Cereal Cyst Nematodes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Infectivity of Verticillium Dahliae Isolates on Weedy Hosts
INFECTIVITY OF VERTICILLIUM DAHLIAE ISOLATES ON WEEDY HOSTS, LITCHI TOMATO, AND TEFF, AND THE EFFECT OF ALFALFA RESIDUE INCORPORATION ON THE NUMBER OF VERTICILLIUM DAHLIAE MICROSCLEROTIA, AND SOIL BACTERIAL METAGENOMICS By ZACHARY ANDREW FREDERICK A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY Department of Plant Pathology MAY 2017 © Copyright by ZACHARY ANDREW FREDERICK, 2017 All Rights Reserved © Copyright by ZACHARY ANDREW FREDERICK, 2017 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of ZACHARY ANDREW FREDERICK find it satisfactory and recommend that it be accepted. ___________________________________ Dennis A. Johnson, Ph.D, Chair. ___________________________________ Mark J. Pavek, Ph.D. ___________________________________ Debra A. Inglis, Ph.D. ___________________________________ Weidong Chen, Ph.D. ii ACKNOWLEDGMENTS I thank Dr. Dennis A. Johnson for the opportunity to pursue the study of plant pathology, cooperative extension, and potato disease at Washington State University through his program. I also thank Thomas F. Cummings for instruction and support of establishing trials, as well as guidance on statistical analyses. I wish to thank my committee members, Drs. Mark J. Pavek, Debra A. Inglis, and Weidong Chen for their critiques and guidance. I am grateful for my present and former members of my laboratory workgroup, including David Wheeler and Dr. Lydia Tymon for direction and toleration of my contributions to entropy, as well as Dr. Jeremiah Dung for his isolates and copious notes left behind. Would you kindly join me in extending special thanks to Dr. Kerik Cox, who continues to serve as an additional adviser. -
Major Clades of Agaricales: a Multilocus Phylogenetic Overview
Mycologia, 98(6), 2006, pp. 982–995. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 Major clades of Agaricales: a multilocus phylogenetic overview P. Brandon Matheny1 Duur K. Aanen Judd M. Curtis Laboratory of Genetics, Arboretumlaan 4, 6703 BD, Biology Department, Clark University, 950 Main Street, Wageningen, The Netherlands Worcester, Massachusetts, 01610 Matthew DeNitis Vale´rie Hofstetter 127 Harrington Way, Worcester, Massachusetts 01604 Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708 Graciela M. Daniele Instituto Multidisciplinario de Biologı´a Vegetal, M. Catherine Aime CONICET-Universidad Nacional de Co´rdoba, Casilla USDA-ARS, Systematic Botany and Mycology de Correo 495, 5000 Co´rdoba, Argentina Laboratory, Room 304, Building 011A, 10300 Baltimore Avenue, Beltsville, Maryland 20705-2350 Dennis E. Desjardin Department of Biology, San Francisco State University, Jean-Marc Moncalvo San Francisco, California 94132 Centre for Biodiversity and Conservation Biology, Royal Ontario Museum and Department of Botany, University Bradley R. Kropp of Toronto, Toronto, Ontario, M5S 2C6 Canada Department of Biology, Utah State University, Logan, Utah 84322 Zai-Wei Ge Zhu-Liang Yang Lorelei L. Norvell Kunming Institute of Botany, Chinese Academy of Pacific Northwest Mycology Service, 6720 NW Skyline Sciences, Kunming 650204, P.R. China Boulevard, Portland, Oregon 97229-1309 Jason C. Slot Andrew Parker Biology Department, Clark University, 950 Main Street, 127 Raven Way, Metaline Falls, Washington 99153- Worcester, Massachusetts, 01609 9720 Joseph F. Ammirati Else C. Vellinga University of Washington, Biology Department, Box Department of Plant and Microbial Biology, 111 355325, Seattle, Washington 98195 Koshland Hall, University of California, Berkeley, California 94720-3102 Timothy J. -
Nuclear Distribution and Behaviour Throughout the Life Cycles of Thanatephoru8, Waitea, and Ceratoba8idiujj1 Species
NUCLEAR DISTRIBUTION AND BEHAVIOUR THROUGHOUT THE LIFE CYCLES OF THANATEPHORU8, WAITEA, AND CERATOBA8IDIUJJ1 SPECIES By N. T. Ih,ENTJE,* HELENA M. STRETTON,* and E. J. HAWN,!, [Manuscript rece-ived November 7, ID62] Summary Nuclear distribution and behaviour throughout the life cycles of Thanateplwrus, Waitea, and Ceratobasidium species was studied in both living and stained preparations. In the vegetative phase young cells of Thanateplwrus and Waitea commonly contained 4--12 nuclei, whereas those of Ceratobasidium were binucleate. The multinucleate condition of the vegetative cells was independent of the origin of the isolates, whether naturally occurring in the field or derived from single basidiospol'cs. In aU three genera nuclear division in the vegetative cells was found to be conjugate, followed by au even segregation of the daughter nuclei. Frequent malfunction of t.he conjugate division resulting in uneven segregation of the daughter nuclei was almost certainly the reason for different numbers of nuclei in sueeessive cells of young hyphae. No nuclear migration through septa was observed. In older hyphae, secondary septa formed without nuclear division, resulting in reduced numbers of nuclei per cell. The change from vegetative to reproductive phase was associated with septation of hyphae cutting off eells with only two nuelei. In the basidia karyogamy and meiosis oceurred, resulting in four haploid nuclei which migrated through the four sterigmata to fonn four uninucleate spores. Aberrations also occurred in the reproductive phase; three nuclei instead of two were sometimes included initially in t.he basidium or two nuclei sometimes migrated from the basidium into one spore. These aberrations complicate any genetical analysis based on single-spore cultures. -
AFLP Fingerprinting for Identification of Infra-Species Groups of Rhizoctonia Solani and Waitea Circinata Bimal S
atholog P y & nt a M l i P c r Journal of f o o b l i a o Amaradasa et al., J Plant Pathol Microb 2015, 6:3 l n o r g u y DOI: 10.4172/2157-7471.1000262 o J Plant Pathology & Microbiology ISSN: 2157-7471 Research Article Open Access AFLP Fingerprinting for Identification of Infra-Species Groups of Rhizoctonia solani and Waitea circinata Bimal S. Amaradasa1*, Dilip Lakshman2 and Keenan Amundsen3 1Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA 2Floral and Nursery Plants Research Unit and the Sustainable Agricultural Systems Lab, Beltsville Agricultural Research Center-West, Beltsville, MD 20705, USA 3Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583 USA Abstract Patch diseases caused by Thanatephorus cucumeris (Frank) Donk and Waitea circinata Warcup and Talbot varieties (anamorphs: Rhizoctonia species) pose a serious threat to successful maintenance of several important turfgrass species. Reliance on field symptoms to identify Rhizoctonia causal agents can be difficult and misleading. Different Rhizoctonia species and Anastomosis Groups (AGs) vary in sensitivity to commonly applied fungicides and they also have different temperature ranges conducive for causing disease. Thus correct identification of the causal pathogen is important to predict disease progression and make future disease management decisions. Grouping Rhizoctonia species by anastomosis reactions is difficult and time consuming. Identification of Rhizoctonia isolates by sequencing Internal Transcribed Spacer (ITS) region can be cost prohibitive. Some Rhizoctonia isolates are difficult to sequence due to polymorphism of the ITS region. Amplified Fragment Length Polymorphism (AFLP) is a reliable and cost effective fingerprinting method for investigating genetic diversity of many organisms. -
First Report of Rhizoctonia Zeae on Turfgrass in Ontario T
NEWBlackwell Publishing Ltd DISEASE REPORTS Plant Pathology (2007) 56, 350 Doi: 10.1111/j.1365-3059.2006.01467.x First report of Rhizoctonia zeae on turfgrass in Ontario T. Hsiang* and P. Masilamany Department of Environmental Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada In May 2004, a disease appeared on Poa annua and Agrostis stolonifera this organism is similarly confused since R. zeae is considered to be a sub- at a golf course near Toronto. Narrow yellow rings enclosing areas up to species of Waitea circinata which contains at least two other subspecies 30 cm across appeared after air temperatures reached 25°C. The disease including R. oryzae (Oniki et al., 1985; Leiner & Carling, 1994). More resembled yellow patch caused by Rhizoctonia cerealis, but the weather work is required to clarify the taxonomic disposition of R. zeae. was too warm for normal occurrences of that disease. The rings persisted until the end of July. In late May 2005, the disease appeared again after the Acknowledgements weather became hot. A mixture of azoxystrobin and chlorothalonil was applied which seemed to suppress the disease within a week, until it reap- We are grateful for the financial support of the Natural Sciences and peared in July. Samples were collected, and leaves with symptoms were Engineering Research Council of Canada, the Ontario Ministry of surface sterilized in 1% hypochlorite, and transferred to potato dextrose Agriculture and Food, as well as technical support from Darcy Olds and agar (PDA) amended with streptomycin. After one week at 25°C, the Russ Gowan. plates contained white colonies 5 cm diameter. -
Brown Ring Patch Disease Control on Annual Bluegrass Putting Greens 2021 Report
Brown Ring Patch Disease s Control on Annual Bluegrass Putting Greens 2021 Report R E S E AR C H R E P O R T B R O UG HT T O Y O U B Y : Brown Ring Patch Disease Control on Annual Bluegrass Putting Greens 2021 Report Pawel Petelewicz1, Pawel Orlinski2, Marta Pudzianowska2, Matteo Serena2, Christian Bowman2, and Jim Baird2 1Agronomy Department University of Florida, Gainesville, FL 2Department of Botany and Plant Sciences University of California, Riverside, CA 951-333-9052; [email protected] The Bottom Line: Thirty-one combinations of experimental and commercially available fungicide treatments were tested against an untreated control for their ability to control brown ring patch (BRP) disease (Waitea circinata var. circinata) on an annual bluegrass (Poa annua) putting green in Riverside, CA. All treatments were applied curatively on January 24, 2021 and repeated either two (February 7) or three (February 16) weeks later. A combination of natural disease decline and treatment effects resulted in almost no disease symptoms present on February 16. On April 8, disease symptoms returned on select plots including the untreated control (disease severity = 2.4 on a scale of 0-5, and 3.4 nine days later). Treatments containing Premion (PCNB, tebuconazole) + Par SG (pigment), Oximus (azoxystrobin, tebuconazole), Ascernity (benzovindiflupyr, difenoconazole), or Mirage Stressgard (tebuconazole) exhibited the longest residual activity against BRP as evidenced by no disease activity at 69 days since previous treatment. Both BRP disease control and Poa seedhead control (likely from DMI fungicides) contributed to turfgrass visual quality differences among treatments. All treatments were applied again on April 19 and most were effective in controlling BRP even though disease activity in the control also subsided naturally. -
Course Disease Alert!
FEATURE TURF DISEASES Course disease alert! Dr Kate Entwistle offers details of two new diseases which have been identified on UK golf courses Rapid Blight Brown Ring Patch Two newly emerging turf loss of Poa annua and Agrostis spp Symptoms can develop when 4), but lack of recovery prompted an ABOVE: Fig. 5. General diseases have recently been from the sward. temperatures rise above 15C analysis that eventually identified symptoms of Brown Ring confirmed in samples received Analysis of the turf identified the and salinity levels are >2.0dS/m the real problem. Patch (Waitea Patch) in the UK, 2011 (photograph courtesy T from golf courses in the UK presence of a non-fungal organism (although Labyrinthula has been Due to the way in which Kvedaras, ITS Ltd) and Ireland and it is suspected called Labyrinthula within the isolated from turf growing in much Labyrinthula affects the plant, the that they are more prevalent plant tissues and a disease known lower salinity conditions). sward initially becomes yellow, Further in areas of fine turf than are as Rapid Blight was recorded for Because the causal organism is then becomes red in colour before information currently recorded. the first time in Europe. Subse- not a fungus, most fungicides will the tissues eventually ‘rot’ and the Douhan, G. W., Olsen, M. During 2012, The Turf Disease quent collaboration between The have no effect either on the organ- sward thins. The symptoms can W., Herrell, A., Winder, C., Centre will be collating information Turf Disease Centre and Dr Mary ism or on the development of symp- appear very much like Anthrac- Wong, F., and Entwistle, K. -
Isolation and Identification of Mycorrhizal Fungi from Eleven Terrestrial Orchids
Isolation and Identification of Mycorrhizal Fungi from Eleven Terrestrial Orchids Pornpimon Athipunyakom1,2, Leka Manoch2 and Chitrapan Piluek3 ABSTRACT Mycorrhizal fungi were isolated from eleven terrestrial orchid species, namely Calanthe rubens, Calanthe rosea, Cymbidium sinense, Cymbidium tracyanum, Goodyera procera, Ludisia discolor, Paphiopedilum concolor, P. exul, P. godefroyae, P. niveum and P. villosum. Healthy roots of orchid hosts were collected from various parts of the country. Isolation of mycorrhizal fungi from pelotons was carried out using a modification of Masuhara and Katsuya method. Identification was based on morphological characteristics. Nuclei were stained with safranin O using Bandoni’s method. Seven genera and fourteen species of mycorrhizal fungi were identified: Ceratorhiza cerealis, C. goodyerae-repentis,C. pernacatena, C. ramicola, Ceratorhiza sp., Epulorhiza calendulina, E. repens, Rhizoctonia globularis, Sistotrema sp., Trichosporiella multisporum, Tulasnella sp. Waitea circinata and two Rhizoctonia species. Nuclear staining revealed that all strains were binucleate except for W. circinata which was multinucleate. Pure cultures were maintained on PDA slant and liquid paraffin at the Culture Collection, Department of Plant Pathology, Kasetsart University. Key words : Ceratorhiza, Epulorhiza, Rhizoctonia, mycorrhizal fungi, terrestrial orchids INTRODUCTION in order to develop and mature successfully (Currah et al., 1990). Thailand is one of few countries in the Mycorrhizal fungi are associated with the world that is rich in orchid species. They are found root systems of more than 90% of terrestrial plant in all different habitats with approximate a total of species in a mutual symbiosis. The fungi obtain 170 genera and 1,230 species of which 150 species sugars from photosynthesis by the host plant in are considered endemic to the country. -
Quantitative Trait Loci Analysis for Resistance to Cephalosporium Stripe, a Vascular Wilt Disease of Wheat
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ICRISAT Open Access Repository Theor Appl Genet (2011) 122:1339–1349 DOI 10.1007/s00122-011-1535-6 ORIGINAL PAPER Quantitative trait loci analysis for resistance to Cephalosporium stripe, a vascular wilt disease of wheat Martin C. Quincke • C. James Peterson • Robert S. Zemetra • Jennifer L. Hansen • Jianli Chen • Oscar Riera-Lizarazu • Christopher C. Mundt Received: 20 August 2010 / Accepted: 6 January 2011 / Published online: 23 January 2011 Ó Springer-Verlag 2011 Abstract Cephalosporium stripe, caused by Cephalo- on each RIL in three field environments under artificially sporium gramineum, can cause severe loss of wheat inoculated conditions. A linkage map for this population (Triticum aestivum L.) yield and grain quality and can be was created based on 204 SSR and DArT markers. A total an important factor limiting adoption of conservation till- of 36 linkage groups were resolved, representing portions age practices. Selecting for resistance to Cephalosporium of all chromosomes except for chromosome 1D, which stripe is problematic; however, as optimum conditions for lacked a sufficient number of polymorphic markers. disease do not occur annually under natural conditions, Quantitative trait locus (QTL) analysis identified seven inoculum levels can be spatially heterogeneous, and little is regions associated with resistance to Cephalosporium known about the inheritance of resistance. A population of stripe, with approximately equal additive effects. Four 268 recombinant inbred lines (RILs) derived from a cross QTL derived from the more susceptible parent (Brundage) between two wheat cultivars was characterized using field and three came from the more resistant parent (Coda), but screening and molecular markers to investigate the inher- the cumulative, additive effect of QTL from Coda was itance of resistance to Cephalosporium stripe. -
Deciphering the Presence and Activity of Fungal Communities in Marine Sediments Using a Model Estuarine System
Vol. 70: 45–62, 2013 AQUATIC MICROBIAL ECOLOGY Published online August 6 doi: 10.3354/ame01638 Aquat Microb Ecol Deciphering the presence and activity of fungal communities in marine sediments using a model estuarine system Gaëtan Burgaud1,*, Sarah Woehlke2, Vanessa Rédou1, William Orsi3, David Beaudoin3, Georges Barbier1, Jennifer F. Biddle2, Virginia P. Edgcomb3 1Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (EA3882), IFR 148, Université Européenne de Bretagne, Université de Brest, ESIAB, Technopole Brest-Iroise, Parvis Blaise Pascal, Plouzané 29280, France 2College of Earth, Ocean and the Environment, University of Delaware, Lewes, Delaware 19958, USA 3Geology and Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA ABSTRACT: Fungi are known to play key roles in ecologically important biogeochemical cycles and food webs. Most knowledge of environmental groups of fungi comes from terrestrial environ- ments, and little is known about the potential for terrestrial fungi to colonize marine environ- ments. We investigated the Delaware River estuary and bay as a model estuarine system to study the fungal community changes occurring along a transect from terrestrially influenced waters and sediments to a higher salinity, truly marine system. DNA-based clone libraries and a culture col- lection built using subseafloor sediment samples revealed that Ascomycota dominated the detected diversity ahead of Basidiomycota and Chytridiomycota. A clear transition in fungal com- munities from terrestrially influenced and low salinity environments to marine environments was visualized. A complementary RNA-based analysis coupled with fluorescence in situ hybridization of sediments indicated that only few fungi were metabolically active in marine sediments. Culti- vation of pelagic and sedimentary fungi allowed clear identification and physiology testing of fun- gal communities of the Delaware Bay. -
Lawrence Elliott Datnoff
CURRICULUM VITA Lawrence Elliott Datnoff Current Position and Contact Information: Professor and Head, Department of Plant Pathology and Crop Physiology, Louisiana State University, 302 Life Sciences Bldg., Baton Rouge, LA 70803, Phone: 225-578- 1366, FAX: 225-578-1415, EMAIL: [email protected] Education: Ph.D. Plant Pathology, University of Illinois, Champaign-Urbana, 1985; M.S. Plant Pathology, VPI & SU, Blacksburg, 1981; B.S. Horticulture & Plant Pathology, University of Georgia, Athens, 1976 Professional Experience: LSU / LSU AgCenter, Department of Plant Pathology & Crop Physiology, Professor & Head, 2008-present; LSU AgCenter, Interim Director, International Programs, 2013-2014; University of Florida, Gainesville, Professor, 2003-2008; University of Florida, Belle Glade, Assist., Assoc. & Professor, 1988-2003; USDA-ARS, Ft. Detrick, MD, Research Affiliate, 1986-1988; North Carolina State University, Visiting Scientist, 1985, Jul-Nov; University of Illinois, Graduate Research Assistant, 1981-1985; USAID- Zambian Agriculture, Research Associate, Lusaka, Zambia, 1983-1984; VPI & SU, Graduate Student, 1978- 1981; and Peace Corps/Brazil, Horticulturist, 1976-1978 Honors and Awards: American Phytopathological Society (APS)-International Service Award, 2012; APS- Caribbean Division Frederick L. Wellman Award, 2012; Research Award for contributions to the scientific understanding of Silicon in Agriculture, V Simposio Brasileiro sobre Silicio no Agricultura, Vicosa, MG, Brazil, 2010; Florida Phytopathological Society Service Award, -
Anatolian Journal Of
Anatolian Journal of e-ISSN 2602-2818 5(1) (2021) - Anatolian Journal of Botany Anatolian Journal of Botany e-ISSN 2602-2818 Volume 5, Issue 1, Year 2021 Published Biannually Owner Prof. Dr. Abdullah KAYA Corresponding Address Gazi University, Science Faculty, Department of Biology, 06500, Ankara – Turkey Phone: (+90 312) 2021235 E-mail: [email protected] Web: http://dergipark.gov.tr/ajb Editor in Chief Prof. Dr. Abdullah KAYA Editorial Board Dr. Alfonso SUSANNA– Botanical Institute of Barcelona, Barcelona, Spain Prof. Dr. Ali ASLAN – Yüzüncü Yıl University, Van, Turkey Dr. Boris ASSYOV – Istitute of Biodiversity and Ecosystem Research, Sofia, Bulgaria Dr. Burak SÜRMEN – Karamanoğlu Mehmetbey University, Karaman, Turkey Prof. Cvetomir M. DENCHEV – Istititute of Biodiv. & Ecosystem Res., Sofia, Bulgaria Assoc. Prof. Dr. Gökhan SADİ – Karamanoğlu Mehmetbey Univ., Karaman, Turkey Prof. Dr. Güray UYAR – Hacı Bayram Veli University, Ankara, Turkey Prof. Dr. Hamdi Güray KUTBAY – Ondokuz Mayıs University, Samsun, Turkey Prof. Dr. İbrahim TÜRKEKUL – Gaziosmanpaşa University, Tokat, Turkey Prof. Dr. Kuddusi ERTUĞRUL – Selçuk University, Konya, Turkey Prof. Dr. Lucian HRITCU – Alexandru Ioan Cuza Univeversity, Iaşi, Romania Prof. Dr. Tuna UYSAL – Selçuk University, Konya, Turkey Prof. Dr. Yusuf UZUN – Yüzüncü Yıl University, Van, Turkey Advisory Board Prof. Dr. Ahmet AKSOY – Akdeniz University, Antalya, Turkey Prof. Dr. Asım KADIOĞLU – Karadeniz Technical University, Trabzon, Turkey Prof. Dr. Ersin YÜCEL – Eskişehir Technical University, Eskişehir,