional adviser. -
<I>Tilletia Indica</I>
ISPM 27 27 ANNEX 4 ENG DP 4: Tilletia indica Mitra INTERNATIONAL STANDARD FOR PHYTOSANITARY MEASURES PHYTOSANITARY FOR STANDARD INTERNATIONAL DIAGNOSTIC PROTOCOLS Produced by the Secretariat of the International Plant Protection Convention (IPPC) This page is intentionally left blank This diagnostic protocol was adopted by the Standards Committee on behalf of the Commission on Phytosanitary Measures in January 2014. The annex is a prescriptive part of ISPM 27. ISPM 27 Diagnostic protocols for regulated pests DP 4: Tilletia indica Mitra Adopted 2014; published 2016 CONTENTS 1. Pest Information ............................................................................................................................... 2 2. Taxonomic Information .................................................................................................................... 2 3. Detection ........................................................................................................................................... 2 3.1 Examination of seeds/grain ............................................................................................... 3 3.2 Extraction of teliospores from seeds/grain, size-selective sieve wash test ....................... 3 4. Identification ..................................................................................................................................... 4 4.1 Morphology of teliospores ................................................................................................ 4 4.1.1 Morphological -
Tilletia Indica.Pdf
Podsumowanie Analizy Zagrożenia Agrofagiem (Ekspres PRA) dla Tilletia indica Obszar PRA: Rzeczpospolita Polska Opis obszaru zagrożenia: Obszar całego kraju Główne wnioski Prawdopodobieństwo wniknięcia T. indica na teren PRA jest ściśle związane z importem zakażonego ziarna. Istnieje ryzyko zadomowienia się patogenu na obszarze PRA i wywoływania szkód w produkcji rolnej. W przypadku sprowadzania z miejsc, gdzie występuje choroba konieczne jest prowadzenie działań fitosanitarnych jak kontrola materiału nasiennego lub ziarna przeznaczonego na inne cele. Wskazane jest także zaniechanie importu w przypadku epidemii na nowym terenie lub z rejonów o silnym natężeniu infekcji. Sprowadzanie ziarna produkowanego poza obszarem występowania T. indica nie wymaga podejmowania specjalnych zabiegów fitosanitarnych. Wszelkie sygnały o obecności agrofaga powinny zostać poddane wnikliwej analizie, a zakażone rośliny lub materiał zniszczone. Ze względu na duże zdolności teliospor do przetrwania w niekorzystnych warunkach zwalczanie chemiczne lub płodozmian mogą okazać się nieskuteczne. Ryzyko fitosanitarne dla zagrożonego obszaru (indywidualna ranga prawdopodobieństwa wejścia, Wysokie Średnie X Niskie zadomowienia, rozprzestrzenienia oraz wpływu w tekście dokumentu) Poziom niepewności oceny: (uzasadnienie rangi w punkcie 18. Indywidualne rangi niepewności dla prawdopodobieństwa wejścia, Wysoka Średnia Niska X zadomowienia, rozprzestrzenienia oraz wpływu w tekście) Inne rekomendacje: 1 Ekspresowa Analiza Zagrożenia Agrofagiem: Tilletia indica Przygotowana przez: dr Katarzyna Pieczul, prof. dr hab. Marek Korbas, mgr Jakub Danielewicz, dr Katarzyna Sadowska, mgr Michał Czyż, mgr Magdalena Gawlak, lic. Agata Olejniczak dr Tomasz Kałuski; Instytut Ochrony Roślin – Państwowy Instytut Badawczy, ul. Węgorka 20, 60-318 Poznań. Data: 10.08.2017 Etap 1 Wstęp Powód wykonania PRA: Tilletia indica jest patogenem porażającym pszenicę i pszenżyto oraz potencjalnie niektóre z gatunków traw dziko rosnących. Patogen stwarza realne zagrożenie dla upraw zbóż na obszarze PRA. -
Quantitative Trait Loci Analysis for Resistance to Cephalosporium Stripe, a Vascular Wilt Disease of Wheat
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ICRISAT Open Access Repository Theor Appl Genet (2011) 122:1339–1349 DOI 10.1007/s00122-011-1535-6 ORIGINAL PAPER Quantitative trait loci analysis for resistance to Cephalosporium stripe, a vascular wilt disease of wheat Martin C. Quincke • C. James Peterson • Robert S. Zemetra • Jennifer L. Hansen • Jianli Chen • Oscar Riera-Lizarazu • Christopher C. Mundt Received: 20 August 2010 / Accepted: 6 January 2011 / Published online: 23 January 2011 Ó Springer-Verlag 2011 Abstract Cephalosporium stripe, caused by Cephalo- on each RIL in three field environments under artificially sporium gramineum, can cause severe loss of wheat inoculated conditions. A linkage map for this population (Triticum aestivum L.) yield and grain quality and can be was created based on 204 SSR and DArT markers. A total an important factor limiting adoption of conservation till- of 36 linkage groups were resolved, representing portions age practices. Selecting for resistance to Cephalosporium of all chromosomes except for chromosome 1D, which stripe is problematic; however, as optimum conditions for lacked a sufficient number of polymorphic markers. disease do not occur annually under natural conditions, Quantitative trait locus (QTL) analysis identified seven inoculum levels can be spatially heterogeneous, and little is regions associated with resistance to Cephalosporium known about the inheritance of resistance. A population of stripe, with approximately equal additive effects. Four 268 recombinant inbred lines (RILs) derived from a cross QTL derived from the more susceptible parent (Brundage) between two wheat cultivars was characterized using field and three came from the more resistant parent (Coda), but screening and molecular markers to investigate the inher- the cumulative, additive effect of QTL from Coda was itance of resistance to Cephalosporium stripe. -
Deciphering the Presence and Activity of Fungal Communities in Marine Sediments Using a Model Estuarine System
Vol. 70: 45–62, 2013 AQUATIC MICROBIAL ECOLOGY Published online August 6 doi: 10.3354/ame01638 Aquat Microb Ecol Deciphering the presence and activity of fungal communities in marine sediments using a model estuarine system Gaëtan Burgaud1,*, Sarah Woehlke2, Vanessa Rédou1, William Orsi3, David Beaudoin3, Georges Barbier1, Jennifer F. Biddle2, Virginia P. Edgcomb3 1Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (EA3882), IFR 148, Université Européenne de Bretagne, Université de Brest, ESIAB, Technopole Brest-Iroise, Parvis Blaise Pascal, Plouzané 29280, France 2College of Earth, Ocean and the Environment, University of Delaware, Lewes, Delaware 19958, USA 3Geology and Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA ABSTRACT: Fungi are known to play key roles in ecologically important biogeochemical cycles and food webs. Most knowledge of environmental groups of fungi comes from terrestrial environ- ments, and little is known about the potential for terrestrial fungi to colonize marine environ- ments. We investigated the Delaware River estuary and bay as a model estuarine system to study the fungal community changes occurring along a transect from terrestrially influenced waters and sediments to a higher salinity, truly marine system. DNA-based clone libraries and a culture col- lection built using subseafloor sediment samples revealed that Ascomycota dominated the detected diversity ahead of Basidiomycota and Chytridiomycota. A clear transition in fungal com- munities from terrestrially influenced and low salinity environments to marine environments was visualized. A complementary RNA-based analysis coupled with fluorescence in situ hybridization of sediments indicated that only few fungi were metabolically active in marine sediments. Culti- vation of pelagic and sedimentary fungi allowed clear identification and physiology testing of fun- gal communities of the Delaware Bay. -
Fostering the Safe Distribution of Maize and Wheat Seed
Fostering the Safe Distribution of Maize and Wheat Seed General guidelines Third edition Monica Mezzalama Headquartered in Mexico, the International Maize and Wheat Improvement Center (known by its Spanish acronym, CIMMYT) is a not-for-profit agriculture research and training organization. The center works to reduce poverty and hunger by sustainably increasing the productivity of maize and wheat in the developing world. CIMMYT maintains the world’s largest maize and wheat seed bank and is best known for initiating the Green Revolution, which saved millions of lives across Asia and for which CIMMYT’s Dr. Norman Borlaug was awarded the Nobel Peace Prize. CIMMYT is a member of the CGIAR Consortium and receives support from national governments, foundations, development banks, and other public and private agencies. © International Maize and Wheat Improvement Center (CIMMYT) 2012. All rights reserved. The designations employed in the presentation of materials in this publication do not imply the expression of any opinion whatsoever on the part of CIMMYT or its contributory organizations concerning the legal status of any country, territory, city, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The opinions expressed are those of the author(s), and are not necessarily those of CIMMYT or our partners. CIMMYT encourages fair use of this material. Proper citation is requested. Correct citation: Mezzalama, M. 2012. Seed Health: Fostering the Safe Distribution of Maize and Wheat Seed: General guidelines. Third edition. Mexico, D.F.: CIMMYT. ISBN: 978-607-8263-14-1 AGROVOC Descriptors: Wheats; Maize; Seed certification; Seed treatment; Standards; Licenses; Import quotas; Health policies; Stored products pests; Laboratory experimentation; Tilletia indica; Urocystis; Ustilago segetum; Ustilago seae; Smuts; Mexico Additional Keywords: CIMMYT AGRIS Category Codes: D50 Legislation E71 International Trade Dewey decimal classification: 631.521 Printed in Mexico. -
Anatolian Journal Of
Anatolian Journal of e-ISSN 2602-2818 5(1) (2021) - Anatolian Journal of Botany Anatolian Journal of Botany e-ISSN 2602-2818 Volume 5, Issue 1, Year 2021 Published Biannually Owner Prof. Dr. Abdullah KAYA Corresponding Address Gazi University, Science Faculty, Department of Biology, 06500, Ankara – Turkey Phone: (+90 312) 2021235 E-mail: [email protected] Web: http://dergipark.gov.tr/ajb Editor in Chief Prof. Dr. Abdullah KAYA Editorial Board Dr. Alfonso SUSANNA– Botanical Institute of Barcelona, Barcelona, Spain Prof. Dr. Ali ASLAN – Yüzüncü Yıl University, Van, Turkey Dr. Boris ASSYOV – Istitute of Biodiversity and Ecosystem Research, Sofia, Bulgaria Dr. Burak SÜRMEN – Karamanoğlu Mehmetbey University, Karaman, Turkey Prof. Cvetomir M. DENCHEV – Istititute of Biodiv. & Ecosystem Res., Sofia, Bulgaria Assoc. Prof. Dr. Gökhan SADİ – Karamanoğlu Mehmetbey Univ., Karaman, Turkey Prof. Dr. Güray UYAR – Hacı Bayram Veli University, Ankara, Turkey Prof. Dr. Hamdi Güray KUTBAY – Ondokuz Mayıs University, Samsun, Turkey Prof. Dr. İbrahim TÜRKEKUL – Gaziosmanpaşa University, Tokat, Turkey Prof. Dr. Kuddusi ERTUĞRUL – Selçuk University, Konya, Turkey Prof. Dr. Lucian HRITCU – Alexandru Ioan Cuza Univeversity, Iaşi, Romania Prof. Dr. Tuna UYSAL – Selçuk University, Konya, Turkey Prof. Dr. Yusuf UZUN – Yüzüncü Yıl University, Van, Turkey Advisory Board Prof. Dr. Ahmet AKSOY – Akdeniz University, Antalya, Turkey Prof. Dr. Asım KADIOĞLU – Karadeniz Technical University, Trabzon, Turkey Prof. Dr. Ersin YÜCEL – Eskişehir Technical University, Eskişehir, -
Prediction of Disease Damage, Determination of Pathogen
PREDICTION OF DISEASE DAMAGE, DETERMINATION OF PATHOGEN SURVIVAL REGIONS, AND CHARACTERIZATION OF INTERNATIONAL COLLECTIONS OF WHEAT STRIPE RUST By DIPAK SHARMA-POUDYAL A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY Department of Plant Pathology MAY 2012 To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of DIPAK SHARMA-POUDYAL find it satisfactory and recommend that it be accepted. Xianming Chen, Ph.D., Chair Dennis A. Johnson, Ph.D. Kulvinder Gill, Ph.D. Timothy D. Murray, Ph.D. ii ACKNOWLEDGEMENTS I would like to express my sincere gratitude to Dr. Xianming Chen for his invaluable guidance, moral support, and encouragement throughout the course of the study. I would like to thank Drs. Dennis A. Johnson, Kulvinder Gill, and Timothy D. Murray for serving in my committee and their valuable suggestions for my project. I also like to thank Dr. Mark Evans, Department of Statistics, for his statistical advice on model development and selection. I am grateful to Dr. Richard A. Rupp, Department of Crop and Soil Sciences, for his expert advice on using GIS techniques. I am thankful to many wheat scientists throughout the world for providing stripe rust samples. Thanks are also extended to Drs. Anmin Wan, Kent Evans, and Meinan Wang for their kind help in the stripe rust experiments. Special thanks to Dr. Deven See for allowing me to use the genotyping facilities in his lab. Suggestions on data analyses by Dr. Tobin Peever are highly appreciated. I also like to thank my fellow graduate students, especially Jeremiah Dung, Ebrahiem Babiker, Jinita Sthapit, Lydia Tymon, Renuka Attanayake, and Shyam Kandel for their help in many ways. -
Genotyping Cephalosporium Gramineum and Development of a Marker for Molecular Diagnosis
Title Genotyping Cephalosporium gramineum and development of a marker for molecular diagnosis Author(s) Baaj, D. Wafai; Kondo, N. Plant Pathology, 60(4), 730-738 Citation https://doi.org/10.1111/j.1365-3059.2011.02429.x Issue Date 2011-08 Doc URL http://hdl.handle.net/2115/49679 Rights The definitive version is available at wileyonlinelibrary.com Type article (author version) File Information PP60-4_730-738.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Genotypes of Cephalosporium gramineum and a DNA marker Genotyping Cephalosporium gramineum and development of a marker for molecular diagnosis Authors: D. Wafai Baaj and N. Kondo* *Corresponding author: Norio Kondo, Professor E-mail: [email protected] Fax: +81 11 706 4938 Address: Laboratory of Plant Pathology, Research Faculty of Agriculture, Hokkaido University. Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan. 1 Cephalosporium gramineum is the causal fungus of Cephalosporium stripe disease of wheat. The disease has been known since the 1930s, mostly from Japan, the United Kingdom and the northern winter wheat belt of North America. However, the population genetic structure of the causal fungus is not clear. We investigated the genetic variation of 40 isolates of C. gramineum, based on variations in internal transcribed spacers (ITS) and intergenic spacers (IGS) of rDNA. Of the isolates, 29 were from Japan and the rest from the United States and Europe. The ITS region was about 600 bp and almost identical among these isolates. In the IGS region (~5 kbp), restriction fragment length polymorphism analysis detected four genotypes among the 40 isolates. -
Survey of Incidence of Bunts (Tilletia Caries and Tilletia Controversa) in the Czech Republic and Susceptibility of Winter Wheat Cultivars
Plant Protect. Sci. Vol. 42, No. 1: 21–25 Survey of Incidence of Bunts (Tilletia caries and Tilletia controversa) in the Czech Republic and Susceptibility of Winter Wheat Cultivars MARIE VÁŇOVÁ, PAVEL MATUŠINSKÝ and JAROSLAV BENADA Agricultural Research Institute Kroměříž, Ltd., Kroměříž, Czech Republic Abstract VÁŇOVÁ M., MATUŠINSKÝ P., BENADA J. (2006): Survey of incidence of bunts (Tilletia caries and Tilletia con- troversa) in the Czech Republic and susceptibility of winter wheat cultivars. Plant Protect. Sci., 42: 21–25. Bunts (caused by Tilletia caries and T. controversa) belong to very important diseases of winter wheat because contaminated commodities (seeds, foods and feeds) affect the marketability of the crop on both domestic and export markets. They can be relatively easily controlled by chemical seed treatments. Due to the availability of effective chemical control, the reaction of wheat cultivars to bunts has so far not been an important trait for plant breeders in some areas of the world. However, if synthetic chemicals are not allowed, like in organic farming, untreated seed may quickly lead to a build-up of bunt to levels that render the crop unmarketable. The use of wheat cultivars partially or fully resistant to bunts could greatly contribute to ease the bunt problem. The reac- tion of winter wheat cultivars was evaluated in field tests. Seeds of winter wheat were inoculated with teliospores of T. caries. The reaction to T. controversa was studied under heavy natural infestation with spores in the soil. With T. caries, the heaviest infection was found in cvs Drifter and Ebi, while cvs Nela, Brea and Samanta had the lowest. -
DP 4: Tilletia Indica Mitra INTERNATIONAL STANDARD for PHYTOSANITARY MEASURES PHYTOSANITARY for STANDARD INTERNATIONAL DIAGNOSTIC PROTOCOLS
ISPM 27 27 ANNEX 4 ENG DP 4: Tilletia indica Mitra INTERNATIONAL STANDARD FOR PHYTOSANITARY MEASURES PHYTOSANITARY FOR STANDARD INTERNATIONAL DIAGNOSTIC PROTOCOLS Produced by the Secretariat of the International Plant Protection Convention (IPPC) This page is intentionally left blank This diagnostic protocol was adopted by the Standards Committee on behalf of the Commission on Phytosanitary Measures in January 2014. The annex is a prescriptive part of ISPM 27. ISPM 27 Diagnostic protocols for regulated pests DP 4: Tilletia indica Mitra Adopted 2014; published 2016 CONTENTS 1. Pest Information ............................................................................................................................... 2 2. Taxonomic Information .................................................................................................................... 2 3. Detection ........................................................................................................................................... 2 3.1 Examination of seeds/grain ............................................................................................... 3 3.2 Extraction of teliospores from seeds/grain, size-selective sieve wash test ....................... 3 4. Identification ..................................................................................................................................... 4 4.1 Morphology of teliospores ................................................................................................ 4 4.1.1 Morphological -
PHYSIOLOGIC RACES of TILLETIA TRITICI and T. LEVIS' Since Faris
PHYSIOLOGIC RACES OF TILLETIA TRITICI AND T. LEVIS' By H. A. RoDENHiSER, pathologist^ and C. S. HOLTON, associate pathologist. Division of Cereal Crops and Diseases^ Bureau of Plant Industry, United States Department of Agriculture INTRODUCTION Since Faris (Sy obtained strong indications of physiologic specializa- tion in TiUetia tritici (Bjerk.) Wint. and T, levis Kühn, pathogenic dif- ferences between races of both species have been studied by a number of investigators in the United States and Canada (^, 2, 5, 6, 7, 8, 9,10, 12, 13, 1%, 15), In these experiments the methods used have been more or less adapted to local conditions, and this has resulted in a lack of uniformity in the use of differential hosts and in the system of num- bering distinct races. Consequently it is to be expected that a number of the physiologic races that have been identified by different investi- gators will be duplicates. The reports of these experiments do, how- ever, serve as definite evidence that physiologic races of these fungi have become established in the important wheat-growing areas of the United States. The significance of this fact with regard to the prob- lem of bunt control needs no extensive elaboration. Certain wheat varieties have been distributed in the past that had proved to be resistant to bunt prevalent in the vicinities where the varieties were developed. However, when these varieties were grown commercially thej^ were found to be susceptible. In most instances outbreaks of bunt in such varieties have been definitely associated with the appearance of previously undescribed races of the two species.