Fostering the Safe Distribution of Maize and Wheat Seed
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
<I>Tilletia Indica</I>
ISPM 27 27 ANNEX 4 ENG DP 4: Tilletia indica Mitra INTERNATIONAL STANDARD FOR PHYTOSANITARY MEASURES PHYTOSANITARY FOR STANDARD INTERNATIONAL DIAGNOSTIC PROTOCOLS Produced by the Secretariat of the International Plant Protection Convention (IPPC) This page is intentionally left blank This diagnostic protocol was adopted by the Standards Committee on behalf of the Commission on Phytosanitary Measures in January 2014. The annex is a prescriptive part of ISPM 27. ISPM 27 Diagnostic protocols for regulated pests DP 4: Tilletia indica Mitra Adopted 2014; published 2016 CONTENTS 1. Pest Information ............................................................................................................................... 2 2. Taxonomic Information .................................................................................................................... 2 3. Detection ........................................................................................................................................... 2 3.1 Examination of seeds/grain ............................................................................................... 3 3.2 Extraction of teliospores from seeds/grain, size-selective sieve wash test ....................... 3 4. Identification ..................................................................................................................................... 4 4.1 Morphology of teliospores ................................................................................................ 4 4.1.1 Morphological -
Pollination of Cultivated Plants in the Tropics 111 Rrun.-Co Lcfcnow!Cdgmencle
ISSN 1010-1365 0 AGRICULTURAL Pollination of SERVICES cultivated plants BUL IN in the tropics 118 Food and Agriculture Organization of the United Nations FAO 6-lina AGRICULTUTZ4U. ionof SERNES cultivated plans in tetropics Edited by David W. Roubik Smithsonian Tropical Research Institute Balboa, Panama Food and Agriculture Organization of the United Nations F'Ø Rome, 1995 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-11 ISBN 92-5-103659-4 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. FAO 1995 PlELi. uion are ted PlauAr David W. Roubilli (edita Footli-anal ISgt-iieulture Organization of the Untled Nations Contributors Marco Accorti Makhdzir Mardan Istituto Sperimentale per la Zoologia Agraria Universiti Pertanian Malaysia Cascine del Ricci° Malaysian Bee Research Development Team 50125 Firenze, Italy 43400 Serdang, Selangor, Malaysia Stephen L. Buchmann John K. S. Mbaya United States Department of Agriculture National Beekeeping Station Carl Hayden Bee Research Center P. -
The Evolution and Genomic Basis of Beetle Diversity
The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State -
Colletotrichum – Names in Current Use
Online advance Fungal Diversity Colletotrichum – names in current use Hyde, K.D.1,7*, Cai, L.2, Cannon, P.F.3, Crouch, J.A.4, Crous, P.W.5, Damm, U. 5, Goodwin, P.H.6, Chen, H.7, Johnston, P.R.8, Jones, E.B.G.9, Liu, Z.Y.10, McKenzie, E.H.C.8, Moriwaki, J.11, Noireung, P.1, Pennycook, S.R.8, Pfenning, L.H.12, Prihastuti, H.1, Sato, T.13, Shivas, R.G.14, Tan, Y.P.14, Taylor, P.W.J.15, Weir, B.S.8, Yang, Y.L.10,16 and Zhang, J.Z.17 1,School of Science, Mae Fah Luang University, Chaing Rai, Thailand 2Research & Development Centre, Novozymes, Beijing 100085, PR China 3CABI, Bakeham Lane, Egham, Surrey TW20 9TY, UK and Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK 4Cereal Disease Laboratory, U.S. Department of Agriculture, Agricultural Research Service, 1551 Lindig Street, St. Paul, MN 55108, USA 5CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands 6School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada 7International Fungal Research & Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Bailongsi, Kunming 650224, PR China 8Landcare Research, Private Bag 92170, Auckland 1142, New Zealand 9BIOTEC Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology, NSTDA, 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand 10Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550006 PR China 11Hokuriku Research Center, National Agricultural Research Center, -
TITULO: Análisis De Conos De Chamal (Dioon Edule Lindl) En Una
Mongabay.com Open Access Journal - Tropical Conservation Science Vol.6 (2):268-282, 2013 Research Article Strobilus and seed production of Dioon edule (Zamiaceae) in a population with low seedling density in San Luis Potosí, Mexico Raymundo Mora1, Laura Yáñez-Espinosa1,2, Joel Flores3, and Nadya Nava-Zárate4 1Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí. Av. Dr. Manuel Nava 8, Zona Universitaria Poniente, San Luis Potosí, S.L.P, México, C.P. 78290, e-mail: [email protected] 2Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí. Altair 200, Col. Del Llano, San Luis Potosí, S.L.P., México, C.P. 78377, e-mail: [email protected] 3División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, A.C. Camino a la Presa San José 2055, Col. Lomas 4 Sección, San Luis Potosí, S.L.P., México, C.P. 78216, e-mail: [email protected] 4Facultad de Estomatología, Universidad Autónoma de San Luis Potosí. Av. Dr. Manuel Nava 2, Zona Universitaria Poniente, San Luis Potosí, S.L.P., México, C.P. 78290. e-mail: [email protected] Corresponding author: Laura Yáñez-Espinosa, e-mail: [email protected] Abstract. We describe strobilus and seed development in a Dioon edule (chamal, palma, dameu’) population characterized by low seedling and high adult tree density, in order to improve conservation decisions for this endangered cycad species. Female strobili required 16-17 months and male 4-5 months to develop. During this period 80% female and 100% male strobili were not damaged by herbivores. The method of cone analysis used to evaluate seed production of pines was modified for D. -
Estudio De La Evolución De Un Fitopatógeno: Genómica Comparada Del Hongo Patógeno De Maíz Colletotrichum Graminicola
Universidad de salamanca FACULTAD DE BIOLOGÍA DEPARTAMENTO DE MICROBIOLOGÍA Y GENÉTICA ÁREA: GENÉTICA TESIS DOCTORAL Estudio de la evolución de un fitopatógeno: Genómica comparada del hongo patógeno de maíz Colletotrichum graminicola GABRIEL EDUARDO RECH SALAMANCA, 2013 UNIVERSIDAD DE SALAMANCA Facultad de Biología Departamento de Microbiología y Genética Área: Genética Centro Hispano-Luso de Investigaciones Agrarias Insight into the evolution of a plant pathogen: Comparative genomic analysis of the fungal maize pathogen Colletotrichum graminicola PhD Thesis Programa de Doctorado: Agrobiotecnología Órgano responsable del Programa de Doctorado: Departamento de Fisiología Vegetal Gabriel Eduardo Rech Salamanca, 2013 UNIVERSIDAD DE SALAMANCA Facultad de Biología Departamento de Microbiología y Genética Área: Genética Centro Hispano-Luso de Investigaciones Agrarias Estudio de la evolución de un fitopatógeno: Genómica comparada del hongo patógeno de maíz Colletotrichum graminicola Tesis Doctoral Programa de Doctorado: Agrobiotecnología Órgano responsable del Programa de Doctorado: Departamento de Fisiología Vegetal Gabriel Eduardo Rech Salamanca, 2013 D. Luis Román Fernández Lago, Director del Departamento de Microbiología y Genética de la Facultad de Biología de la Universidad de Salamanca y Dña. Berta Dopico Rivela, Directora del Departamento de Fisiología Vegetal de la Facultad de Biología de la Universidad de Salamanca, órgano responsable del Programa de Doctorado en Agrobiotecnología CERTIFICAMOS: Que la presente Memoria titulada “Estudio de la evolución de un fitopatógeno: Genómica comparada del hongo patógeno de maíz Colletotrichum graminicola”, ha sido realizada en el Departamento de Microbiología y Genética de la Facultad de Biología y el Centro Hispano-Luso de Investigaciones Agrarias de la Universidad de Salamanca por el Licenciado D. Gabriel Eduardo Rech, bajo la dirección del Dr. -
Tilletia Indica.Pdf
Podsumowanie Analizy Zagrożenia Agrofagiem (Ekspres PRA) dla Tilletia indica Obszar PRA: Rzeczpospolita Polska Opis obszaru zagrożenia: Obszar całego kraju Główne wnioski Prawdopodobieństwo wniknięcia T. indica na teren PRA jest ściśle związane z importem zakażonego ziarna. Istnieje ryzyko zadomowienia się patogenu na obszarze PRA i wywoływania szkód w produkcji rolnej. W przypadku sprowadzania z miejsc, gdzie występuje choroba konieczne jest prowadzenie działań fitosanitarnych jak kontrola materiału nasiennego lub ziarna przeznaczonego na inne cele. Wskazane jest także zaniechanie importu w przypadku epidemii na nowym terenie lub z rejonów o silnym natężeniu infekcji. Sprowadzanie ziarna produkowanego poza obszarem występowania T. indica nie wymaga podejmowania specjalnych zabiegów fitosanitarnych. Wszelkie sygnały o obecności agrofaga powinny zostać poddane wnikliwej analizie, a zakażone rośliny lub materiał zniszczone. Ze względu na duże zdolności teliospor do przetrwania w niekorzystnych warunkach zwalczanie chemiczne lub płodozmian mogą okazać się nieskuteczne. Ryzyko fitosanitarne dla zagrożonego obszaru (indywidualna ranga prawdopodobieństwa wejścia, Wysokie Średnie X Niskie zadomowienia, rozprzestrzenienia oraz wpływu w tekście dokumentu) Poziom niepewności oceny: (uzasadnienie rangi w punkcie 18. Indywidualne rangi niepewności dla prawdopodobieństwa wejścia, Wysoka Średnia Niska X zadomowienia, rozprzestrzenienia oraz wpływu w tekście) Inne rekomendacje: 1 Ekspresowa Analiza Zagrożenia Agrofagiem: Tilletia indica Przygotowana przez: dr Katarzyna Pieczul, prof. dr hab. Marek Korbas, mgr Jakub Danielewicz, dr Katarzyna Sadowska, mgr Michał Czyż, mgr Magdalena Gawlak, lic. Agata Olejniczak dr Tomasz Kałuski; Instytut Ochrony Roślin – Państwowy Instytut Badawczy, ul. Węgorka 20, 60-318 Poznań. Data: 10.08.2017 Etap 1 Wstęp Powód wykonania PRA: Tilletia indica jest patogenem porażającym pszenicę i pszenżyto oraz potencjalnie niektóre z gatunków traw dziko rosnących. Patogen stwarza realne zagrożenie dla upraw zbóż na obszarze PRA. -
Approaches to Species Delineation in Anamorphic (Mitosporic) Fungi: a Study on Two Extreme Cases
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 917 Approaches to Species Delineation in Anamorphic (mitosporic) Fungi: A Study on Two Extreme Cases BY OLGA VINNERE ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2004 ! ""# $"%"" & ' & & ( ) * + ') , -) ""#) . / . 0 1 2 '% . / *+ ) . ) 3$4) 4 ) ) 5/6 3$788#78!9 74 / ' ' & ' & & ' ' & ' & ) ' + +& & & & ' ) : ' & ' ' ' & + & & & 0 1 & ') 5 5 & & & + ' & ' ) - & ; + + ' & ' + ' ' & ' & ) * & ' ' & < & & ) * + ; & ' & & ' + & & & < & < ' ' & & ' ' & ' + ) ' + < ' & ') 5 + < 5 & ' 0 1 0 1 ) 2 & ' + + & 6. = ' & = ' ) . 7 & & 0 1 + + + ) 2 & ' & + & ' ' ' ) - ' & + ' + ' + & ' + ) . & & & & ' + ' ' & ) /= ' & ' & 6. ' ' ' + 7 ' + & ' ' ' ! ) > + ' ' ' + ) * & & ' & & ' = ' & & ' ' & < +') " # $ & ' ? / ( ' & ' % & ' ( -
From Colletotrichum Graminicola, a Systemic Vascular Pathogen of Maize
mycological research 113 (2009) 1433–1442 journal homepage: www.elsevier.com/locate/mycres Antifungal metabolites (monorden, monocillins I, II, III) from Colletotrichum graminicola, a systemic vascular pathogen of maize Donald T. WICKLOWa,*, Annalisa M. JORDANb, James B. GLOERb aMycotoxin Research Unit, Agricultural Research Service, National Center for Agricultural Utilization Research, USDA, Peoria, IL 61604, USA bDepartment of Chemistry, University of Iowa, Iowa City, IA 52242, USA article info abstract Article history: Colletotrichum graminicola is a systemic vascular pathogen that causes anthracnose stalk rot Received 18 August 2009 and leaf blight of maize. In the course of an effort to explore the potential presence and Received in revised form roles of C. graminicola metabolites in maize, ethyl acetate extracts of solid substrate 1 October 2009 fermentations of several C. graminicola isolates from Michigan and Illinois were found to Accepted 4 October 2009 be active against Aspergillus flavus and Fusarium verticillioides, both mycotoxin-producing Available online 13 October 2009 seed-infecting fungal pathogens. Chemical investigations of the extract of one such isolate Corresponding Editor: Marc Stadler (NRRL 47511) led to the isolation of known metabolites monorden (also known as radicicol) and monocillins I–III as major components. Monorden and monocillin I displayed in vitro Keywords: activity against the stalk- and ear-rot pathogen Stenocarpella maydis while only the most Anthracnose abundant metabolite (monorden) showed activity against foliar pathogens Alternaria alter- Biotrophy nata, Bipolaris zeicola, and Curvularia lunata. Using LC–HRESITOFMS, monorden was detected Hsp90 inhibitor in steam-sterilized maize stalks and stalk residues inoculated with C. graminicola but not in Necrosis the necrotic stalk tissues of wound-inoculated plants grown in an environmental chamber. -
Colletotrichum Graminicola
Apr 19Pathogen of the month – April 2019 SH V (1914) a b c d e Fig. 1. (a) Colletotrichum graminicola asexual falcate conidia stained with calcofluor white; (b) acervuli with setae; (c) cross section of an acervulus (black arrow); (d) lobed, melanized appressoria, and (e) intracellular hyphae in a mesophyll cell. Note two distinct types of hyphae: vesicles (V; also known as biotrophic hyphae) and necrotrophic secondary hyphae (SH). Figs (b-e) were observed on maize leaf sheaths. Figs (b- e) were cleared in chloral hydrate and (d-e) stained with lactophenol blue. Wilson Wilson Common Name: Maize anthracnose fungus Disease: Maize Anthracnose; Anthracnose leaf blight (ALB); anthracnose stalk rot (ASR) Classification: K: Fungi P: Ascomycota C: Sordariomycetes O:Glomerellales F: Glomerellaceae The hemibiotrophic fungal pathogen, Colletotrichum graminicola (Teleomorph – Glomerella graminicola D.J. Politis G.W (1975)) causes anthracnose in maize (corn) and is a major problem as some varieties of engineered maize seem more susceptible to infection resulting in increasing economic concerns in the US. With a 57.4-Mb genome .) .) distributed among 13 chromosomes, it belongs to the graminicola species complex with other 14 closely related species. Such graminicolous Colletotrichum species infect other cereals and grasses such as C. sublineolum in sorghum, C. falcatum in sugarcane and C. cereale in wheat and turfgrass. Of the 44 Colletotrichum species that exist in Australia, graminicolous Colletotrichum isolates still need to be verified in the Australian collection. Ces Biology and Ecology: of pith tissue in the corn stalk around the stalk internodes. ( The fungus forms fluffly aerial mycelium and produces two Maize roots can be infected by the fungus leading to differently shaped hyaline conidia: (a) falcate (24-30 x 4-5 asymptomatic systemic colonization of the plants. -
A New Species of Pharaxonotha Reitter (Coleoptera: Erotylidae) from Central South America
Zootaxa 4590 (1): 184–190 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4590.1.9 http://zoobank.org/urn:lsid:zoobank.org:pub:C0A13DAA-8DC9-4AF1-8EA5-916D0C0BE668 A new species of Pharaxonotha Reitter (Coleoptera: Erotylidae) from central South America PAUL E. SKELLEY1,3 & ROSANE SEGALLA2 1Florida State Collection of Arthropods, Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, Florida 32608 USA. E-mail: [email protected] 2IFMT - Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso, Campus Cáceres, Mato Grosso, Brazil. E-mail: [email protected] 3Corresponding author Abstract Pharaxonotha cerradensis, new species (Coleoptera: Erotylidae), is described from Bolivia and Brazil. It belongs in a complex of species from Mexico and Central America that radiated on host cycads of the genus Zamia L. (Cycadales: Zamiaceae) and is associated with Zamia boliviana (Brongniart) A. DC. (Cycadales: Zamiaceae). Pharaxonotha cer- radensis is compared with other species of Pharaxonotha Reitter. Key words: Neotropical, Cerrado, Cucujoidea, Pharaxonothinae, host plants Resumo Pharaxonotha cerradensis, nova espécie (Coleoptera: Erotylidae), da Bolívia e do Brasil é descrita. Pertence a um com- plexo de espécies do México e da América Central que se irradiaram em cycads hospedeiras do gênero Zamia L. (Cy- cadales: Zamiaceae) e está associado a Zamia boliviana (Brongniart) A. DC. (Cycadales: Zamiaceae). Pharaxonotha cerradensis é comparada com outras espécies de Pharaxonotha Reitter. Palavras-chave: Neotropical, Cerrado, Cucujoidea, Pharaxonothinae, plantas hospedeiras Introduction Much recent taxonomic work has been conducted on cycad pollinating beetles (e.g., O’Brien & Tang 2015; Skelley et al. -
Insect Pollination of Cycads 9 10 Alicia Toon1, L
1 2 DR. ALICIA TOON (Orcid ID : 0000-0002-1517-2601) 3 4 5 Article type : Invited Review 6 7 8 Insect pollination of cycads 9 10 Alicia Toon1, L. Irene Terry2, William Tang3, Gimme H. Walter1, and Lyn G. Cook1 11 12 1The University of Queensland, School of Biological Sciences, Brisbane, Qld, 4072, 13 Australia 2 14 University of Utah, School of Biological Sciences, Salt Lake City, UT 84112, USA 15 3 USDA APHIS PPQ South Florida, P.O.Box 660520, Miami, FL 33266, USA 16 17 Corresponding author: Alicia Toon 18 [email protected] Ph: +61 (0) 411954179 19 Goddard Building, The University of Queensland, School of Biological Sciences, Brisbane, 20 Qld, 4072, Australia. 21 22 23 24 25 26 27 28 29 30 Manuscript Author 31 This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/AEC.12925 This article is protected by copyright. All rights reserved 32 33 Acknowledgements 34 We would like to thank Dean Brookes for discussions about genetic structure in cycad 35 pollinating thrips populations. Also, thanks to Mike Crisp for discussions about plant 36 diversification and Paul Forster for information on Australian cycads. This work was funded 37 by ARC Discovery Grant DP160102806. 38 39 Abstract 40 Most cycads have intimate associations with their insect pollinators that parallel those of 41 well-known flowering plants, such as sexually-deceptive orchids and the male wasps and 42 bees they deceive.